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Abstract

Soberdn and Llorente (1993) present a number of different birth models for the processes
by which species are accumulated in studies to estimate the total number of different species in
an area. They use least squares to estimate the accumulation curve, and hence the asymptotic
number of species. This approach suffers from at least two difficulties: the variance of the
number of accumulated species depends on the mean and the successive values of accumulated
numbers are not independent, calling for an autoregressive process.

An alternative is to fit the birth model directly to the numbers of new species, perhaps as
a nonhomogeneous Poisson process. Another possibility is to use a multinomial distribution.
Likelihood procedures are then used to provide intervals of precision for the estimates of total
numbers of species.

These approaches are compared in their application to estimation of the total number of
species of bats around the Chajul Biological Station in southern Mexico.
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1 Introduction

With the increasing concern about the reduction in biodiversity of animal and plant species on
the planet, effective methods of estimating numbers of different species are becoming increasingly
important. A species accumulation function, S(t), relates the total number of species discovered
to the effort, t, expended to find them. In most situations, one might expect the number of new
species per unit effort to decrease as the number already discovered grows, a form of birth process.
In other words, the accumulation function is expected to reach an asymptote. One goal is often to
estimate this asymptote, that is, the total number of different species in some geographical area.
Biologists have presented a number of different models for the processes by which species are
accumulated in such studies (Soberén and Llorente, 1993). These may depend on the way in which

the study has been conducted and on how close they are to enumerating all possible species. These



models are developed in terms of a collecting function, A(j,¢), that describes the probability of
adding new species to an accumulating list as it depends on the number, j, already on the list and
on the effort expended. (Statisticians call this an intensity or risk function.) For a given model, the
corresponding accumulation function is obtained from the collecting function by solving differential
equations. In the literature, these have been solved for the first two moments of the function which
is then fitted to the data using least squares.

Several statistical problems arise in using such an approach. The functions are approximated
by their first two moments. This may not be sufficiently accurate for the small number of species
involved in many studies. Relatively small numbers of discrete counts are being approximated
by a continuous normal distribution. The accumulating counts can be expected to be highly
correlated. Only the new species after each effort expended are providing new information so
that the information contained in the earlier species recorded is being reused many times, perhaps

yielding a false measure of unduly high precision.

2 Collecting function models

In a birth model, the collecting (intensity) function will depend in some way on the number of
different species previously recorded. The first model suggested by Soberén and Llorente (1993)

was the exponential model,
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Because A(j) > 0, new species will only be observed as long as j < a/f. If this equation is

rewritten as
A(j) = B(N —j)

where N = /8, we see that the collecting function is proportional to the number of so far

unrecorded species. The accumulation function for this model is
S(t) = % (1—e )

with the asymptote given by a/f and the variance going to zero as ¢ approaches infinity, so that
N = |a/B] + 1 is the estimated total number of species.

They called the second of their models logarithmic:
A(j) = ae™

The accumulation function of this model does not reach an asymptote as the collecting function
only becomes zero with infinite accumulation. They believed that this could correspond to the

accumulation function,
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where 6 = 1 — e™®. However, Diaz-Francés and Gorostiza (2000) have shown that the latter
function does not correspond to the former, taking a very complex form. These authors introduce

instead a nonhomogeneous birth process,
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corresponding to this accumulation function. Again, this does not reach an asymptote.
Soberén and Llorente (1993) finally suggested one nonhomogeneous birth process, the Michaglis-

Menton or Clench (1979) model,
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with accumulation function
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Again, N = |«a/fB] + 1 is the estimated total number of species. The names of these models are

obviously derived from their accumulation functions.
Nakamura and Peraza (1998) develop a type of nonhomogeneous Poisson process whereby the
collecting function involves a beta distribution,
B 1 t—1
Ay = Blatli+t-1)
B(a, B)

where B(-,-) is the beta function. A simplification of this would be to have a constant probability

N

of capture for all new species, a homogeneous Poisson process.
Note that a process may be nonhomogeneous in time if, for example, the biologists making the

observations acquire experience over time.

3 Approaches to estimating accumulation functions

Let us first consider the usual method of estimating the accumulation function, by applying least
squares to the accumulating numbers, as a function of effort, with mean given by some S(¢). A
complication with this procedure is that the variance is not constant but is a function of the mean
accumulation function, containing only parameters in that function. Hence, there is a very strict
relationship between the mean and variance (Diaz-Francés and Gorostiza, 2000) that may not hold
empirically. As well, the observations being modelled are the accumulated counts so that successive
counts can be expected to be highly correlated, calling for an autoregressive process.

