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Abstra
t

Sober�on and Llorente (1993) present a number of di�erent birth models for the pro
esses

by whi
h spe
ies are a

umulated in studies to estimate the total number of di�erent spe
ies in

an area. They use least squares to estimate the a

umulation 
urve, and hen
e the asymptoti


number of spe
ies. This approa
h su�ers from at least two diÆ
ulties: the varian
e of the

number of a

umulated spe
ies depends on the mean and the su

essive values of a

umulated

numbers are not independent, 
alling for an autoregressive pro
ess.

An alternative is to �t the birth model dire
tly to the numbers of new spe
ies, perhaps as

a nonhomogeneous Poisson pro
ess. Another possibility is to use a multinomial distribution.

Likelihood pro
edures are then used to provide intervals of pre
ision for the estimates of total

numbers of spe
ies.

These approa
hes are 
ompared in their appli
ation to estimation of the total number of

spe
ies of bats around the Chajul Biologi
al Station in southern Mexi
o.
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1 Introdu
tion

With the in
reasing 
on
ern about the redu
tion in biodiversity of animal and plant spe
ies on

the planet, e�e
tive methods of estimating numbers of di�erent spe
ies are be
oming in
reasingly

important. A spe
ies a

umulation fun
tion, S(t), relates the total number of spe
ies dis
overed

to the e�ort, t, expended to �nd them. In most situations, one might expe
t the number of new

spe
ies per unit e�ort to de
rease as the number already dis
overed grows, a form of birth pro
ess.

In other words, the a

umulation fun
tion is expe
ted to rea
h an asymptote. One goal is often to

estimate this asymptote, that is, the total number of di�erent spe
ies in some geographi
al area.

Biologists have presented a number of di�erent models for the pro
esses by whi
h spe
ies are

a

umulated in su
h studies (Sober�on and Llorente, 1993). These may depend on the way in whi
h

the study has been 
ondu
ted and on how 
lose they are to enumerating all possible spe
ies. These
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models are developed in terms of a 
olle
ting fun
tion, �(j; t), that des
ribes the probability of

adding new spe
ies to an a

umulating list as it depends on the number, j, already on the list and

on the e�ort expended. (Statisti
ians 
all this an intensity or risk fun
tion.) For a given model, the


orresponding a

umulation fun
tion is obtained from the 
olle
ting fun
tion by solving di�erential

equations. In the literature, these have been solved for the �rst two moments of the fun
tion whi
h

is then �tted to the data using least squares.

Several statisti
al problems arise in using su
h an approa
h. The fun
tions are approximated

by their �rst two moments. This may not be suÆ
iently a

urate for the small number of spe
ies

involved in many studies. Relatively small numbers of dis
rete 
ounts are being approximated

by a 
ontinuous normal distribution. The a

umulating 
ounts 
an be expe
ted to be highly


orrelated. Only the new spe
ies after ea
h e�ort expended are providing new information so

that the information 
ontained in the earlier spe
ies re
orded is being reused many times, perhaps

yielding a false measure of unduly high pre
ision.

2 Colle
ting fun
tion models

In a birth model, the 
olle
ting (intensity) fun
tion will depend in some way on the number of

di�erent spe
ies previously re
orded. The �rst model suggested by Sober�on and Llorente (1993)

was the exponential model,

�(j) = �� �j; j = 0; 1; : : : ; b�=�


Be
ause �(j) � 0, new spe
ies will only be observed as long as j � �=�. If this equation is

rewritten as

�(j) = �(N � j)

where N = �=�, we see that the 
olle
ting fun
tion is proportional to the number of so far

unre
orded spe
ies. The a

umulation fun
tion for this model is

S(t) =

�

�

�

1� e

��t

�

with the asymptote given by �=� and the varian
e going to zero as t approa
hes in�nity, so that

N = b�=�
+ 1 is the estimated total number of spe
ies.

