
On the onstrution and omparison of statistialmodels for sienti� disoveryJ.K. LindseyBiostatistis, Limburgs Universitair Centrum, DiepenbeekEmail: jlindsey�lu.a.beAbstratThe sienti� proess an be thought of as having two distint stages, disovery and on-�rmation by repliation. The seond orresponds to many standard statistial proedures butthe �rst is muh more diÆult to formalize.This survey looks at the various steps in the model building proess in the disovery stage:oneption and study design, onstrution, seletion, diagnostis, unertainty, and interpre-tation. Some limitations of present praties are suggested and a number of outstandingproblems desribed.Partiularly important problems arise in the omparison and seletion of models involvingdi�erent funtions. These inlude how to allow for the unertainty arising from �tting severaldistint models to a data set and how to measure the relative omplexity of models otherthan simply by ounting the number of unknown parameters. Both are losely related to thedisovery proess in siene.Keywords: Diagnostis, embedding, mehanisti model, model seletion, model uner-tainty, pro�le likelihood.1 IntrodutionSine its �rst development, the �eld of statistis has played important roles in many areas ofsoiety. Its beginnings an be found in astronomial predition, soial statistis, and epidemiology.Solid foundations were established through work in agronomy and genetis. Reently, a majorimpetus has ome from linial mediine. None of this should be surprising. We live in a soietyof unertainty and statistis speializes in the study of unertainty.Modern statistis is primarily an invention of the twentieth entury. Classial statistis devel-oped between the two world wars, the greatest name of that period being Fisher. The 1950s and1960s were a period of onsolidation. In ontrast, the last thirty years have seen a ontinuousrevolution of statistial pratie. Before that time, suh important �elds as survival and disretedata analysis, to name but two, did not even exist. These reent developments have arisen from1



at least two major impetuses: the omputer revolution and the requirements of mediine and thepharmaeutial industry.Statistiians like to believe that they are the experts in the study of unertainty. Some feelthreatened by reent developments, suh as haos theory, neural networks, data mining, and so on,that treat unertainty in di�erent ways than does the lassial statistial approah. Statistis haspowerful means for handling small data sets and for drawing general onlusions about the largerpopulations from whih these are supposed to ome. Statistiians are more at ease analyzing asample survey than a omplete ensus. However, they do not have a monopoly over the ways inwhih unertainty an be handled.Many statistiians have the unfortunate weakness of tending to believe that their favouriteproedures are appliable in almost any irumstanes. The frequentist, Bayesian, and likelihoodshools all make laims to superiority in drawing inferenes. Eah has its strengths in spei�ontexts; none an provide the �nal solution. The frequentist approah was designed for deision-making in a repetitive situation, suh as industrial quality ontrol. The Bayesian approah empha-sizes inorporation of individual subjetive beliefs, appropriate for example in �nanial deision-making. The likelihood (Fisherian) approah onentrates on obtaining the maximum informationfrom the presently available data without taking into aount how it will be used, a primary goalof the empirial stage of sienti� researh.In a similar way, many statistiians have their favourite statistial tehnique or model, oftenbeause they sari�ed an enormous amount of time and e�ort on it for their dotoral dissertation.Then, throughout their areer, they attempt to apply it in all possible irumstanes. My partiularweaknesses are likelihood inferene and priniples of modelling.Here I shall look at some aspets of inferene spei�ally related to modelling that I did notover in Lindsey (1999). I an only disuss one small area, delimited by the likelihood approah andsienti� appliations, making no laim that these ideas are more generally appliable. For example,I ignore ompletely deision-making problems, desriptive statistis, industrial appliations, andso on.Although siene is only onerned with repeatable phenomena, I shall not onentrate on thisaspet of the statistial endeavour, the veri�ation of models. Rather, I shall look at the disoveryand development of appropriate models up to the stage when it beomes feasible to entertain thepossibility of repeatability. Then, the sienti� ommunity takes over.Sienti� disovery an arise in at least two distint ways: new theoretial developments maypoint to something that then has to be empirially heked or new empirial data may ontraditexisting theory pointing to a modi�ation or a new theory. The �rst poses a relatively simplestatistial problem. The seond is muh more diÆult: how an we assess that the given empirialdata support a new theory derived from them better than the old, thus indiating that sienti�repliation will be neessary for on�rmation? 2



