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1. Introdution to Moleular Biology

Sequenes

1.1 DNA Sequene Analysis

The double-stranded helial form of

deoxyribonulei aid (DNA) is well known.

Eah strand of DNA onsists of a linear

sequene of the four nulei aid bases,

adenine (A), ytosine (C), guanine (G), and

thymine (T).

Opposite strands ontain omplementary

pairs: A with T and C with G so that only one

of the strands need by studied.
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In a protein-oding gene, onseutive,

non-overlapping triplets of bases ode

orresponding sequenes onsisting of the 20

di�erent amino aids that make up a protein.

This is alled an open reading frame (ORF).

A oding region is read by messenger

ribonulei aid (mRNA) and translated by

ribosomes into a polypeptide.

There are 64 possible ombinations of the

bases.

Thus, the ode is redundant, partiularly in

the third base, with several triplets often

oding the same amino aid.
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Speial three-base odes also signal the

initiation (ATG) and termination (TAG, TGA, TAA)

of a oding sequene.

A promoter and enhaner signal region,

ontaining so-alled promoter boxes (for

example, TATA, CCAAT), generally ours

somewhat before the �rst exon in a

protein-oding setion.

Some other regions are genes oding for

ribosomal (rRNA) or transfer (tRNA)

ribonulei aids.

Thus, most bases in a DNA sequene do not

ode for proteins.

Only seletive setions of the strands are

atually ative.
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In addition, the bases oding a given protein

are not neessarily all onseutive but may be

split into several setions.

These are alled the exons of the gene

whereas the non-oding setions in between

are alled introns.

Beause the set of exons de�ne a protein,

they are subjet to natural seletion; one may

expet the bases in the introns to be more

random.

A mutation in an exon sequene will often

result in a ode for a non-viable or

inappropriate protein, whereas a mutation in

an intron does not have this harmful e�et.
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1.2 Sequening Methods

A hromosome is �rst divided in some

ordered way into smaller piees.

DNA moleules are digested by restrition

endonulease, utting them into small

fragments.

Eah spei� endonulease has a target site

of utting de�ned by a unique sequene of

four to eight base pairs.

For example, the enzyme Not I reognizes the

eight base pair sequene, GCGGCCGC.
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Suh sequenes are not distributed randomly

and the four nuleotide bases do not all

appear equally frequently in the genome.

Thus, the length of the fragments produed

depends of the target utting sequene.

These fragments are separated by size using

eletrophoresis in agarose.

They are multiplied for mapping and

sequening to be possible.

Bateriophage �, bateria ontaining osmid

reombinants, or yeast arti�ial hromosomes

(YACs) an be used to lone the fragments

and generate a library.
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Then, the loned fragments must be

positioned in the same linear order as in the

hromosome by deteting overlaps.

This produes a physial map of the

hromosome.

One possibility for ordering the fragments is

hromosome walking:

a lone is hosen and used as a probe to

detet other lones with whih it will

hybridize; these should overlap with it.

This is repeated many times, providing a

series of steps.

Other tehniques suh as restrition enzyme

�ngerprinting, marker sequenes, and

hybridization assays are also used.
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The hain terminator or dideoxy method for

DNA sequening developed by Sanger uses

two important properties of these moleules:

the ability to synthesize a omplementary

opy from a single strand of DNA and the

possibility of using dideoxynuleotides as

hain terminators.

DNA is synthesized in the presene of the

four deoxynuleoside triphosphate bases, one

of whih is labelled with

32

P.

Four bathes eah ontain a low

onentration of one of the di�erent

dideoxynuleotides.

Beause of the di�erene in termination, eah

bath will ontain partially synthesized

radioative DNA moleules of di�erent length.
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A high-resolution sequening gel frationates

denatured (single-strand) DNA fragments

aording to size by eletrophoresis.

It is apable of distinguishing fragments

di�ering in length by only one base pair.

The labelled DNA bands an be examined

manually to determine the sequene after

autoradiography on X-ray �lm.

The maximum length of DNA that an be

sequened at one pass is between 300 and

500 bases.

However, for the proess to be automated,

the radioative tags are replaed by

uoresent ones attahed to the terminators.

Eah dideoxynuleotide arrying a di�erent

uorophore.
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The four bands an be then deteted in the

same lane of gel and many lanes

eletronially analyzed simultaneously.

The sequened fragments an either be

reassembled

(1) by previously onstruting a physial map

of the genome or

(2) by a shotgun approah of mathing

overlapping ends of fragments to produe the

assembly.

