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1. Construting event history models

Event histories involve the times between

events.

These may be reurrent events suh as

migraine, �ts, or infetions, or they may

involve moves between distint states, suh

as athing a disease, being hospitalized,

reovering, or dying.

A subjet is said to hange state and the

event is alled a transition between the states.

Sometimes we are mainly interested in the

states, and sometimes in the transition

events:

being ill versus athing an illness.
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Several speial ases are partiularly

important.

� Mortality: two states of whih the seond

is absorbing (lassial survival analysis).

� Competing risks: transition from one

state to any one of several others.

� Reurrent events (the �rst example

mentioned above).

� Alternane between two states.

� Disability: transition through a series of

irreversible states (the seond example

mentioned, if death must be the �nal

result).
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Several of these may need to be ombined to

desribe the omplete history of subjets.

Model onstrution depends greatly on how

the series of states for individuals is de�ned.

Generally, there is no unique struture.

Where they are possible, ertain assumptions

will failitate model building.

A model is progressive if all states, exept the

�rst, have only one transition into them.

Then, the urrent state de�nes what states

were previously oupied and in what order,

but not when the hanges ourred.
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A transition probability is Markovian if it only

depends on the present state and not on the

previous history of the individual.

However, it may depend on time.

An extension is to allow it to depend on the

time sine the last event, a speial ase being

the semi-Markov model.

Generally, it useful to larify ideas by

onstruting a diagram for the states and

possible transitions between them.
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Recurrent events

0 1 2 3

Alternating events

Well Sick

Progressive events

Well Sick Dead

Alternative outcomes

Well Sick

Natural

recovery

Treatment

recovery
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A multi-state model must never have several

transition routes from one state to another.

Instead several di�erent states must be

de�ned.

For example, suppose that subjets in the

state of having a given disease may reover

either by natural body defenses or by medial

treatment.

Then, these must be de�ned either as two

di�erent reovery states, as in the alternative

outomes model, or they must not be

distinguished at all.
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For reurrent events, it is espeially

important to establish a zero time point.

If this is birth, then the time to the �rst

event will generally be quite distint from

subsequent repetitions of the event.

Often, it is onvenient to start the proess

from the time of the �rst event.

If this is unknown, the possible models that

an be �tted may be limited.

For example, a birth proess is usually

unreasonable beause the atual number of

previous events is unknown.
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2. Counting proesses

The umulated number, N

t

, of events up to

time, t, in a point proess is known as a

ounting proess.

Let the intensity of transition from state j to

state k be !

jk

(tjF

t�

), de�ned by

!

jk

(tjF

t�

)dt = Pr(the event in (t; t+ dt)jF

t�

)

= Pr(dN

t

= 1jF

t�

)

where F

t�

is the omplete history up to, but

not inluding, t.

If

E[M

t

℄ < 1

E[M

t+k

�M

t

jF

t�

℄ = 0

8t;0 < k <1, then, M

t

is alled a martingale.

For a ounting proess,

M

t

= N

t

�

Z

t

0

!

jk

(tjF

t�

)dt

ful�ls this ondition.
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3. Likelihood funtion

The kernel of the log likelihood funtion for

observation over the interval (0; T ℄ is

log[L(�)℄ =

Z

T

0

log[!

jk

(tjF

t�

;�)℄dN

t

�

Z

T

0

!

jk

(tjF

t�

;�)I(t)dt

where I(t) is an indiator funtion.

In any empirial situation, even a

ontinuous-time proess will only be observed

at disrete time intervals, one an hour, one

a day, one a week.

Suppose that these are suÆiently small so

that at most one event is observed to our

in any interval.

(There will be a �nite non-zero theoretial

probability of more than one, unless the event

is absorbing or a transition to another state.)
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With R intervals of observation, not all

neessarily the same size, this equation

beomes, by numerial approximation,

log[L(�)℄

:

=

R

X

t=1

log[!

jk

(tjF

t�

;�)℄�N

t

�

R

X

t=1

!

jk

(tjF

t�

;�)I(t)�

t

where �

t

is the width of the tth observation

interval and �N

t

is the hange in the ount

during that interval, with possible values zero

and one.

This is the kernel of the log likelihood for the

Poisson distribution of �N

t

, with mean

!(tjF

t�

;�)�

t

.