2 Model oneption2.1 Understanding the sienti� questionIn spite of the pretensions of some statistiians (and names of journals), statistis is not a siene;it has no subjet matter in nature or soiety that it speializes in studying. It is rather a olletionof methods for treating empirial data involving unertainty. It forms an important part of theepistemology of some areas of siene, partiularly those involving living beings, where variabilityan be large. Thus, it is lose to mathematis (whih is even further from siene), not only inusing the latter disipline but also in that it thrives on abstration from spei� problems. Butit is also far from mathematis, and loser to siene, in that it proeeds from the spei� to thegeneral and that it neessarily involves empirial appliations.Consider, for example, a sientist who omes to a statistiian wishing to �t the Miha�elis-Menten equation to some assay data. This model gives the initial veloity of an enzyme-atalysedreation as a funtion of substrate onentration, x:�(x) = VmaxxKm + x (1)where �(x) is the mean initial veloity, Vmax is the maximum veloity (in pratie, divided by aalibration onstant), and Km is the Miha�elis onstant. Beause this equation has the logistiform, many statistiians will immediately suggest the more general and `muh better' model forsuh assays, �(x) = �0 + �11 + e�0+�1 log(x) (2)(I resist disussing the nonparametriians who point out that their splines, loal polynomialsmoothing, . . . are superior.) Indeed, this equation an be rewritten�(x) = Vmaxx�1 +KmV0Km + x�1with �0 = Vmax, �1 = V0 � Vmax, �0 = ��1 log(Km), and the onentration power-transformedby �1. Admittedly, this latter equation an yield a measure of goodness of �t of Equation (1), inone partiular diretion, but at the loss of the mehanisti model that interests the sientist. Howmany statistiians will then hek if �1 = ��0 and �1 = 1 in Equation (2) are reasonable so thatthe original model is reovered?Most statistiians have no sienti� training, their bakground being primarily mathematial.(When they get together with medial dotors, most of whom also have no sienti� training, theresults an be lose to tragi.) In the statistial literature, we often �nd statements suh as `weshall analyze a real data set' (as if most statistial data are not real) hosen to show that a favouritemodel is useful, without out any sienti� ontext being provided about the data or any sienti�theory behind the model, or `sienti� interest entres on . . . ' to defend that favourite model insome abstrat ontext where no spei� sienti� problem has even been stated.3



When faed with a sienti� problem, statistiians annot onstrut suitable models in isolation,without detailed interation with the sientists. On the other hand, many sientists have insuÆientmathematial knowledge to translate their theories into equations suseptible to onfrontation withempirial data, and to ombat the statistiian's unsienti� mathematial distortions of their theo-ries. Thus, the �rst element of any statistial proess within siene must be the lose ooperationand interation among the ators involved.2.2 Systemati and random aspetsThe responsibility of the sientists is to provide the theory; that of the statistiian is to trans-late it into a mathematial/statistial form, most often being a prime ontributor of probabilis-ti/stohasti elements to handle the variability.By `model', I mean some funtion that allows one to alulate the probability of any possiblerelevant data set, perhaps after �xing the values of some unknown parameters. For example, thepartial likelihood for Cox proportional hazards does not orrespond to a model in this sense. Sta-tistial models an generally be deomposed into two distint parts. Some probability distributionis used to desribe the random variability. Then, parameters within that distribution funtionare allowed to vary in systemati ways with ovariates relating to subgroups of the population,time, spae, and so on. The systemati part tells how the random part hanges shape when theseovariates hange.The most familiar parameter that is allowed to vary systematially is the mean or other loationparameter. Usually, the sientist/statistiian interation proess is not too diÆult for oneptu-alizing hanges in this parameter. It may simply involve solving some set of di�erential equations,for example.Sientists (and most statistiians!) have muh more diÆulty in oneptualizing the form of thevariability about this mean equation, and even more problem in allowing that variability to hangewith ovariates (abandoning the onstant variane hypothesis). When only measurement error isinvolved, as often is the ase in hemistry for example, then a lassial normal model is usuallyreasonable. But this is rarely appropriate when living beings are studied. Then, how an thesientist, or the statistiian, judge a priori whether, say, a gamma, a Weibull, or a skewed stabledistribution is most suitable? So muh emphasis has been plaed on the linear normal model andnonparametri proedures that we have aumulated little experiene as to whih distributions arereally sienti�ally most appropriate in di�erent irumstanes.2.3 Study designFor many people not using statistis frequently, this disipline simply involves supplying a ookbookof equations so that one knows when to use a Student-t test instead of a Chi-squared test, perhapslogisti regression instead of ordinary linear regression. To them, study design is not part of4
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Figure 1: Sample size alulations for a Poisson distribution with mean, � = 2. Here, Æ = 1 is thesienti�ally-interesting di�erene and a = 0:2 is the plausibility required.statistis; it is `preparing a researh projet' ! Nevertheless, in industry and siene, statistis inthe twentieth entury has earned its position as a valued partner primarily for its ontributions ofrandomization and blinding to avoid biases and of optimal treatment alloation and sample sizealulations to redue osts. The ontribution of statistial analysis, inluding modelling, has beenrather minor. This must hange if statistis is to survive as a distint and viable disipline in thenext entury.Let us onsider briey the proedure for sample size alulation. To arry out any suh al-ulation, we must, paradoxially, atually `know' the parameter values that we wish to estimate.Thus, it is only feasible in very simple ases. Consider a study to estimate the mean, �, of aPoisson distribution. After the study is performed, the maximum likelihood estimate will makethe data most probable under the assumed model funtion. Suppose that we are only interested inmodels that make the data at least a proportion, 0 < a < 1, of this maximum probability, wherewe an arbitrarily hoose this value. For this given level of plausibility, the preision level of theparameter, we wish to obtain an interval of size Æ around the estimated mean. This is illustratedin Figure 1 when we believe that � = 2 and hoose a = 0:2 and Æ = 1.The width of the likelihood urve in this Figure an only vary as a funtion of the estimatedmean and of the sample size. However, we have �xed the mean so that we an alulate therequired sample size. In this example, N = 25. Of ourse, if our guess at the mean is too small,our sample will be too large beause the likelihood urve will be narrower, and inversely if the5