During this proess, the partial sequenes

reated are known as ontigs (ontiguous

sequenes).

The �nal result of the assembly is a

onsensus sequene.
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Roughly 5000 to 10 000 bases must be

analyzed to produe a sequene of 1000

bases.

1.3 Alignment

DNA sequenes oding similar proteins must

be similar.

This will be true of two proteins in the same

organism but also of those in two losely

related organisms.

The latter may di�er through evolutionary

mutations.

On the other hand, the non-oding sequenes

may di�er widely.

Only ertain mutations that hange an exon,

those that still produe a viable protein, are

permissible.
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Mutations of the introns an be muh more

random beause they do not a�et the

protein.

In order to ompare suh sequenes, the DNA

must be aligned.

Then, one an deide if suh an alignment

would likely to have arisen by hane or

beause the sequenes are related.

Several fators must be taken into aount:

� what alignments should be allowed;

� how should they be ranked;

� what algorithm should be applied to �nd

an optimal alignment;
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� what statistial proedure should be used

to evaluate signi�ane of the ranked

sores.

Simple proedures only perform pairwise

alignment.

Two basi types of mutations an hange

sequenes:

(1) substitutions of one base for another and

(2) insertions or deletions of bases.

Some forms of mutations are observed more

frequently than others beause natural

seletion generally removes the nonviable

ones.
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For example, beause of the redundany in

the third base of a triplet, more variability an

often be observed there.

At eah site, a sore is assigned to the pair of

bases ourring there.

For DNA bases, there are 16 possible sores

but, by symmetry, not all are di�erent.

These form a 4� 4 sore or substitution

matrix.

To align sequenes optimally, gaps may have

to be left in some of the sequenes,

orresponding to insertions and deletions.

A penalty is assigned for opening a gap and

another (usually smaller) one for widening it.
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The total ranked sore for an alignment,

then, onsists of a sum of terms for eah

aligned pair of bases plus those for the gaps.

Additivity implies that mutations at di�erent

sites have ourred independently.

Various algorithms are used to obtain optimal

alignment among two or more sequenes.

These dynami programming tehniques are

guaranteed to �nd the optimal pairwise

alignment.

A number of these programs are publily

available; sequenes an also be submitted for

alignment over the internet.
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Global alignment of omplete sequenes is

generally performed by the

Needleman{Wunsh algorithm, whereas

loation alignment of subsequenes uses the

Smith{Waterman algorithm.

Multiple sequene alignments are more

omplex.

Soring methods must allow for the

evolutionary dependene among the

sequenes, inluding the fat that some sites

may be more onserved than others.

One a set of sores has been hosen,

multidimensional dynami programming must

be applied.
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1.4 Finding genes and their exons

One a setion of DNA has been sequened

so that its ontent is known, one question to

be asked is whih setions of it are ative in

oding a protein.

Evidene for the loation of genes in a

sequene must be derived from a variety of

indiations.

A protein-oding sequene may have a

number of harateristis:

� it should be preeded by known promoter

regions suh as a TATA box;

� it should start with an initiation odon

and end with a termination odon;
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� it may be suÆiently similar to that for

another gene in the genome or to the

same gene in another genome to be

reognizable;

� it an show odon (triplet) regularity;

� it is unlikely to ontain major setions of

repeats.

Gene �nding is partiularly diÆult when

introns are present.

Many types of software are available on the

internet for

� integrated gene identi�ation;

� promoter reognition;
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� database searhes to �nd similar gene

sequenes;

� repeat analysis.
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2. Introdution to Log Linear Models

2.1 Data, Models, and Inferene

Suppose that eah observation, y

i

, an take

one among a small number of possible values.

For example, the four nulei aid bases of

DNA or RNA, or the 20 amino aids of

proteins.

The results an be summarized as a

frequeny table giving the number of times,

n

i

, that eah value ours.
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For the omplete human betaglobin gene, the

frequenies are

A C G T

n

i

360 277 296 491

�̂

i

0.25 0.19 0.21 0.34

For the exons, the frequenies are

A C G T

n

i

88 113 137 106

�̂

i

0.20 0.25 0.31 0.24

and for the introns,

A C G T

n

i

272 164 159 385

�̂

i

0.28 0.17 0.16 0.39
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If the observations are independent, their

joint probability an be written as

Pr(n) =

�

n

�

n

1

� � �n

I

�

Y

�

n

i

i

where n

�

=

P

I

i=1

n

i

.