Conditional on the �ltration, it is the

likelihood for a Poisson proess.
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4. Examples of intensity funtions

Important simpli�ations our when the

intensity depends only on the omplete

history through N

t

: !

jk

(tjN

t

). Speial ases

inlude:

� the ordinary homogeneous Poisson

proess, with

!(tjN

t

) = !

where the intensity is always the same

(the only ounting proess with stationary

independent inrements);

� the nonhomogeneous Poisson proess,

with

!(tjN

t

) = !(t)

where the intensity is a funtion of time;
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� the pure birth or Yule proess, with

!(tjN

t

) = N

t

!

where the intensity is proportional to the

number of previous events;

� the nonhomogeneous birth proess, with

!(tjN

t

) = N

t

!(t)

where the intensity, proportional to the

number of previous events, is also a

funtion of time;

� the renewal proess, with

!(tjN

t

) = !(t� t

N

t

)

where the intensity depends on the time

sine the last reurrent event, starting

afresh after eah event;
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� the semi-Markov or Markov renewal

proess, with

!

jk

(tjN

t

) = !

jk

(t� t

N

t

)

where the form of the intensity funtion

depends on the time sine the last event,

with the proess hanging state at eah

event.

Those proesses with an intensity depending

on time are non-stationary.

This dependene may be on the elapsed time,

either total or sine the previous event, or on

the number of previous events, or both.

In more omplex ases, it may also depend on

other time-varying ovariates.
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5. Intensity and probability transition

matries

The intensity transition matrix, say 
(t), is a

matrix with elements, !

jk

(t), the transition

intensity from state j to state k, o� diagonal

and �

P

j

!

jk

(t) on diagonal.

Thus, rows sum to zero.

The probability transition matrix, say T(t), is

a matrix with elements, �

jk

(t), the transition

probability from state j to state k, inluding

�

jj

(t).

Thus, rows sum to unity.
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6. Transition probabilities

The transition probabilities an be found

from the transition intensities.

They are de�ned as

�

jk

(t�; t) = Pr(Y

t

= kjY

t�

= j;F

t�

)

the probability of being in state k at time t

given the previous history up until that time,

inluding the previous state(s), the

immediately preeding one being j.

These satisfy

�

jk

(t

1

; t

3

) =

X

l

�

jl

(t

1

; t

2

)�

lk

(t

2

; t

3

)

for t

1

� t

2

� t

3

.
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They an be obtained from the set of

di�erential equations,

dT(t�; t)

dt

= T(t�; t)
(t)

where T(t�; t) is the matrix of transition

probabilities, �

jk

(t�; t), to and from all

possible states.

These are the forward reurrene equations.

They an only easily be solved for

homogeneous Markov proesses where none

of the transition intensities either vary with

time or depend on time-varying ovariates.
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Then, matrix exponentiation an be used,

de�ned by

e

At

= I+

At

1!

+

(At)

2

2!

+ � � �

However, a preferable way to alulate the

exponential is by spetral deomposition.

If V is a olumn matrix of the eigenvetors of

A and D is a diagonal matrix ontaining the

orresponding eigenvalues, then

A = VDV

�1

and

e

At

= Ve

Dt

V

�1
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If the eigenvalues of T are all distint, the

solution will be of the form

�

jk

(t

1

; t

2

) =

X

l

�

jkl

e

�E

l

(t

1

�t

2

)

where E

l

are the eigenvalues.

In suh ases,

�

jk

(t

1

; t

2

) = �

jk

(0; t

2

� t

1

)

The boundary onditions are �

jj

(t; t) = 1 and

�

jk

(t; t) = 0 for j 6= k.

Otherwise, polynomials will also be involved.
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If there are inputs to the system, the set of

linear di�erential equations for a stritly

progressive model will be

d�(t)

dt

= 
�(t) + b(t)

where �(t) is the vetor of probabilities and

b(t) de�nes the inputs.

The general solution is then

�(t) = �(0)e


t

+

Z

t

0

e


(t�u)

b(u)du

where integration is omponent-wise.
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Example

Suppose that an individual an move in either

diretion between healthy (1) and sik (2)

states and an die (state 3) while in either

other state i, with intensities, !

i

.

The intensity matrix is


 =

0

B

�

�!

1

� !

12

!

