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Summary. Overdispersion is ommonly treated as a nuisane fator in the analysis of binomial-type

data. With the aid of an example, we onsider various ways in whih departures from the binomial

distribution an arise. We �t four di�erent generalizations of the binomial distribution, as well as a

�nite mixture model, to the data set and study why not all of these distributions provide reasonable �ts.

We onlude that the reasons that ertain distributions may not be appropriate inlude the presene

of underdispersion, an exess of extreme events, and nonhomogeneity of the reation of subjets to

some treatment.

Keywords: AIC; beta-binomial distribution; diret likelihood inferene; double binomial distri-

bution; mixture; `multipliative' binomial distribution; normal-binomial distribution; overdispersion;

toxiology.

1 Introdution

Overdispersion in binary data is widely thought to be a nuisane, something to be adequately allowed

for in making inferenes about some linear model. Corretions range from simply modifying the

standard errors by means of a heterogeneity fator to �tting a mixture distribution suh as the beta-

binomial. Rarely does thought appear to be invested in onsidering why overdispersion arises, other

than stating that some important ovariates must be missing.

In ertain ases, the dispersion in the data an be modelled diretly. For example, dispersion may

itself vary systematially with the available ovariates. Lindsey (1999) gives examples of experiments

onerning �sh eggs hathing where overdispersion only ours in biologially extreme onditions,

requiring response surfae models both for the probability of an event and for the orrelation among

events.
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Another possibility is that the form of the distribution di�ers signi�antly from a binomial dis-

tribution. Various generalizations of this distribution are now available that allow for overdispersion,

and sometimes for underdispersion. Some of these will be disussed in the next setion; they an yield

quite di�erent forms when �tted to various data sets.

From our investigations, we onlude that a generally appliable solution to over- or underdispersion

is not available. Simple orretions to standard errors are usually inadequate. The widely used beta-

binomial mixture does not always perform well. On the other hand, in the presene of overdispersion,

the normal-binomial mixture often does do well. If underdispersion is present, one may hoose between

the double binomial and the multipliative binomial distributions.

2 Models for overdispersion

The most ommonly used model for overdispersion in binomial data is the beta-binomial (Skellam,

1948):
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where typially n is the total number of siblings of a family, y the number of these giving a positive

response, and B(�) is the beta funtion. Thus y may be written as say X
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, for any distint i; j is � = 1=(exp( )+1). For �nite

 , � is stritly positive, indiating overdispersion relative to the binomial distribution. This distribution

an be derived from the binomial distribution by a mixture argument: the Bernoulli probability an

be thought to vary in the population aording to a beta distribution, and the marginal distribution

taken. Although the binomial distribution is a member of the exponential family, the beta-binomial is

not.

A losely related approah uses the normal distribution as the mixing distribution for the logit of

the Bernoulli probability, in a way analogous to the model introdued by Hinde (1982) for overdispersed

Poisson data:
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where f(y;�) is the binomial frequeny funtion, with � as the orresponding probability, and with

log(�=(1� �)) = �, and �(�) the normal density with � the mean logit and  the standard deviation.

Here, however, numerial integration must be used in �tting the model. We shall use Gauss-Hermite

integration.

Two members of the exponential family have also been proposed to handle overdispersion. Unfortu-

nately, both have intratable normalizing onstants and thus have not yet been widely used. However,

these onstants an now easily be alulated with fast omputers by summing over possible values of

the response variable.
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Altham (1978) introdued two generalizations of the binomial distribution. That whih she alled

the `multipliative' generalization is a member of the exponential family. It an be written

f(y;�;  ) = (�;  )
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where (�;  ) is the intratable normalizing onstant. The distribution will be overdispersed for  < 0,

with  = 0 yielding the usual binomial distribution. This parameter, as �2 , is the log onditional

ross-ratio for the responses of any pair of siblings given all of the others, for example the ross-

ratio derived from the 2 � 2 ontingeny table for P (X
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This distribution has y and y(n � y) as the joint suÆient statistis for the probability and the

dispersion parameter. This yields a speial harateristi of this distribution in that the dispersion

parameter disappears from the model, exept in the normalization onstant, when y = 0 or y = n. It

also means that, when the distribution is fairly asymmetri, it an have a small seondary mode in the

longer tail.