guess is too large.This simple example illustrates the main priniples involved in any exat sample size alulation.The three values, N , Æ, and a, are intimately linked; we only have two `degrees of freedom' to hoosethem. However, in more omplex ases, approximations often need to be used.3 Model building3.1 GeneralityPerhaps beause of its lose relationship with mathematis, statistis strives to produe generalproedures that are appliable in a wide variety of situations. This has ertain advantages but itan also have the unfortunate onsequene that the tehniques may not be very good in any spei�irumstanes. Thus, in a ertain sense, modern statistis often shows fundamental ignorane ofsienti� priniples, attempting to impose its `generally appliable' methods in all situations insteadof trying to understand eah spei� sienti� problem and to develop spei� proedures for it.The lassial linear model is the arhetypial ase of generality: it is widely believed that mostproblems an be transformed in some way so that least-squares multiple regression an provide asolution (at least if one's favourite tehnique is not appliable). If the relationship is nonlinear,a polynomial an be used. After all, it an be interpreted as a Taylor series expansion of somenonlinear funtion. But what how does that bring us loser to understanding what that unknownfuntion atually might be?3.2 Desription versus explanationMuh of both lassial and modern statistis is purely desriptive. It tries to desribe empirialobservations in some appropriate way without out any attempt at understanding the underlyingphenomenon, the data generating mehanism.In some areas, suh as spatial statistis, little more seems possible at present. There, noalternative to desriptive tehniques, suh as nonparametris, appears reasonable. In simple fa-torial experiments, with two or three levels of eah fator, lassial linear models may be suitable,although one may often question whether the normal distribution adequately approximates thevariability. They provide a tehnologial answer to what happens to the response when thosefators are modi�ed, without indiating why.In ontrast, the goal of siene is to understand a phenomenon as ompletely and generally aspossible. This an only be aomplished by developing a mehanisti model, suh as the Miha�elis-Menten equation referred to above, to approximate the data generating proess suÆiently well.However, by de�nition, as sientists always emphasize, any suh model is never true or orret; nomatter how appropriate, it is still an approximation to reality.Nevertheless, muh of modern statistis prefers empirial models to mehanisti ones, the ex-6



treme example being nonparametri statistis. Those areas of statistis that have esaped fromthis rule (for example, ommuniations theory, statistial mehanis, population and moleular ge-netis, pharmaokinetis, omputer siene, priing methods in �nanial mathematis) have almostexlusively been developed by non-statistiians.3.3 Minimal assumptionsMuh of modern statistis seems obsessed with avoiding making unneessary or unfounded as-sumptions. This is an appropriate position when one is only interested in reahing a deision indiÆult irumstanes without really attempting to understand the phenomenon involved. Anyassumptions that might lead to a wrong deision must be avoided. The proedure adopted mustbe robust to any remaining false assumptions.In sienti� researh, this is essentially a dead-end approah. The only way that knowledgean be advaned is by making assumptions and seeing how they orrespond empirially to reality.A nonparametri test of a di�erene between two treatments an reliably tell us whether or notsuh a di�erene exists under the onditions in whih the experiment was arried out|so that anappropriate deision an be made. But, it an never tell us anything about why there was suh adi�erene.One espeially perniious e�et of this relutane to make assumptions is that little knowledgehas aumulated about what distributions are suitable in various irumstanes. For example, forsurvival data in mediine, little is known about the appliability of the many available distributionsin various ontexts beause of the wide use of the semi-parametri proportional hazards model.(In additional, researh workers are now having to fae the fat that the strong assumption ofproportionality is itself rarely supported by the data so that onlusions about treatment di�erenesmay often have been wrong.) Although masses of survival data have been olleted over the lastdeades, we have learned virtually nothing about the mehanisms of survival of people with variousdiseases. This ontrasts with the advanes made in engineering appliations using more mehanistimodels based, among others, on the Weibull and inverse Gaussian distributions.On the other hand, in disiplines where omplex models are widely used, suh as in pharma-okinetis, strong, unveri�ed, assumptions about distributions are often made. Almost everyonein this �eld �rmly believes that drug onentrations in the body have a log normal distribution.Unfortunately, this has only reently been heked empirially, still in only a few ases, and it veryoften proves to be wrong.3.4 Key oneptsThe fundamental onepts of model-building, suh as rates (of ow) with their di�erential equa-tions, intensities (of events), latent variables, state spaes, transition probabilities, and so on, arenot enountered in basi statistis ourses. In fat, model-building itself is only rarely studied in7