12

!

1

!

21

�!

2

� !

21

!

2

0 0 0

1

C

A

However, the absorbing death state 3 an be

deleted without a�eting the solution,

yielding the intensity matrix




�

=

 

�!

1

� !

12

!

12

!

21

�!

2

� !

21

!

(1)

where !

ij

is the rate of transfer between

states i and j and !

i

is the rate of output of

state i from the system.
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�

has eigenvalues, E

i

= �[!

1

+ !

2

+ !

12

+

!

21

�

q

(!

1

� !

2

+ !

12

� !

21

)

2

+4!

12

!

21

�

=2.

The entries of the matrix, exp(


�

t), are




�

11

=

(E

1

+ !

2

+ !

21

)e

E

1

t

� (E

2

+ !

2

+ !

21

)e

E

2

t

E

1

� E

2




�

22

=

(E

1

+ !

2

+ !

21

)e

E

2

t

� (E

2

+ !

2

+ !

21

)e

E

1

t

E

1

� E

2




�

12

=

!

12

(e

E

1

t

� e

E

2

t

)

E

1

� E

2




�

21

=

(E

1

+ !

2

+ !

21

)(E

2

+ !

2

+ !

21

)(e

E

2

t

� e

E

1

t

)

!

12

(E

1

� E

2

)

Results suh as these an be obtained from

symboli algebra omputer programs or from

standard texts on ompartment models.

(A model in whih the rows of the intensity

matrix do not sum to zero, as for the two

states here, is alled defetive beause there

is a net ow out of those two states.)
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7. Epidemis: the SIR model

Suppose that a non-fatal infetious disease

onfers immunity upon reovery.

We an then divide a given population into

three distint ategories:

1. suseptibles (S) who an ath the

disease;

2. infetives (I) who have the disease and

are ontagious so that they an transmit

it;

3. reovered (R), who have had the disease

and are now immune.
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The stages an then be desribed by a

ompartment model

Closed SIR model

Susceptible
k2 Infective

k3 Recovered

Open SIR model

k1 Susceptible
k2 Infective

k3 Recovered

This is alled the (losed) SIR model.
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Let us assume that

� the intensity (!

12

) of exit from the

suseptible ategory and entry to the

infetive ategory is proportional to the

present numbers of infetives and

suseptibles;

� the intensity (!

23

) of exit from the

infetive ategory and entry to the

reovered ategory is proportional to the

present number of infetives;

� eah ategory of people is uniformly

mixed so that every pair of individuals has

the same probability of meeting; and

� the population is of onstant size.
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Then, the model an be de�ned by the

di�erential equations

dS(t)

dt

= �!

12

S(t)I(t)

dI(t)

dt

= !

23

S(t)I(t) � !

23

I(t)

dR(t)

dt

= !

23

I(t)

with initial onditions, S(0) = S

0

> 0,

I(0) = I

0

> 0, and R(0) = 0.

If S

0

< !

23

=!

12

, the infetion eventually dies

out and no epidemi ours.
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If the population is not losed so that

suseptibles are born or an immigrate at the

onstant intensity !

01

, the stages are now

given by the ompartment model in the

bottom panel.

The �rst equation beomes

dS(t)

dt

= !

01

� !

12

S(t)I(t)

This is an open SIR model.

The system will reah an endemi level or

equilibrium at S

1

= !

23

=!

12

and

I

1

= !

01

=!

23

, obtained by setting the above

equations equal to zero.
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However, with stohasti variability, there will

be damped osillations around the equilibrium

starting after eah disturbane.

If the deviations from the equilibrium values

are small, the appropriate funtions an be

derived.

Generally, information is only available on

infetives.

The resulting funtion will be

I(t) = I

1

h

1 + �e

�t=(2�)

os(�t)

i

where � =

!

23

!

12

!

01

and � =

q

!

12

�

�

1

4�

2

.

The maximum magnitude of the osillations

from the equilibrium value is given by � and

the period by 2�=�.

27



If the stohasti disturbanes our

frequently enough, damping will not have had

time to take e�et, so that

I(t) = I

1

[

1 + � os(�t)

℄

From this funtion, we an no longer obtain

estimates of all three intensities beause they

now only relate to two parameters, I

1

and �.

In both ases, osillations are symmetri

about I

1

.
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