This is a multinomial distribution.

Models are de�ned by the way in whih

numbers are assigned to the probabilities, �

i

,

of the possible observed values.

Inferenes are made by studying the

probability of the observed data for various

suh models.

This is alled the likelihood funtion, L(�).

It is a funtion of the models, whereas the

probability is a funtion of the data.
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Often, it is easier to study the negative log

likelihood:

� log[L(�)℄ / �

X

n

i

log(�

i

)

for whih smaller values indiate better

models.

The maximum likelihood estimate (mle) is

the model that makes the data most probable

or the negative log likelihood smallest.

For independene, the mles of � are just the

relative frequenies.
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2.2 Log Linear Models

Generally, the sequene of observed values is

not independent.

It may depend on various fators.

Thus, in the betaglobin gene, the probabilities

of the four bases appear to depend on

whether they lie in an intron or an exon:

A C G T

Exon 0.20 0.25 0.31 0.24

Intron 0.28 0.17 0.16 0.39

One way to model this is to set

�

ij

=

e

�

i

+�

ij

P

i

e

�

i

+�

ij

where j indexes the loation of the base.
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Some onstraints need to be plaed on the

parameters, suh as

P

i

�

i

= 0 and

P

i

�

ij

=

P

j

�

ij

= 0.

Then, this an be rewritten as

log

 

�

ij

_�

j

!

= �

i

+ �

ij

where _�

j

is the geometri mean of the

probabilities at loation j.

The mles are �̂= (�0:02;�0:15;�0:07;0:24)

and

�̂=

 

�0:20 0:18 0:29 �0:28

0:20 �0:18 �0:29 0:28

!

reeting the fat that introns have fewer C

and G bases.

25



In the model of independene, the

probabilities of the bases are the same in

both loations.

That is �

ij

= �

i

for all i and j.

This an be written

log

 

�

ij

_�

j

!

= �

i

The respetive negative log likelihoods are

1936.3 for independene and 1900.7 when a

di�erene between introns and exons is

allowed.

The model with dependene on loation

makes the observed data muh more

probable:

e

1936:3�1900:7

= 3:1� 10

15

times more

probable!
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However, the latter model has three extra

parameters.

In making inferenes, this an be allowed for

by penalizing the negative log likelihood by

adding the number of estimated parameters.

These are respetively 3 and 6, yielding

1939.3 and 1906.7.

This is penalization is alled the Akaike

Information Criterion (AIC).
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2.3 Software

Most available software does not allow diret

modelling of the multinomial distribution.

Generally, only the Poisson distribution is

available:

Pr(n

i

) =

e

��

i

�

n

i

i

n

i

!

Here, �

i

is the theoretial average number of

events of type i, while �

i

was the theoretial

proportion of events of that type.

Suppose that a set of frequenies, n

1

� � �n

I

,

has a Poisson distribution with means �

1

� � � �

I

.

Then, their sum, n

�

, also has a Poisson

distribution with mean, �

�

, the sum of the

individual means.
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Reall that the onditional probability for an

event A given an event B is de�ned by

Pr(AjB) =

Pr(A and B)

Pr(B)

Then, if we ondition on the total number of

events,

Pr(n

1

; : : : ; n

I

jn

�

) =

Q

I

i=1

e

��

i

�

n

i

i

=n

i

!

e

��

�

�

n

�

�

=n

�

!

=

n

�

!e

��

�

Q

I

i=1

�

n

i

i

Q

I

i=1

n

i

!e

��

�

�

n

�

�

=

�

n

�

n

1

� � �n

I

�

I

Y

i=1

�

�

i

�

�

�

n

i

whih is the multinomial distribution with

�

i

= �

i

=�

�

.

The two distributions are idential.
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Thus, the Poisson distribution an be used for

log linear models instead of the multinomial.

For example,

log

 

�

ij

_�

j

!

= �

i

+ �

ij

with multinomial probabilities is equivalent to

log

 

�

ij

_�

j

!

= �

i

+ �

ij

with Poisson means.
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Most ommon software use a standard

notation to ommuniate models.

Variables are spei�ed by their names.

The model

log(�

ij

) = log( _�

j

) + �

i

+ �

ij

would orrespond to

loation+ base+ base � loation

This an also be written more simply as

base � loation

The independene model is

base+ loation
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2.4 More Complex Models

Often, we may wish to study how more than

one fator inuenes the probabilities of the

observed values.