these ourses.Understanding the asymptoti properties of some t-test or developing a new sore test is on-sidered far more important than studying the wide range of ways in whih observations may vary.Until very reently, most of the multivariate distributions available related to tests for multivariatedata; they were not models to be �tted to data.If the strength of statistis is in its handling of variability, then statistiians should do moreto promote their prime tool for desribing variability: the variety of probability distributions andstohasti proesses available for �tting to data (not those used for the distributional theory offrequentist statistis or the prior distributions of Bayesians).4 Model seletion4.1 Known model funtionClassial statistis, whether frequentist or Bayesian, is almost exlusively onerned with situationsin whih the model funtion is known and the only unertainty is about the values of the parametersin that funtion. Thus, one simpli�es a model by testing if a parameter might be zero and examinesthe unertainty about a (non-zero) parameter by �nding on�dene or redibility intervals for it.In fat, if the parameter is zero, the model funtion has hanged. For the frequentist shool atleast, the important thing is that the (onditional) distribution has not hanged its funtionalform. That is what its tests and intervals are based on.In ertain speial situations, parameter estimation an be separated from examining goodnessof �t of the model funtion. In the linear exponential family, minimal suÆient statistis, say t,exist for the parameters and f(yjt) an be used to examine goodness of �t. Unfortunately, mostmehanisti models do not �t into this framework so that suh a separation is not possible. Thedistribution is not in the exponential family and/or the model is nonlinear so that the minimalsuÆient statisti is usually y.4.2 Seletion riteriaModel seletion riteria, suh as the AIC (Akaike, 1973) and the BIC (Shwarz, 1978), havebeen developed, but these have a fundamentally di�erent basis than the lassial Bayesian andfrequentist proedures (Burnham and Anderson, 1998; Lindsey, 1999). These riteria an provideresults that diretly ontradit the lassial Bayesian and frequentist ones in many situations.Model seletion riteria are fundamentally likelihood based. They do not require a probabilistiinterpretation of the onlusions being drawn. The likelihood funtion provides a measure of howlose a given model is to the data. However, a more omplex model has more hane of being loseto the data so that this must be taken into aount. Then, the (� log) likelihood is penalized bysome funtion of the number of estimated parameters.8
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Figure 2: Three riteria for a plausibility interval about the mean of a Poisson distribution.Any model seletion riterion, even lassial step-wise regression using Student t or Chi-squaredtests, an be interpreted as the onstrution of plausibility intervals about parameters. A parameteris eliminated if the point at whih it disappears from the model, often zero or one, is inluded inthe interval. For three suh standard riteria, this is illustrated in Figure 2 for data relating to thesame Poisson mean problem as in Figure 1, where we found N = 25.In the notation used above (Figure 1), the lassial Chi-squared riterion sets a = exp(��21=2),the standard AIC has a = 1=e, and the BIC has a = 1=pN . The di�erene between the lassialproedures, whether Bayesian or frequentist, and proper model seletion riteria lies in how thelevel hanges for regions involving more than one parameter. For lassial proedures, the hangearises from the di�erene in distribution as the degrees of freedom (say p, the number of estimatedparameters) hange: for example, a = exp(��2p=2). In ontrast, for proper model seletion riteria,the level is given by ap. This ensures that we avoid the ontraditions in Bayesian and frequentistinferene that an arise when di�erent numbers of parameters are estimated. Model seletionriteria yield inferenes that remain ompatible when the numbers of parameters di�er (Lindsey,1999).Although the level for the standard AIC with one estimated parameter seems very high in Figure2, this quikly hanges as the number of parameters inreases. For more than seven parameters,the level, exp(�p), given by the standard AIC is lower than that, exp(��2p=2), for a Chi-squaredregion at the 95% level. This is sienti�ally reasonable as more omplex models are more highlypenalized. Note, however, that the plausibility level for the AIC need not be �xed at a = 1=e for9