The high autocorrelation among successive accumulated counts indicates that successive dif-
ferences might be more appropriately modelled. Indeed, these are just the numbers of new species
recorded after each effort and their mean is described by some collecting function, A(j,¢). This will
be the mean of a nonhomogeneous Poisson process that can easily be fitted by Poisson regression
(Lindsey, 1995). The probability of the observed data will then be
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where y; is the observed number of new species recorded after total effort, ¢, and obtained with
At new effort expenditure since the previous recorded count. In this way, the mean-variance
relationship is automatically accounted for and need not be explicitly modelled.

A third approach is to extend the multinomial model of Nakamura and Peraza (1998) to en-
compass these collecting functions (and any other that might be thought useful). The probability

of the observed data will now be

m NN ) PR T
H v Z)\ ,1) A
Prs oo ¥m) = Hy@(N Zyz' ( > (1_ . T N)>

t=1 i

Note that the parameter, IV, now refers directly to the total number of species. It is no longer
estimated from the parameters of the collecting function.

One interpretation of this multinomial model is that it conditions the Poisson model on there
being a fixed, but unknown, total number of species, N. All of the parameters in this model can
also be estimated relatively easily, although standard software is not available.

Two important advantages arise from using not only the appropriate collecting function for
a particular situation, but also an appropriate stochastic model. This will provide intervals of
precision for the parameters, and specifically for the total number of species when this parameter
is present in the model. It will also allow comparative evaluation of the goodness of fit to help in

judging which model might provide the better predictions of total species numbers.

4 Examples

4.1 Chajul bats

Oue of the data sets analyzed by Soberén and Llorente (1993), and reconsidered by both Nakamura
and Peraza (1998) and Diaz-Francés and Gorostiza (2000), involves a list of bat species recorded
at the Chajul Biological Station in the Lacandon rain forest in southern Mexico, captured using
mist nets at several locations near the station. A total of 50 species was recorded with 49 nights
of effort. For these data, the biologists involved believe that the exponential model should be
appropriate.

From Table 1, we can see that the estimated numbers can vary greatly depending on the model
employed. However, the likelihood function, perhaps appropriately penalized for the number of
estimated parameters, provides a means to let us compare the predictive ability of the various
models, at least for predicting the observed counts. However, this is only true for models using the
same counts, either cumulated (the normal models) or new species (the Poisson and multinomial
models). Thus, the exponential model estimated using independent normal distributions has a
penalized negative log likelihood (AIC) of 114.3 whereas that involving an autoregression (AR)
has 82.2, strongly indicating the presence of serial dependence. The results are summarized in

Table 2. The exponential model appears to provide a good fit to these data, as compared to the



Table 1: Point estimates of total species numbers for the Chajul bat study using various procedures.

Stochastic model

Collecting function Indep. Normal Normal AR, Poisson Multinomial

Exponential 54.5 50.8 53.9 514
Clench 83.0 83.9 80.3 50.0
Beta 55.7 53.7

Table 2: Fits of models for the Chajul bat study using various procedures as measured by the
negative log likelihood (AIC). The values in the first two columns are not comparable to those in

the last two columns.

Stochastic model

Collecting function Indep. Normal Normal AR Poisson Multinomial

Exponential 114.3 82.2 64.7 63.2
Clench 122.2 83.3 65.3 63.1
Beta 67.6 66.3

others. Further information is provided by the profile likelihoods, indicating the precision of the
estimates of the total number of species. Those for the multinomial models are shown in Figure
1. Although the exponential and Clench models have very similar fit, the shapes of the likelihood
curves are very different. The fitted curves of the accumulation function for these two models are

plotted in Figure 2.

4.2 Pakitza butterflies

A second data set analyzed by all of the same authors involves a list of butterflies obtained by
200 person-hours of collecting during September, 1989, in the Pakitza Biological Station in the
Parque Nacional Mani, Madre de Dios, Peru. The biologists argue that the logarithmic model
should be most adequate for extrapolation because of the size of the area covered, the complexity
of the species, the fact that the list was still far from being complete, and the yearly fluctuations
undergone by many tropical butterflies.