For example, does the distribution of nulei

aid bases di�er among speies as well as

between exons and introns?

A C G T

Human Exon 0.20 0.25 0.31 0.24

Intron 0.28 0.17 0.16 0.39

Chimp Exon 0.19 0.25 0.32 0.24

Intron 0.27 0.17 0.16 0.40

Gorilla Exon 0.19 0.24 0.32 0.25

Intron 0.28 0.17 0.16 0.39
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We an extend our model to

log

 

�

ijk

_�

jk

!

= �

i

+ �

ij

+ �

ik

+ 

ijk

with with k indexing speies.

Constraints on the parameters similar to

those above are also required.

�

ik

will measure the di�erenes among

speies.



ijk

will allow for the possibility that the

relationship between exons and introns di�ers

among speies.
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The model with only di�erenes between

loations and not among speies,

log

 

�

ijk

_�

jk

!

= �

i

+ �

ij

has an AIC of 4493.6 with six parameters.

This ompares to 4590.1 for the

independene model with three parameters.

If we also allow for speies di�erenes

log

 

�

ijk

_�

jk

!

= �

i

+ �

ij

+ �

ik

the AIC is 4499.4 with 12 parameters.

Finally, the full model has an AIC of 4505.3

with 18 parameters.

These models indiate no signi�ant

di�erenes among the three speies.
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When using the Poisson approah in software,

the minimal model an be written

R

1

+R

2

+ � � �+ E

1

� E

2

� � � �

R

i

represents a response variable (here only

one, base type).

E

j

an explanatory variable (here loation and

speies).

The produt indiates all possible

ombinations of interations among variables.

This annot be simpli�ed even if the AIC

indiates that some terms are unneessary.

In our example, independene is spei�ed by

base+ loation � speies
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Dependeny of a response on an explanatory

variable is introdued as a produt:

R

1

+R

2

+ � � �+ E

1

� E

2

� � � �+R

1

�E

1

as is dependeny between responses:

R

1

+R

2

+ � � �+ E

1

� E

2

� � � �+R

1

�R

2

Thus dependeny of base type on loation is

given by

base+ loation � speies+ base � loation

that on speies by

base+ loation � speies+ base � loation

and on both by

base+ loation � speies+ base � loation

+base � speies
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3. Introdution to Markov Chains

3.1 Serial Dependene

A �nite number of di�erent types of events,

observed in a sequene, de�nes the states,

say x, of the proess.

Suppose that the individual value, y

t

, at a

given point, t, in the sequene depends only

on the state, y

t�1

, at the immediately

preeding point:

Pr(y

t

jy

t�1

; : : : ; y

1

) = Pr(y

t

jy

t�1

)

This is the hypothesis of a �rst-order Markov

hain.

Beause DNA sequenes are read in one

diretion (5

0

to 3

0

), Markov hain theory an

be applied.
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Then, the probability for a omplete sequene

is

Pr(y

1

; : : : ; y

N

) = Pr(y

1

)

N

Y

t=2

Pr(y

t

jy

t�1

)

These onditional probabilities an be

represented in a square transition matrix, T,

of eah state given the previous one.

If if depends further bak, the hain is of

higher order.

If the rows orrespond to the states at the

previous time point and the olumns to the

present states, then the row probabilities sum

to one.

If this matrix is the same for all positions in

the sequene, the hain is said to be

homogeneous.
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Pre-multiplying this matrix by the vetor, n

t

,

of frequenies of units in the di�erent states

(the marginal frequenies) at a given point, t,

will give the vetor for the next point, t+1:

n

T

t+1

= n

T

t

T

The marginal stationary distribution of the

states is the � suh that

�

T

= �

T

T

A Markov hain is said to be irreduible if any

state an be reahed from any other.

Various assumptions about Markov hains,

suh as order or homogeneity, an be

ompared by �tting appropriate log linear

models
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3.2 More Complex Markov Chains

If the present state depends on the k previous

states

Pr(y

t

jy

t�1

; : : : ; y

1

) = Pr(y

t

jy

t�1

; : : : ; y

t�k

)

the hain is said to be of order k.

Any suh sequene an be written as a

�rst-order Markov hain by hanging the

state spae.

Instead of the states, x, take the states to be

all possible ombinations of a set of k xs.

For example, with k = 2, a sequene CGTCA

beomes CG{GT{TC{CA.

