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Abstrat

Sober�on and Llorente (1993) present a number of di�erent birth models for the proesses

by whih speies are aumulated in studies to estimate the total number of di�erent speies in

an area. They use least squares to estimate the aumulation urve, and hene the asymptoti

number of speies. This approah su�ers from at least two diÆulties: the variane of the

number of aumulated speies depends on the mean and the suessive values of aumulated

numbers are not independent, alling for an autoregressive proess.

An alternative is to �t the birth model diretly to the numbers of new speies, perhaps as

a nonhomogeneous Poisson proess. Another possibility is to use a multinomial distribution.

Likelihood proedures are then used to provide intervals of preision for the estimates of total

numbers of speies.

These approahes are ompared in their appliation to estimation of the total number of

speies of bats around the Chajul Biologial Station in southern Mexio.

Keywords: Aumulation funtion, biodiversity, birth proess, olleting funtion, likeli-

hood funtion.

1 Introdution

With the inreasing onern about the redution in biodiversity of animal and plant speies on

the planet, e�etive methods of estimating numbers of di�erent speies are beoming inreasingly

important. A speies aumulation funtion, S(t), relates the total number of speies disovered

to the e�ort, t, expended to �nd them. In most situations, one might expet the number of new

speies per unit e�ort to derease as the number already disovered grows, a form of birth proess.

In other words, the aumulation funtion is expeted to reah an asymptote. One goal is often to

estimate this asymptote, that is, the total number of di�erent speies in some geographial area.

Biologists have presented a number of di�erent models for the proesses by whih speies are

aumulated in suh studies (Sober�on and Llorente, 1993). These may depend on the way in whih

the study has been onduted and on how lose they are to enumerating all possible speies. These
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models are developed in terms of a olleting funtion, �(j; t), that desribes the probability of

adding new speies to an aumulating list as it depends on the number, j, already on the list and

on the e�ort expended. (Statistiians all this an intensity or risk funtion.) For a given model, the

orresponding aumulation funtion is obtained from the olleting funtion by solving di�erential

equations. In the literature, these have been solved for the �rst two moments of the funtion whih

is then �tted to the data using least squares.

Several statistial problems arise in using suh an approah. The funtions are approximated

by their �rst two moments. This may not be suÆiently aurate for the small number of speies

involved in many studies. Relatively small numbers of disrete ounts are being approximated

by a ontinuous normal distribution. The aumulating ounts an be expeted to be highly

orrelated. Only the new speies after eah e�ort expended are providing new information so

that the information ontained in the earlier speies reorded is being reused many times, perhaps

yielding a false measure of unduly high preision.

2 Colleting funtion models

In a birth model, the olleting (intensity) funtion will depend in some way on the number of

di�erent speies previously reorded. The �rst model suggested by Sober�on and Llorente (1993)

was the exponential model,

�(j) = �� �j; j = 0; 1; : : : ; b�=�

Beause �(j) � 0, new speies will only be observed as long as j � �=�. If this equation is

rewritten as

�(j) = �(N � j)

where N = �=�, we see that the olleting funtion is proportional to the number of so far

unreorded speies. The aumulation funtion for this model is

S(t) =

�

�

�

1� e

��t

�

with the asymptote given by �=� and the variane going to zero as t approahes in�nity, so that

N = b�=�+ 1 is the estimated total number of speies.

They alled the seond of their models logarithmi:

�(j) = �e

��j

The aumulation funtion of this model does not reah an asymptote as the olleting funtion

only beomes zero with in�nite aumulation. They believed that this ould orrespond to the

aumulation funtion,

S(t) =

1

Æ

log(1 + Æ�t)
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where Æ = 1 � e

��

. However, D��az-Fran�es and Gorostiza (2000) have shown that the latter

funtion does not orrespond to the former, taking a very omplex form. These authors introdue

instead a nonhomogeneous birth proess,

�(j; t) =

�

1 + Æ�t

+



Æ

log(1 + Æ�t)� t

orresponding to this aumulation funtion. Again, this does not reah an asymptote.

Sober�on and Llorente (1993) �nally suggested one nonhomogeneous birth proess, the Miha�elis-

Menton or Clenh (1979) model,

�(j; t) = �+ �

�

�t

1 + �t

�

2

� 2�j

with aumulation funtion

S(t) =

�t

1 + �t

Again, N = b�=� + 1 is the estimated total number of speies. The names of these models are

obviously derived from their aumulation funtions.

Nakamura and Peraza (1998) develop a type of nonhomogeneous Poisson proess whereby the

olleting funtion involves a beta distribution,

�(t) =

B(� + 1; � + t� 1)

B(�; �)

N

where B(�; �) is the beta funtion. A simpli�ation of this would be to have a onstant probability

of apture for all new speies, a homogeneous Poisson proess.