one parameter but an be hosen so as to obtain any desired preision level, as suggested abovefor sample size alulations.On the other hand, notie that the plausibility level of the BIC involves N so that the samplesize is �xed with the plausibility level, in ontrast to the other two. We have lost a `degree offreedom' in alulating sample size. This is generally an undesirable harateristi.It is also important to emphasize that regions de�ned by one �xed value of a are only arude summary of the omplete likelihood surfae. A set of them for various values of a is moreinformative in summarizing the shape of the likelihood funtion. But, those for a �xed a do provideus with a means of omparing regions arising from likelihood surfaes of di�erent dimension,something that is impossible without suh a riterion of alibration4.3 Can omplexity be measured?One a model has more than one parameter, things rapidly beome more omplex. Let me ontinuewith my Poisson example. Above, I had a sample (N = 25) whose mean I suspet may be about�1 = 2. I now take a seond sample of 25 under onditions where I think the mean is about�2 = 3, for a total sample size of N = 50. I am interested in the ratio of means, say � = �1=�2.As a omplementary parameter, I shall simply take �1. Reall that we have hosen to makeinferenes using a = 0:2. The likelihood surfae for these two parameters is plotted as ontours inFigure 3. The outer ontour, a2 = 0:04, is the appropriate one for a joint likelihood region at thisplausibility level. (The seond one from the outside is a = 0:2.) But then how do we proeed toprodue informative graphis when we have more than two parameters?In onstruting a theory, sientists are interested in obtaining the simplest possible explanationfor the phenomenon under study. They start with the simplest reasonable model and introdue noadditional parameters or variables unless they are absolutely neessary. This ontrasts with theapproah of many statistiians. For example, in multiple regression or generalized linear modelproblems, one often starts with the most omplex (saturated) model and tries to simplify it. As iswell known, starting from the simple and from the omplex will often not produe the same �nalresult (unless all subsets regression is used). However, here the basi di�erene in philosophy ofmodel building is more important than the di�erene in results in spei� ases.Classially, statistis measures the omplexity of models, in relation to the available information,in terms of the degrees of freedom. This is losely related to the model seletion penalties. In bothases, one may question the adequay of suh measures of omplexity simply in terms of thenumbers of estimated parameters. For example, is a linear model less omplex than a nonlinearone with the same number of parameters? Are the gamma and Weibull distributions twie asomplex as the exponential distribution beause they have twie as many parameters?This question is of diret relevane to sienti� disovery. Suppose that the data indiate thatsome new model funtion is appropriate and that this new model has as many unknown parametersas the old one. Is the better �t, both to the urrent data and in future repliation of the study,10



1.4 1.6 1.8 2.0 2.2 2.4 2.6

0.
4

0.
6

0.
8

1.
0

µ1

µ 1
µ 2

Figure 3: Contours (0.04, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9) of normed likelihood for the meanand the ratio of two Poisson means. The diagonal line shows the pro�le likelihood for the ratio ofmeans.simply due to the greater omplexity of the new funtion?Information theory has been muh onerned with measures of omplexity. Unfortunately,exat values, suh as Kolmogorov omplexity, are not omputable. Many approximations, suhas those developed by minimum desription length (Rissanen, 1983, 1987), use approximations,most of whih result in some familiar model seletion riterion or a modi�ation of one. In thatontext, my a is the preision of the parameter spae, for example 1=pN yielding the BIC. Thelatter represents the magnitude of the estimation error in a parameter.However, we have seen that a has a likelihood interpretation in terms of preision as well. Itis the proportion of the maximum probability of the observed data (their likelihood) that we areprepared to aept for a model in the retained set. In this sense, it is not something inherently�xed. However, it evidently should not be less than 1=pN . For the standard AIC, this only meansthat 1=e is too small for sample sizes of seven or less!Unfortunately, these measures from information theory do not solve our problem. They al-ulate the minimum number of bits required to transmit the (disrete) data given the statistialmodel funtion and its parameter values. These are measured respetively by the negative loglikelihood funtion and the number of bits required to transmit the parameter values themselves(at a given level of preision), the penalty. They do not take into aount the ost of transmittingthe de�nition of the statistial model funtion itself. This must vary with the omplexity of that11



funtion. The person who develops a more appropriate (likelihood-based!) measure of omplexitythan the number of estimated parameters will beome famous.4.4 Comparing funtionsMuh of statistis an be seen as a model seletion problem: Should my regression model bemodi�ed to inlude this ovariate in it? Is a model with a mean of 3.4 more appropriate than onewith a mean of 4.3? What set of parameter values (that is, subset of models) should I selet asappropriate for these data?For a given model funtion, eah di�erent parameter value de�nes a distint model. Thus,onstruting a on�dene or redibility interval for a parameter an be interpreted as seleting theset of models having parameter values in that interval. Classial statistis, whether Bayesian orfrequentist, is good at studying parameter values for a given �xed model funtion.Any model funtion with given, �xed parameter values allows one to alulate the probabilityof the observed data: the likelihood funtion. Classial statistis an easily ompare suh modelswhen the parameter values are varied. The problem is onsidered to be muh more diÆult whenone wants to ompare, say, gamma, log normal, and Weibull distributions. And yet, for �xedparameter values in eah, the probabilities of the data an still be alulated, and ompared.One lassial solution is to embed the models of interest in a more global one. For example, theabove three distributions an be embedded in the generalized gamma distribution. The problemthen redues to one of studying a new parameter, with spei� disrete values orresponding toeah of the model funtions of interest. In ontrast, likelihood-based model seletion riteria allowdiret omparison of di�erent model funtions without the need for suh embedding. (This, ofourse, is not meant to imply that embedding is not useful.)5 Model diagnostis5.1 Questioning the model and the dataSientists are wary of models that desribe their data too well. They know that some part ofthe data will ertainly be found to be wrong. The sientists that I have met argue vehementlyagainst letting the data speak for themselves (just as they spontaneously argue against allowingpersonal opinions to enter into aount, without knowing that Bayesian statistis even exists). Amajor disrepany between model and data may indiate a sienti� breakthrough so that greatare must be taken.On the other hand, models for whih it is worth olleting empirial data, and the theoriesbehind them, are generally supported by a wide variety of soures. Unless the experiment is aruial test of the theory, the data set arising from it will generally not be suÆient ause for amodel to be ompletely rejeted. No sienti� model, or theory, will be abandoned unless a better12