Here, some of the transition probabilities

must be zero: TC annot follow CG, et.
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If the transition matrix hanges depending on

the position in the sequene, the hain is

inhomogeneous.

A DNA sequene oding a protein onsists of

triplets.

The transition matrix may depend on the

position in the triplet.

There will be three di�erent matries, at

positions 1, 2, and 3.

Within a gene, the transition matrix may be

di�erent between exons and introns.
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3.3 Comparing Transition Matries in

Exons and Introns

For the betaglobin data, the transition matrix

for the entire gene is

A C G T

A 0.29 0.18 0.21 0.32

C 0.31 0.23 0.03 0.43

G 0.21 0.22 0.30 0.27

T 0.22 0.17 0.25 0.36

As might be expeted, we see that C is very

rarely followed by G.
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The matries for the exons and for the

introns are respetively

A C G T

A 0.26 0.28 0.31 0.15

C 0.27 0.31 0.04 0.38

G 0.18 0.25 0.33 0.24

T 0.08 0.19 0.57 0.16

and

A C G T

A 0.29 0.15 0.18 0.38

C 0.34 0.18 0.02 0.45

G 0.24 0.19 0.27 0.30

T 0.25 0.16 0.17 0.42

We an use log linear models to investigate if

there is a di�erene in transitions between

exons and introns.
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The ontingeny tables are

A C G T

Exons

A 23 24 27 13

C 30 35 5 43

G 25 34 45 33

T 9 20 60 17

Introns

A 80 42 48 102

C 56 30 3 74

G 38 30 43 48

T 98 62 65 160

The independene model, where the base at a

given position depends neither on the previous

base nor on the loation (exon or intron),

base+ loation � previous

has an AIC of 3663.3 with 3 parameters.
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That with dependene only on loation,

base+ loation � previous+ base � loation

has 3627.3 with 6 parameters and that for

previous base only

base+ loation � previous+ base � previous

has 3609.8 with 12 parameters.

This latter model assumes that the transition

matrix is the same in exons and introns.

However, the model where dependene on the

previous base is di�erent in the exon and

intron

base � loation � previous

has an AIC of 3555.0 with 24 parameters.
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This shows that the relationship between

suessive bases is di�erent in exons and

introns.

The two transition matries are signi�antly

di�erent.

The sequene over the whole gene is not

homogeneous.
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4. Introdution to Hidden Markov Models

4.1 Basi Conepts

Suppose that a sequene of responses is

disrete-valued, often ategories that would

appear to be the observed states of some

Markov hain.

However, dependene annot adequately be

desribed by the simple Markov property.

In a hidden Markov model, an underlying,

unobserved sequene of states follows a

Markov hain, the hidden state determining

the probabilities of the observed states.

Suh an approah is widely used in speeh

proessing and in biologial sequene analysis

of nulei aids in DNA and of amino aids in

proteins.
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For a binary time series, eah event might be

generated by one of two Bernoulli

distributions.

The proess swithes from the one to the

other aording to the state of the hidden

Markov hain, in this way generating state

dependene.

Analogous models an be onstruted for

other disrete distributions, suh as the

Poisson or multinomial distributions.

The distributions ould even, themselves, be

Markov hains with di�erent transition

matries.
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4.2 The Model

Consider an irreduible homogeneous Markov

hain with M �M transition matrix, H.

This gives the probabilities of hanging

among the hidden states, with marginal

stationary distribution, �.

The latter an be alulated from the

transition matrix and hene does not

introdue any new parameters.

Then, the probability of the observed

response at position t, �

mt

= Pr(y

t

jm;�

m

),

will depend on the unobserved state, m, at

that position.

�

mt

is alled the emission probability.
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The series of responses on a given unit are

assumed to be independent, given the hidden

state.

Thus, there are M(M � 1) unknown

parameters in the transition matrix as well as

M times the length of �

m

in the probability

distributions.

Although the probability of the observed data

is omplex, it an be written in a reursive

form over the sequene:

f(y;�;H) = �

T

R

Y

t=1

(HF

t

)J

T

F

t

is an M �M diagonal matrix ontaining,

on the diagonal, the probabilities, �

mt

, of the

observed data given the various possible

states.

50



To onstrut the likelihood funtion from

this, �rst alulate the marginal probability

times the observed probability for eah state

at position 1, say a

m

= �

m

Pr(y

1

jm;�

m

).

At the seond point, the �rst step is to

alulate the observed probability for eah

state multiplied by this quantity and by the

transition probabilities in the orresponding

olumn of H.