Note that a proess may be nonhomogeneous in time if, for example, the biologists making the

observations aquire experiene over time.

3 Approahes to estimating aumulation funtions

Let us �rst onsider the usual method of estimating the aumulation funtion, by applying least

squares to the aumulating numbers, as a funtion of e�ort, with mean given by some S(t). A

ompliation with this proedure is that the variane is not onstant but is a funtion of the mean

aumulation funtion, ontaining only parameters in that funtion. Hene, there is a very strit

relationship between the mean and variane (D��az-Fran�es and Gorostiza, 2000) that may not hold

empirially. As well, the observations being modelled are the aumulated ounts so that suessive

ounts an be expeted to be highly orrelated, alling for an autoregressive proess.

The high autoorrelation among suessive aumulated ounts indiates that suessive dif-

ferenes might be more appropriately modelled. Indeed, these are just the numbers of new speies

reorded after eah e�ort and their mean is desribed by some olleting funtion, �(j; t). This will

be the mean of a nonhomogeneous Poisson proess that an easily be �tted by Poisson regression

(Lindsey, 1995). The probability of the observed data will then be

Pr(y

1

; : : : ; y

m

) =

m

Y
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e
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where y

t

is the observed number of new speies reorded after total e�ort, t, and obtained with

�t new e�ort expenditure sine the previous reorded ount. In this way, the mean-variane

relationship is automatially aounted for and need not be expliitly modelled.

A third approah is to extend the multinomial model of Nakamura and Peraza (1998) to en-

ompass these olleting funtions (and any other that might be thought useful). The probability

of the observed data will now be

Pr(y
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Note that the parameter, N , now refers diretly to the total number of speies. It is no longer

estimated from the parameters of the olleting funtion.

One interpretation of this multinomial model is that it onditions the Poisson model on there

being a �xed, but unknown, total number of speies, N . All of the parameters in this model an

also be estimated relatively easily, although standard software is not available.

Two important advantages arise from using not only the appropriate olleting funtion for

a partiular situation, but also an appropriate stohasti model. This will provide intervals of

preision for the parameters, and spei�ally for the total number of speies when this parameter

is present in the model. It will also allow omparative evaluation of the goodness of �t to help in

judging whih model might provide the better preditions of total speies numbers.

4 Examples

4.1 Chajul bats

One of the data sets analyzed by Sober�on and Llorente (1993), and reonsidered by both Nakamura

and Peraza (1998) and D��az-Fran�es and Gorostiza (2000), involves a list of bat speies reorded

at the Chajul Biologial Station in the Laandon rain forest in southern Mexio, aptured using

mist nets at several loations near the station. A total of 50 speies was reorded with 49 nights

of e�ort. For these data, the biologists involved believe that the exponential model should be

appropriate.

From Table 1, we an see that the estimated numbers an vary greatly depending on the model

employed. However, the likelihood funtion, perhaps appropriately penalized for the number of

estimated parameters, provides a means to let us ompare the preditive ability of the various

models, at least for prediting the observed ounts. However, this is only true for models using the

same ounts, either umulated (the normal models) or new speies (the Poisson and multinomial

models). Thus, the exponential model estimated using independent normal distributions has a

penalized negative log likelihood (AIC) of 114.3 whereas that involving an autoregression (AR)

has 82.2, strongly indiating the presene of serial dependene. The results are summarized in

Table 2. The exponential model appears to provide a good �t to these data, as ompared to the
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Table 1: Point estimates of total speies numbers for the Chajul bat study using various proedures.

Stohasti model

Colleting funtion Indep. Normal Normal AR Poisson Multinomial

Exponential 54.5 50.8 53.9 51.4

Clenh 83.0 83.9 80.3 50.0

Beta 55.7 53.7

Table 2: Fits of models for the Chajul bat study using various proedures as measured by the

negative log likelihood (AIC). The values in the �rst two olumns are not omparable to those in

the last two olumns.

Stohasti model

Colleting funtion Indep. Normal Normal AR Poisson Multinomial

Exponential 114.3 82.2 64.7 63.2

Clenh 122.2 83.3 65.3 63.1

Beta 67.6 66.3

others. Further information is provided by the pro�le likelihoods, indiating the preision of the

estimates of the total number of speies. Those for the multinomial models are shown in Figure

1. Although the exponential and Clenh models have very similar �t, the shapes of the likelihood

urves are very di�erent. The �tted urves of the aumulation funtion for these two models are

plotted in Figure 2.

4.2 Pakitza butteries

A seond data set analyzed by all of the same authors involves a list of butteries obtained by

200 person-hours of olleting during September, 1989, in the Pakitza Biologial Station in the

Parque Naional Man�u, Madre de Dios, Peru. The biologists argue that the logarithmi model

should be most adequate for extrapolation beause of the size of the area overed, the omplexity

of the speies, the fat that the list was still far from being omplete, and the yearly utuations

undergone by many tropial butteries.