one is available to replae it: model omparison, not testing. Models and their theories must betestable, not in terms of null hypotheses, but as ompared to ompeting models and their theories.This is exatly what likelihoods are about.Muh of modern statistis has attaked this problem of onfronting data and models fromthe other end. Instead of using rigorous models with strong assumptions to determine whihobservations may be wrong and whih theory is supported, it has onentrated on developinggeneral proedures with supposedly weak assumptions that are `robust' to data errors and generalmethods for deteting `outliers'.Most model diagnostis, partiularly those based on residuals, were developed spei�ally forlinear normal models. Often, they are based on the mean of the observations, not taking intoaount the hanging form of the distribution around the mean, for example as ovariates hange.Their adaptation to other ontexts, even to generalized linear models, is rather ad ho and oftennot very informative. In many realisti models, the information for heking the model annot beseparated from that for estimating the parameters, as mentioned in Setion 4.1. It has been myexperiene that standard diagnostis an often indiate no problem with a given model and yeta rigorous model seletion proedure would rejet it in favour of some other muh better �ttingmodel.5.2 Amending the modelIf the data have been properly leaned and heked and if areful model seletion has been arriedout, inspetion of model diagnostis should almost never reveal anything unexpeted. Outliersthat are erroneous values should have been deteted by the leaning proess, although sientistsknow that this is never infallible. All reasonable alternative models should have been onsideredin the seletion proess and the ones best �tting the data retained. The remaining possibility, ifdiagnostis detet an anomaly, is that the data are indiating some unforeseen modi�ation to themodel, or some ompletely new model that was not previously under onsideration. This is thesubstane of sienti� disovery; it does not happen often in one's lifetime!Non-erroneous outliers an only be de�ned in terms of a given model. If they prove importantwith respet to that model, it must be modi�ed to aommodate them. This may involve intro-duing missing ovariates, developing a more appropriate nonlinear model, using a more `robust'distribution with heavier tails, and so on.6 Model unertainty6.1 The role of prior knowledgeIf a model seletion proedure has been used, this implies that several, even a large number of,models have been �tted to the data. Some have argued that this model unertainty should be13