Efron (1986) proposed a family, whih he alled double exponential, that is also of exponential

family type. For overdispersed binomial data, the double binomial distribution in this family may be

appropriate:
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where (�;  ) is again an intratable normalizing onstant. Again, the distribution will be overdispersed

for �1 <  < 0. In this model, 1=( + 1) has an approximate interpretation as the variane ination

fator. Efron showed that for large n the normalizing onstant  is approximately 1. However, Aitkin

(1995) demonstrated that this approximation is inadequate for `moderate' n. For the rat litters dataset

used below the estimated parameter values (Table 3) with n = 10 give (0.9,�0:217)=0.875 and

(0.9,�0:951)=0.426, both learly rather di�erent from 1.

One important advantage of the double-binomial and the multipliative binomial models is that

they allow for underdispersion as well as overdispersion.

Lindsey and Altham (1998) �t these three models to frequeny data on the proportions of the two

sexes among births of hildren in nineteenth entury Saxony. In ontrast to the diret proedure used

here, they �tted generalized models with a Poisson distribution and log link to frequeny (histogram)

data (Lindsey and Mersh, 1992). This method is restrited to studies where a large number of

ourrenes of eah possible outome is observed. Hene, it annot be applied to ordinary ontingeny

tables where overdispersion may be present.

3 Examples

Exept for the `pure' binomial model, these models are non-nested. They will be ompared using

a diret likelihood approah whereby the negative log likelihood is penalized by adding to it the
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Table 1: Numbers of o�springs of pregnant rats surviving at four and 21 days, by litter. (Williams,

1975)

Control Treated

4 days 21 days 4 days 21 days

13 13 12 12

12 12 11 11

9 9 12 12

9 9 9 9

8 8 11 10

8 8 10 9

13 12 10 9

12 11 9 8

10 9 9 8

10 9 5 4

9 8 9 7

13 11 7 4

5 4 10 5

7 5 6 3

10 7 10 3

10 7 7 0

number of parameters estimated (a form of the Akaike (1973) information riterion: AIC). Smaller

values indiate relatively better models. (See Bai et al (1992) for a similar use of AIC's in modelling

ontingeny tables.) These relative values of the AIC's are of ourse only indiative of the �ts of

the various models. Beause of sampling errors, we annot attah muh importane to the fat that

one AIC is, say, 58:7, whilst another is 57:6 although the latter model ould ontain one ompletely

redundant parameter and still have equivalent �t to the former one.

The devianes quoted below are the standard two times the di�erene in negative log likelihood

with respet to the saturated model.

3.1 Rat litters

Consider an experiment in whih 16 female rats reeived a ontrol diet during pregnany while 16

others reeived a hemially treated diet. The numbers (n) of o�spring alive in the litters at four days

were reorded and they were followed to asertain how many (y) were still alive at 21 days (reprodued

in Table 1). The data have previously been analyzed by Williams (1975) and Ohi and Prentie (1984).

The binomial model, allowing for a di�erene between food treatments, has an AIC of 68.2. The

deviane is 87.2 with 30 degrees of freedom, indiating overdispersion. All four overdispersion distri-
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Table 2: AICs for various overdispersion models for the rat litter data with either the probability

and/or the dispersion parameter di�ering between treatment groups. (For the tehnial reason that

software is not available, the normal-binomial distribution with the same probability and di�erent

dispersion ould not be �tted.)

Both Di�erent Di�erent Both

Distribution same probability dispersion di�erent

Binomial 71.5 68.2 | |

Beta-binomial 58.7 58.7 58.7 56.9

Normal-binomial 57.8 57.4 | 56.5

Double binomial 57.6 57.1 55.3 56.3

Multipliative binomial 54.3 54.2 55.3 53.4

Table 3: Parameter estimates for the best model from eah distribution for the rat litter data. (The

standard error for the normal-binomial logit di�erene is not available beause the model was �tted

separately to the two treatment groups, not simultaneously as for the other distributions.)

Control Treated Logit di�erene

�̂

^

 �̂

^

 Estimate s.e.

Binomial 0.899 | 0.776 | �0:943 0.330

Beta-binomial 0.898 3.880 0.741 0.750 �1:126 0.463

Normal-binomial 0.906 0.484 0.844 1.757 �0:575 |

Double binomial 0.901 �0:217 0.901 �0:951 0.071 1.768

Multipliative binomial 0.815 �0:096 0.564 �0:270 �1:228 0.738

butions provide improved �ts, as shown in Table 2. The multipliative binomial, with di�erent values

for both the probability and the dispersion, gives the best �t. Notie how the double binomial does

not indiate a di�erene in probability of survival.