The �ts of various models are displayed in Table 3. Those using the normal distribution have

been �tted with onstant variane as those with variane depending on the mean were muh worse.

Notie that an autoregression is not neessary for these data. Those models with an asymptote

either did not onverge or yielded very large estimates for the asymptote.
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Figure 1: Pro�le likelihoods for the total number of speies from the three multinomial models

�tted to Chajul bat data. The solid horizontal line indiates the 95% on�dene interval.

Table 3: Fits of models for the Pakitza buttery study using various proedures as measured by

the negative log likelihood (AIC). The values in the �rst two olumns are not omparable to those

in the last two olumns.

Stohasti model

Colleting funtion Indep. Normal Normal AR Poisson Multinomial

Exponential 62.7 63.4 | 160.4

Logarithmi 114.4 115.4 74.1 52.1

Clenh 59.7 60.7 64.7 153.5

Beta 64.7 121.2
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Figure 2: Fitted olleting (top) and aumulation (bottom) urves from the exponential and

Clenh multinomial models for the Chajul bat data.
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Table 4: Point estimates of total speies numbers for the Chiapas spider study using various

proedures. (First panel: Hamburgo; seond panel: Irlanda)

Stohasti model

Colleting funtion Indep. Normal Normal AR Poisson Multinomial

Exponential 64.2 44.5 46.9 46.0

Clenh 59.3 57.1 27.7 46.1

Beta 184.0 58.5

Exponential 43.9 46.0 49.3 47.4

Clenh 58.6 62.9 28.5 45.1

Beta 87.8 55.8

Table 5: Fits of models for the Chiapas spider study using various proedures as measured by the

negative log likelihood (AIC). The values in the �rst two olumns are not omparable to those in

the last two olumns. (First panel: Hamburgo; seond panel: Irlanda)

Stohasti model

Colleting funtion Indep. Normal Normal AR Poisson Multinomial

Exponential 55.1 41.3 36.4 34.3

Clenh 49.0 38.7 35.7 35.9

Beta 37.7 37.3

Exponential 47.5 39.2 36.5 35.2

Clenh 45.0 39.1 36.1 34.1

Beta 37.7 37.1

4.3 Hamburgo and Irlanda spiders

Speies of weaver spiders were ounted in two o�ee orhards, Hamburgo and Irlanda, in the

Soonuso region of Chiapas, southern Mexio. These are neighbouring plantations at an elevation

of about 900{990m. Irlanda is organially maintained with shade provided by what remains of the

original forest; the o�ee shrubs were planted along onstant ontours of altitude. On the other

hand, Hamburgo is loated in ompletely leared land, has the o�ee planted in straight rows, and

uses hemial fertilization and weeding.

The �ts of various models are displayed in Table 5. The pro�le likelihoods for the multinomial

models are shown in Figures 3 and 4 and the aumulation urves are plotted in Figures 5 and 6.
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Figure 3: Pro�le likelihoods for the total number of speies from the three multinomial models

�tted to Irlanda spider data. The solid horizontal line indiates the 95% on�dene interval.
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Figure 4: Pro�le likelihoods for the total number of speies from the three multinomial models

�tted to Hamburgo spider data. The solid horizontal line indiates the 95% on�dene interval.
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Figure 5: Fitted olleting (top) and aumulation (bottom) urves from the exponential and

Clenh multinomial models for the Irlanda spider data.
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Figure 6: Fitted olleting (top) and aumulation (bottom) urves from the exponential and

Clenh multinomial models for the Hamburgo spider data.

12



5 Disussion

Traditional methods of estimating total numbers of speies have used least squares to �t the

aumulation urve. This approah is made diÆult by the omplex dependene of the variane on

the mean in the birth proess underlying these models and by the dependene among suessive

aumulated values that neessitates assuming an autoregressive proess.

Estimation is simpli�ed by working diretly with the ounts of new speies and hene estimating

the olleting funtion instead of the aumulation urve. One the parameters are estimated, the

aumulation urve an be plotted and the estimate of its asymptote obtained.

Traditional birth models provide an estimate of the mean ount at the asymptote. Hene, it

may be preferable to onstrut the birth models in terms of a multinomial distribution with �xed

but unknown total rather than by using a nonhomogeneous birth proess. As we have seen, these

approahes an provide quite di�erent results.

The AIC allows one to hoose among the models, given the data, but, as always in predition,

the hoie is rather risky, espeially when few points are available on the urve to be extrapolated.

One a suitable model has been hosen, pro�le likelihood urves provide a useful of obtaining an

interval of preision around the estimate of the total number of speies.
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