taken into aount in drawing onlusions from a study. Should these onlusions be penalizedby the number of models tried, in a similar way to the model seletion penalty for the numberof parameters estimated? On the other hand, one might argue that model seletion has reduedunertainty by eliminating learly unaeptable models.The answer to these questions will depend, among other things, on how the various modelsame to be tried for the given data set. If an exhaustive list of possibilities (known ompetingtheories) was ompiled before data olletion and only those tried, the situation will not be thesame as if the best model found was suggested by the data set itself (a possible sienti� disovery).If an exhaustive list of possible models ould be pre-established, then we are in a ase of at leastpartial on�rmation of previous results, the repeatability of siene, not disovery. If the hosenmodel was suggested by the data, then only new data from future independent studies by thesienti� ommunity an on�rm the hoie.6.2 Inferenes about individual parametersOne a reasonable model funtion has been seleted, one often wishes to make inferene individuallyabout one or more of the parameters. This is still a model seletion problem: seleting a subset ofmodels spei�ed by a given range of parameter values.A �rst riterion for proeeding is that we do not �nd any ontraditions with respet to ourmodel seletion proess. For example, a plausibility interval of reasonable values for a parameterthat has remained in the model should not ontain the value indiating that it should be removedfrom the model.Exept in very speial ases of orthogonality of parameters, inferenes about any one parametermust depend on the values of the others. If we look at di�erent �xed values of �1 in Figure 3, it islear that, for eah, our onlusions about � will hange. How an this unertainty be taken intoaount? Statistiians have spent a lot of time working on this problem. The Bayesian solution,a marginal posterior distribution whih is an average over models with di�erent values of �1, isunintelligible in terms of likelihood. I believe that it is sienti�ally meaningless: reasonable valuesof � are hanging depending on the value of �1 so that no average is interpretable. Frequentist so-lutions, suh as onditional and modi�ed pro�le likelihood, are equally suspet as these orretionsan narrow the plausibility region in the fae of this unertainty!Let us instead onsider ways of summarizing this likelihood surfae in one dimension for theparameter that interests us. Beause the plausibility of our parameter of interest varies with �1,let us �rst take a series of uts through the surfae for various values of this latter parameter, assuperimposed in the left graph of Figure 4. The outline of this graph is the well-known normedpro�le likelihood, but this way of produing it is more informative (at least when there are onlytwo parameters). It shows how the values of the parameter of interest beome less plausible as theseond parameter moves away from its maximum likelihood estimate.Of ourse, the normed pro�le likelihood an also be obtained diretly. It is the line of highest14
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Figure 4: Inferenes about the ratios of two Poisson means. Left graph: superimposed uts throughthe likelihood surfae of Figure 3 for a series of �xed values of the �rst mean. Right graph: normedpro�le likelihood with plausibility levels of 0.2 and 0:22 indiated.likelihood when viewed from the axis of the parameter of interest, as shown by the diagonal linein Figure 3. This is plotted in the right graph of Figure 4. With some misgivings, the frequentistshool uses this as if it were an ordinary one-parameter likelihood instead of a summary of amultidimensional surfae.Our problem here is to deide what plausibility level we should use with suh a summary likeli-hood urve. The values of 0.2 and 0:22 are shown, orresponding to the points where the diagonalline in Figure 3 uts the seond and outermost ontours. The former would be the frequentisthoie: treat the urve, at least approximately, as an ordinary one-parameter likelihood. Theproblem is that this assumes that, at eah point on the graph, �1 takes exatly its maximum likeli-hood estimate for the orresponding �xed value of �. However, our model learly has two estimatedparameters so that the model seletion riteria must be based on the latter, ap (here with p = 2);otherwise, we risk drawing inompatible inferenes. The wider interval allows for the unknownnessin �1 at the proper level of unertainty; it is a maximum rather than an average. However, it isnot lear if this need be the narrowest interval possible for the given level of plausibility.6.3 A global modelIn looking more losely at model unertainty, let us onsider �rst the simplest ase where all ofthe models examined are based on the same distributional assumption. The order in whih they15



were �tted should be unimportant as only the total set of models examined should play a role inany measure of unertainty. For example, we might be in a standard linear multiple regressionsituation where the distributional assumptions are not in question. A global model will exist thatontains all ovariates tried (inluding transformations, interations, and so on). Notie that thenumber of models examined may be muh larger than the number of parameters in this globalmodel, as for example with all subsets regression. The hosen model ontains a subset of theseovariates.Now suppose that a number of di�erent distributions were also onsidered, in a simple ase, saythe generalized linear models based on the log normal, gamma, and inverse Gaussian distributions.As suggested above, in some ases, suh omparisons an be onduted by embedding all possi-bilities within a more omplex distribution with extra parameters. Suppose however that we arenot interested in intermediate distributions, but only exatly those spei�ed, beause they orre-spond to distint sienti� theories. (Reall my example of the treatment of the Miha�elis-Mentenequation in Setion 2.1). Then, we an set up a global likelihood funtion ontaining indiatorfuntions as to whih distribution is atually used:L(�; �) = I(� = 1)fLN(�LN ) + I(� = 2)fG(�G) + I(� = 3)fIG(�IG) (3)The indiator funtion, taking values zero or one, ontains an unknown parameter, �, with disretevalues 1 orresponding to the log normal, 2 to the gamma, and 3 to the inverse Gaussian distri-bution. Exept for the disreteness of �, this likelihood funtion di�ers little from those arisingfrom embedding. But how many parameters does it ontain? �LN , �G, and �IG all have the samedimension, but only one of the three atually appears in the likelihood funtion, depending on thevalue of �. Thus, we are again in a situation where all models an be nested in a global model.We have a legitimate likelihood funtion that allows us to alulate the probability of the observeddata for all possible parameter values.6.4 De�ning the problem (if there is one)Plotting pro�le likelihoods for the parameters of most interest in a model is one simple way ofproviding us with indiations of the unertainty about the oeÆients in this model funtion,given that it is the only model funtion under onsideration. The height of the urve de�ning aplausibility (on�dene or redibility) region will depend on the number of estimated parametersin that model (determined by the AIC, �2, or other riterion). The more estimated parameters,the lower this height and the larger the region. In what way should this height be lowered evenfurther to aount for the unertainty arising from the number of other models tried?Care must be taken here. If we lower the height de�ning the region of aeptable parametervalues at this stage, after model seletion has been ompleted, the enlarged region for a parametermay inlude zero values so that the previous onlusions from model seletion are altered and asimpler model funtion indiated. Hene, for suh a orretion to work without ontraditions,16