They 
alled the se
ond of their models logarithmi
:

�(j) = �e

��j

The a

umulation fun
tion of this model does not rea
h an asymptote as the 
olle
ting fun
tion

only be
omes zero with in�nite a

umulation. They believed that this 
ould 
orrespond to the

a

umulation fun
tion,

S(t) =

1

Æ

log(1 + Æ�t)
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where Æ = 1 � e

��

. However, D��az-Fran
�es and Gorostiza (2000) have shown that the latter

fun
tion does not 
orrespond to the former, taking a very 
omplex form. These authors introdu
e

instead a nonhomogeneous birth pro
ess,

�(j; t) =

�

1 + Æ�t

+




Æ

log(1 + Æ�t)� 
t


orresponding to this a

umulation fun
tion. Again, this does not rea
h an asymptote.

Sober�on and Llorente (1993) �nally suggested one nonhomogeneous birth pro
ess, the Mi
ha�elis-

Menton or Clen
h (1979) model,

�(j; t) = �+ �

�

�t

1 + �t

�

2

� 2�j

with a

umulation fun
tion

S(t) =

�t

1 + �t

Again, N = b�=�
 + 1 is the estimated total number of spe
ies. The names of these models are

obviously derived from their a

umulation fun
tions.

Nakamura and Peraza (1998) develop a type of nonhomogeneous Poisson pro
ess whereby the


olle
ting fun
tion involves a beta distribution,

�(t) =

B(� + 1; � + t� 1)

B(�; �)

N

where B(�; �) is the beta fun
tion. A simpli�
ation of this would be to have a 
onstant probability

of 
apture for all new spe
ies, a homogeneous Poisson pro
ess.

Note that a pro
ess may be nonhomogeneous in time if, for example, the biologists making the

observations a
quire experien
e over time.

3 Approa
hes to estimating a

umulation fun
tions

Let us �rst 
onsider the usual method of estimating the a

umulation fun
tion, by applying least

squares to the a

umulating numbers, as a fun
tion of e�ort, with mean given by some S(t). A


ompli
ation with this pro
edure is that the varian
e is not 
onstant but is a fun
tion of the mean

a

umulation fun
tion, 
ontaining only parameters in that fun
tion. Hen
e, there is a very stri
t

relationship between the mean and varian
e (D��az-Fran
�es and Gorostiza, 2000) that may not hold

empiri
ally. As well, the observations being modelled are the a

umulated 
ounts so that su

essive


ounts 
an be expe
ted to be highly 
orrelated, 
alling for an autoregressive pro
ess.

The high auto
orrelation among su

essive a

umulated 
ounts indi
ates that su

essive dif-

feren
es might be more appropriately modelled. Indeed, these are just the numbers of new spe
ies

re
orded after ea
h e�ort and their mean is des
ribed by some 
olle
ting fun
tion, �(j; t). This will

be the mean of a nonhomogeneous Poisson pro
ess that 
an easily be �tted by Poisson regression

(Lindsey, 1995). The probability of the observed data will then be

Pr(y

1

; : : : ; y

m

) =

m

Y

t=1

e

��(j;t)�t

[�(j; t)�t℄

y

t

y

t

!
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where y

t

is the observed number of new spe
ies re
orded after total e�ort, t, and obtained with

�t new e�ort expenditure sin
e the previous re
orded 
ount. In this way, the mean-varian
e

relationship is automati
ally a

ounted for and need not be expli
itly modelled.

A third approa
h is to extend the multinomial model of Nakamura and Peraza (1998) to en-


ompass these 
olle
ting fun
tions (and any other that might be thought useful). The probability

of the observed data will now be

Pr(y

1

; : : : ; y

m

) =

N !

Q

i

y

i

!(N �

P

i

y

i

)!

m

Y

t=1

�

�(j; t)�t

N

�

y

t

 

1�

X

i

�(j; i)�i

N

!

N�

P

i

y

i

Note that the parameter, N , now refers dire
tly to the total number of spe
ies. It is no longer

estimated from the parameters of the 
olle
ting fun
tion.

One interpretation of this multinomial model is that it 
onditions the Poisson model on there

being a �xed, but unknown, total number of spe
ies, N . All of the parameters in this model 
an

also be estimated relatively easily, although standard software is not available.

Two important advantages arise from using not only the appropriate 
olle
ting fun
tion for

a parti
ular situation, but also an appropriate sto
hasti
 model. This will provide intervals of

pre
ision for the parameters, and spe
i�
ally for the total number of spe
ies when this parameter

is present in the model. It will also allow 
omparative evaluation of the goodness of �t to help in

judging whi
h model might provide the better predi
tions of total spe
ies numbers.