The fits of various models are displayed in Table 3. Those using the normal distribution have
been fitted with constant variance as those with variance depending on the mean were much worse.
Notice that an autoregression is not necessary for these data. Those models with an asymptote

either did not converge or yielded very large estimates for the asymptote.
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Figure 1: Profile likelihoods for the total number of species from the three multinomial models

fitted to Chajul bat data. The solid horizontal line indicates the 95% confidence interval.

Table 3: Fits of models for the Pakitza butterfly study using various procedures as measured by
the negative log likelihood (AIC). The values in the first two columns are not comparable to those

in the last two columns.

Stochastic model

Collecting function Indep. Normal Normal AR  Poisson Multinomial

Exponential 62.7 63.4 — 160.4
Logarithmic 114.4 115.4 74.1 92.1
Clench 59.7 60.7 64.7 153.5
Beta 64.7 121.2
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Figure 2: Fitted collecting (top) and accumulation (bottom) curves from the exponential and

Clench multinomial models for the Chajul bat data.



Table 4: Point estimates of total species numbers for the Chiapas spider study using various

procedures. (First panel: Hamburgo; second panel: Irlanda)

Stochastic model

Collecting function Indep. Normal Normal AR, Poisson Multinomial

Exponential 64.2 44.5 46.9 46.0
Clench 59.3 57.1 27.7 46.1
Beta 184.0 58.5
Exponential 43.9 46.0 49.3 47.4
Clench 58.6 62.9 28.5 45.1
Beta 87.8 55.8

Table 5: Fits of models for the Chiapas spider study using various procedures as measured by the
negative log likelihood (AIC). The values in the first two columns are not comparable to those in

the last two columuns. (First panel: Hamburgo; second panel: Irlanda)

Stochastic model

Collecting function Indep. Normal Normal AR Poisson Multinomial

Exponential 55.1 41.3 36.4 34.3
Clench 49.0 38.7 35.7 35.9
Beta 37.7 37.3
Exponential 47.5 39.2 36.5 35.2
Clench 45.0 39.1 36.1 34.1
Beta 37.7 37.1

4.3 Hamburgo and Irlanda spiders

Species of weaver spiders were counted in two coffee orchards, Hamburgo and Irlanda, in the
Soconusco region of Chiapas, southern Mexico. These are neighbouring plantations at an elevation
of about 900-990m. Irlanda is organically maintained with shade provided by what remains of the
original forest; the coffee shrubs were planted along constant contours of altitude. On the other
hand, Hamburgo is located in completely cleared land, has the coffee planted in straight rows, and
uses chemical fertilization and weeding.

The fits of various models are displayed in Table 5. The profile likelihoods for the multinomial

models are shown in Figures 3 and 4 and the accumulation curves are plotted in Figures 5 and 6.
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Figure 3: Profile likelihoods for the total number of species from the three multinomial models

fitted to Irlanda spider data. The solid horizontal line indicates the 95% confidence interval.
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Figure 4: Profile likelihoods for the total number of species from the three multinomial models

fitted to Hamburgo spider data. The solid horizontal line indicates the 95% confidence interval.
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Figure 5: Fitted collecting (top) and accumulation (bottom) curves from the exponential and

Clench multinomial models for the Irlanda spider data.
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Figure 6: Fitted collecting (top) and accumulation (bottom) curves from the exponential and

Clench multinomial models for the Hamburgo spider data.
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5 Discussion

Traditional methods of estimating total numbers of species have used least squares to fit the
accumulation curve. This approach is made difficult by the complex dependence of the variance on
the mean in the birth process underlying these models and by the dependence among successive
accumulated values that necessitates assuming an autoregressive process.

Estimation is simplified by working directly with the counts of new species and hence estimating
the collecting function instead of the accumulation curve. Once the parameters are estimated, the
accumulation curve can be plotted and the estimate of its asymptote obtained.

Traditional birth models provide an estimate of the mean count at the asymptote. Hence, it
may be preferable to construct the birth models in terms of a multinomial distribution with fixed
but unknown total rather than by using a nonhomogeneous birth process. As we have seen, these
approaches can provide quite different results.

The AIC allows one to choose among the models, given the data, but, as always in prediction,
the choice is rather risky, especially when few points are available on the curve to be extrapolated.
Once a suitable model has been chosen, profile likelihood curves provide a useful of obtaining an

interval of precision around the estimate of the total number of species.
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