The parameter estimates for the best model from eah distribution are presented in Table 3.

Obviously, the estimates of the dispersion parameter are not omparable among the distributions.

The estimates for the probability (�) given by the binomial distribution, the observed proportions in

the raw data, are 0.899 and 0.776. Those for the beta-binomial are also lose to these. However, this

is not true of the better �tting models.

This an be lari�ed by examining a plot of the various models, given in Figure 1. In fat, the

three better �tting models are bimodal for the treated group, indiating a group with low survival

probability. A look at the data reveals that this is an aurate reetion of what is ourring. Several

of the treated litters have low probability of survival. Thus, one single probability is not an adequate
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Figure 1: Fitted values for the �ve models applied to the rat data for a litter of size n = 10 in eah of

the two treatment groups. The vertial sale has been exaggerated to show the seond mode. Binomial:

solid; beta-binomial: dashed; double binomial: dotted; multipliative binomial: dash-dotted; normal-

binomial: solid with dots. The heights of the bars represent the empirial proportions of survivors

with all litters standardized to size 10.
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measure of survival for the treated group. As well, not only does the probability of survival vary

between the two groups but the variability in survival is also di�erent.

The seond small mode for these skewed distributions ould, for example, our if the treatment has

little e�et for most of that group but negative e�et for a minority. Thus, another useful approah

to analyzing these data might be to apply a two-omponent �nite mixture model (Brooks et al.,

1997). When this is done with a mixture of two binomial distributions for the treatment group

(and one binomial distribution for the ontrol), the AIC is 65.3, �tting more poorly than any of the

overdispersion models onsidered. It would also be possible to �t a �nite mixture of any one of the

three overdispersion distributions onsidered above, but suh a model would be diÆult to interpret

biologially.

3.2 Other examples

We have onsidered a number of other examples. We desribe briey two of them, omitting the

omputational details here. These were

1. Anderson's (1988) data on grasshopper hromosomes, for whih the normal-binomial provides

the best �t and

2. the data set given by Hand et al. (1994, p. 138) on sizes of Duro-Jersey pig litters and the sex of

the young. These data exhibit lear under-dispersion relative to the binomial. We found that for

this data set the multipliative and double binomial distributions �t almost equally well. Both

are muh better than the binomial, whih in turn is better than either of the beta-binomial or

normal-binomial.

4 Disussion

Departures from a binomial distribution an our in a variety of ways. In heking for suh departures,

the following points should be onsidered:

� Over- or underdispersion may be the result of a single error in the table, arising, for example,

either when onduting a study or in reording the results.

� An exess number of events may our for the two extreme possibilities (y = 0 and/or y = n)

as ompared to the binomial distribution. This an be modelled by using a �nite mixture with

extra probability masses at these two extremes. Lindsey and Altham (1998) used suh a model

for the sex ratio, but it did not aount for all of the overdispersion. Suh an approah might

also be appropriate for the rat data where many litters had all young alive after 21 days, as an

be seen in Table 1.

� Treatment, or some ovariate, may not have a uniform e�et on all subjets. This may ause a

seond small mode to appear for ertain distributions as with the rat data; this an be seen in
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Figure 3 for the treated group. In suh a situation, a sienti�ally more useful proedure might

be to �t a �nite mixture of two binomial distributions (Brooks et al., 1997); this did not turn

out to produe a good model for the rat data.

� Although all of the models used for departures from the binomial distribution an handle overdis-

persion, of those onsidered here, only the multipliative and double binomial an adequately

allow for underdispersion. The latter may arise in the ontext of repulsion as with plants grow-

ing in a plot, or other forms of negative dependene, as when subjets are ompeting for a �nite

supply of resoures. An example of the latter might our in the survival of the strongest in a

litter, although this does not appear to be relevant for the examples used above.

It is partiularly interesting that the normal-binomial mixture an apparently be bimodal beause

Holgate (1970) demonstrated that the normal-Poisson mixture is unimodal. (We used 14-point Gauss{

Hermite integration whih should provide a good numerial approximation.)

Interpretation of the biologial reasons for over- or underdispersion is always diÆult for seondary

analysis of data. It an only properly be done through lose interation with the sientists involved in

the study.

Diagnostis are reasonably well known for generalized linear models, as well as for some of their

extensions suh as the beta-binomial and negative binomial distributions (Pregibon, 1981; Williams,

1987). However, their appliation is not as lear for other dispersion models less losely related to

generalized linear models. We are urrently investigating this problem.
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