4 Examples

4.1 Chajul bats

One of the data sets analyzed by Sober�on and Llorente (1993), and re
onsidered by both Nakamura

and Peraza (1998) and D��az-Fran
�es and Gorostiza (2000), involves a list of bat spe
ies re
orded

at the Chajul Biologi
al Station in the La
andon rain forest in southern Mexi
o, 
aptured using

mist nets at several lo
ations near the station. A total of 50 spe
ies was re
orded with 49 nights

of e�ort. For these data, the biologists involved believe that the exponential model should be

appropriate.

From Table 1, we 
an see that the estimated numbers 
an vary greatly depending on the model

employed. However, the likelihood fun
tion, perhaps appropriately penalized for the number of

estimated parameters, provides a means to let us 
ompare the predi
tive ability of the various

models, at least for predi
ting the observed 
ounts. However, this is only true for models using the

same 
ounts, either 
umulated (the normal models) or new spe
ies (the Poisson and multinomial

models). Thus, the exponential model estimated using independent normal distributions has a

penalized negative log likelihood (AIC) of 114.3 whereas that involving an autoregression (AR)

has 82.2, strongly indi
ating the presen
e of serial dependen
e. The results are summarized in

Table 2. The exponential model appears to provide a good �t to these data, as 
ompared to the
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Table 1: Point estimates of total spe
ies numbers for the Chajul bat study using various pro
edures.

Sto
hasti
 model

Colle
ting fun
tion Indep. Normal Normal AR Poisson Multinomial

Exponential 54.5 50.8 53.9 51.4

Clen
h 83.0 83.9 80.3 50.0

Beta 55.7 53.7

Table 2: Fits of models for the Chajul bat study using various pro
edures as measured by the

negative log likelihood (AIC). The values in the �rst two 
olumns are not 
omparable to those in

the last two 
olumns.

Sto
hasti
 model

Colle
ting fun
tion Indep. Normal Normal AR Poisson Multinomial

Exponential 114.3 82.2 64.7 63.2

Clen
h 122.2 83.3 65.3 63.1

Beta 67.6 66.3

others. Further information is provided by the pro�le likelihoods, indi
ating the pre
ision of the

estimates of the total number of spe
ies. Those for the multinomial models are shown in Figure

1. Although the exponential and Clen
h models have very similar �t, the shapes of the likelihood


urves are very di�erent. The �tted 
urves of the a

umulation fun
tion for these two models are

plotted in Figure 2.

4.2 Pakitza butter
ies

A se
ond data set analyzed by all of the same authors involves a list of butter
ies obtained by

200 person-hours of 
olle
ting during September, 1989, in the Pakitza Biologi
al Station in the

Parque Na
ional Man�u, Madre de Dios, Peru. The biologists argue that the logarithmi
 model

should be most adequate for extrapolation be
ause of the size of the area 
overed, the 
omplexity

of the spe
ies, the fa
t that the list was still far from being 
omplete, and the yearly 
u
tuations

undergone by many tropi
al butter
ies.

The �ts of various models are displayed in Table 3. Those using the normal distribution have

been �tted with 
onstant varian
e as those with varian
e depending on the mean were mu
h worse.

Noti
e that an autoregression is not ne
essary for these data. Those models with an asymptote

either did not 
onverge or yielded very large estimates for the asymptote.
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Figure 1: Pro�le likelihoods for the total number of spe
ies from the three multinomial models

�tted to Chajul bat data. The solid horizontal line indi
ates the 95% 
on�den
e interval.

Table 3: Fits of models for the Pakitza butter
y study using various pro
edures as measured by

the negative log likelihood (AIC). The values in the �rst two 
olumns are not 
omparable to those

in the last two 
olumns.