that is, provide ompatible inferenes, the omplete set of models to be tried must be known inadvane.Numerial proedures, whether Newton-Raphson, simulated annealing, or other, to obtain op-timal parameter values are a model seletion proess: they automatially examine many models to�nd an optimal one. We may ask if, from a likelihood point of view, suh maximization proeduresdi�er fundamentally from all subsets regression or the proedures neessary to �nd the optimalmodel in a global funtion suh Equation (3). Certainly, from a frequentist viewpoint, they do.Nevertheless, whether to penalize for the number of models examined, and if so how, stillremains as a fundamental statistial problem.7 Model interpretation7.1 ParametersIn a ertain sense, parameters are arbitrary, only serving to speify some given model funtion.They an generally be transformed without fundamentally hanging the meaning of the model.This is reeted in the invariane of inferenes from the likelihood funtion to reparametrization ofa model. For example, in a regression model, the essential thing is how the probability of the variouspossible responses hanges with the ovariates: the hanging shape of the (onditional) probabilitydistribution about the regression urve. I like to remind my students that, for ontinuous responsevariables, the probability of an observation lying exatly on the regression line is theoretially zero,in spite of the fat that it is onfusingly alled the `expeted value' !However, in a mehanisti model, eah parameter often has a spei� meaning. For example, itshould make sense that any parameter, and not just the mean (or those referring to it), an varywith ovariates in an interpretable way. Of ourse, for many, this will be found empirially not tobe the ase.7.2 ExtrapolationTo a very large extent, advanement of siene is based on the onstrution of new theories,supported by models, that produe veri�able preditions outside the range of those produed byexisting theories. Their suess often hinges on being able to predit what will be observed in asesoutside the data available to onstrut the theory. In other words, siene depends, fundamentally,on the prodution of theories that are suessful at extrapolation.This ontrasts with the way in whih statistiians usually proeed. A regression model is�tted to data, but only onsidered useful for preditions within the range of those observed data.Extrapolation is onsidered to be dangerous and foolish. An important exeption is, of ourse, thework in time series predition, but unfortunately muh of this is not based on mehanisti sienti�models. 17



8 ConlusionsSiene involves� developing theories and aumulating knowledge to understand, not just to desribe, natureand soiety;� doing this without any view as to how they will be used;� setting up simple models based on some spei� theory;� learly stating assumptions;� onfronting the models with empirial data, with an outlook to disovering new models;� but being wary of those data;� extrapolating outside the observed data;� the ommunity of sientists heking repeatability of the results;� only abandoning a model if a better one is available.Many of these priniples are in diret ontradition with muh of urrent statistial teahing andpratie. Thus, it is an unfortunate fat of life that muh of modern statistis is anti-sienti�.Most statistiians have been trained in mathematis departments out of ontat with siene. Inthe meantime, top-level sientists have had to work out their own new statistial tehniques fortheir spei� problems, oasionally adapting what they an from the statistial literature.Nevertheless, statistis has ome to play an important role in ertain areas of researh anddevelopment. Often, as in linial trials, this is primarily due to its promotion of basi designpriniples suh as randomization, blinding, and so on. Muh remains to be done.A few of the unsolved statistial problems raised above inlude� What probability distribution is most appropriate to desribe eah spei� sienti� phenom-ena?� What is the best way to represent likelihood regions in more than two dimensions?� How an the plausibility level of a normed pro�le likelihood for one parameter, in the preseneof several others, best be alibrated?� How an the omplexity of a model funtion better be measured other than simply by thenumber of unknown parameters?� What diagnostis should be used outside the linear normal model, espeially when the min-imal suÆient statisti for the parameters involves the omplete data?18



� Should we aount for model unertainty arising from examining several models and, if so,how?After thirty years of onstant revolution in statistis, we may well ask if we are headed in the rightdiretion.Aknowledgments G�oran Arnoldsson, Philippe Lambert, Patrik Lindsey, David Sprott, andPablo Verde provided valuable omments on an earlier draft.Referenes[1℄ Akaike, H. (1973) Information theory and an extension of the maximum likelihood priniple. InPetrov, B.N. and Cs�aki, F., Seond International Symposium on Inferene Theory, Budapest:Akademiai Ki�ado, pp. 267{281.[2℄ Burnham, K.P. and Anderson, D.R. (1998) Model Seletion and Inferene: A PratialInformation-Theoreti Approah. Berlin: Springer-Verlag.[3℄ Lindsey, J.K. (1999) Some statistial heresies (with disussion). Journal of the Royal StatistialSoiety D48, 1{40.[4℄ Rissanen, J. (1983) A universal prior for integers and estimation by minimum desriptionlength. Annals of Statistis 11, 416{431.[5℄ Rissanen, J. (1987) Stohasti omplexity. Journal of the Royal Statistial Soiety B 49. 223{265.[6℄ Shwarz, G. (1978) Estimating the dimension of a model. Annals of Statistis 6, 461{464.
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