Sto
hasti
 model

Colle
ting fun
tion Indep. Normal Normal AR Poisson Multinomial

Exponential 62.7 63.4 | 160.4

Logarithmi
 114.4 115.4 74.1 52.1

Clen
h 59.7 60.7 64.7 153.5

Beta 64.7 121.2
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Figure 2: Fitted 
olle
ting (top) and a

umulation (bottom) 
urves from the exponential and

Clen
h multinomial models for the Chajul bat data.
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Table 4: Point estimates of total spe
ies numbers for the Chiapas spider study using various

pro
edures. (First panel: Hamburgo; se
ond panel: Irlanda)

Sto
hasti
 model

Colle
ting fun
tion Indep. Normal Normal AR Poisson Multinomial

Exponential 64.2 44.5 46.9 46.0

Clen
h 59.3 57.1 27.7 46.1

Beta 184.0 58.5

Exponential 43.9 46.0 49.3 47.4

Clen
h 58.6 62.9 28.5 45.1

Beta 87.8 55.8

Table 5: Fits of models for the Chiapas spider study using various pro
edures as measured by the

negative log likelihood (AIC). The values in the �rst two 
olumns are not 
omparable to those in

the last two 
olumns. (First panel: Hamburgo; se
ond panel: Irlanda)

Sto
hasti
 model

Colle
ting fun
tion Indep. Normal Normal AR Poisson Multinomial

Exponential 55.1 41.3 36.4 34.3

Clen
h 49.0 38.7 35.7 35.9

Beta 37.7 37.3

Exponential 47.5 39.2 36.5 35.2

Clen
h 45.0 39.1 36.1 34.1

Beta 37.7 37.1

4.3 Hamburgo and Irlanda spiders

Spe
ies of weaver spiders were 
ounted in two 
o�ee or
hards, Hamburgo and Irlanda, in the

So
onus
o region of Chiapas, southern Mexi
o. These are neighbouring plantations at an elevation

of about 900{990m. Irlanda is organi
ally maintained with shade provided by what remains of the

original forest; the 
o�ee shrubs were planted along 
onstant 
ontours of altitude. On the other

hand, Hamburgo is lo
ated in 
ompletely 
leared land, has the 
o�ee planted in straight rows, and

uses 
hemi
al fertilization and weeding.

The �ts of various models are displayed in Table 5. The pro�le likelihoods for the multinomial

models are shown in Figures 3 and 4 and the a

umulation 
urves are plotted in Figures 5 and 6.
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Figure 3: Pro�le likelihoods for the total number of spe
ies from the three multinomial models

�tted to Irlanda spider data. The solid horizontal line indi
ates the 95% 
on�den
e interval.
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Figure 4: Pro�le likelihoods for the total number of spe
ies from the three multinomial models

�tted to Hamburgo spider data. The solid horizontal line indi
ates the 95% 
on�den
e interval.

10



0 5 10 15 20

0
2

4
6

8
10

N
um

be
r 

of
 n

ew
 s

pe
ci

es

exponential
Clench

0 5 10 15 20

0
10

20
30

40
50

Days

T
ot

al
 n

um
be

r 
of

 s
pe

ci
es

Figure 5: Fitted 
olle
ting (top) and a

umulation (bottom) 
urves from the exponential and

Clen
h multinomial models for the Irlanda spider data.
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Figure 6: Fitted 
olle
ting (top) and a

umulation (bottom) 
urves from the exponential and

Clen
h multinomial models for the Hamburgo spider data.
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5 Dis
ussion

Traditional methods of estimating total numbers of spe
ies have used least squares to �t the

a

umulation 
urve. This approa
h is made diÆ
ult by the 
omplex dependen
e of the varian
e on

the mean in the birth pro
ess underlying these models and by the dependen
e among su

essive

a

umulated values that ne
essitates assuming an autoregressive pro
ess.

Estimation is simpli�ed by working dire
tly with the 
ounts of new spe
ies and hen
e estimating

the 
olle
ting fun
tion instead of the a

umulation 
urve. On
e the parameters are estimated, the

a

umulation 
urve 
an be plotted and the estimate of its asymptote obtained.

Traditional birth models provide an estimate of the mean 
ount at the asymptote. Hen
e, it

may be preferable to 
onstru
t the birth models in terms of a multinomial distribution with �xed

but unknown total rather than by using a nonhomogeneous birth pro
ess. As we have seen, these

approa
hes 
an provide quite di�erent results.

The AIC allows one to 
hoose among the models, given the data, but, as always in predi
tion,

the 
hoi
e is rather risky, espe
ially when few points are available on the 
urve to be extrapolated.

On
e a suitable model has been 
hosen, pro�le likelihood 
urves provide a useful of obtaining an

interval of pre
ision around the estimate of the total number of spe
ies.
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