These are summed yielding, say

b

m

=

P

h

a

m

H

mh

Pr(y

2

jh;�

h

).

This is the new vetor of forward

probabilities, but, to prevent underow, it is

divided by its average, yielding a new vetor,

a.
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This average is also umulated as a

orretion to the likelihood funtion.

These steps are repeated at eah suessive

position.

Finally, the sum of these a

m

at the last point

in the sequene is the likelihood exept that

the umulative orretion must be added to

it.

At eah step, the vetor, a, divided by its

sum gives the (�ltered) onditional

probabilities of being in the various possible

states given the previous observations.
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4.3 Loating the Betaglobin Gene

Let us �rst apply hidden Markov models to

the omplete sequene of 3007 bases to see if

any orrespondene an be found between

the hidden states and the oding setions.

The model for multinomial independene has

an AIC of 4091.8, whereas that with two

hidden states has 4044.2.
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Filtered onditional probabilities of being in

state 1 for the omplete �-globin sequene.

Top graph: simple two state model; bottom

graph: model with two Markov hains.
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We see that the three exons are all

ompletely loated in one of the states.

The seond intron is similar to the setions of

the sequene before and after the gene

whereas the �rst intron is indistinguishable

from the exons by this method.

The transition matrix is

 

0:997 0:003

0:003 0:997

!

with stationary probabilities, 0.481 and 0.519.

In the �rst state, the probabilities of A, C, G,

and T are respetively 0.31, 0.15, 0.14, and

0.40.

In the seond, they are 0.23, 0.25, 0.26, and

0.27.
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The latter is the state in whih the exons

our.

Thus, the nonoding regions are CG poor.

Adding a third state further redues the AIC

to 4023.8 but does not further aid in

distinguishing the gene.

Allowing the probability of eah type of base

to yle through eah of the three positions

of triplets along the whole sequene with two

hidden states does not improve the model;

the AIC is 4048.6.

On the other hand, if an ordinary Markov

hain is used instead of a hidden one, the AIC

is redued to 3997.0.
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If the proess is allowed to swith between

two suh Markov hains using a hidden

Markov model, the AIC is 3938.6.

The hidden transition matrix for this model is

 

0:995 0:005

0:004 0:996

!

and the two `observed' transition matries are

A C G T

A 0.338 0.140 0.124 0.399

C 0.365 0.284 0.064 0.288

G 0.141 0.317 0.394 0.148

T 0.193 0.175 0.420 0.212

A 0.240 0.223 0.331 0.206

C 0.288 0.300 0.035 0.377

G 0.254 0.212 0.313 0.222

T 0.164 0.242 0.326 0.268

Notie how rarely G follows C in either state.
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4.4 Loating the exons

Let us now look more losely at the gene

itself, ignoring the nonoding regions on eah

side.

The multinomial independene model has an

AIC of 1939.3 ompared to 1913.2 for the

two-state model.
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Filtered onditional probabilities of being in

state 1 for the gene setion of the �-globin

sequene. Top graph: simple two state

model; bottom graph: model with

dependene on triplet position.
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The omplete exons still our in one hidden

state.

However, the seond intron is not so learly

distinguished as when the whole sequene is

used.

On the other hand, there is some indiation

of the �rst intron being similar to the seond.

The transition matrix is

 

0:976 0:024

0:009 0:991

!

with stationary probabilities, 0.265 and 0.735.

The probabilities of the four bases in state 2,

ontaining the exons, are respetively 0.27,

0.20, 0.26, and 0.27, whereas they are 0.21,

0.18, 0.06, and 0.54 in state 1.

Indeed, 41% of intron 2 onsists of T.
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If I now allow a di�erent set of probabilities

for the four bases at eah of the three

positions in a triplet, the AIC is redued to

1912.0.

This is rather surprising as only the seond

exon has a omplete set of triplets and

neither of the introns does.

Note that the triplets in the seond exon do

not orrespond to amino aids beause the

�rst intron ours in the middle of a triplet.

Thus, triplets are out of alignment among

the three exons.

Nevertheless, the hanges of state beome

muh learer, as an be seen in the lower

graph.
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The transition matrix is now

 

0:998 0:002

0:001 0:999

!

with stationary probabilities, 0.317 and 0.683.

The probabilities of the four bases at the

three positions of a triplet in the two states

are summarized in the following table:

State Position A C G T

1 0.29 0.18 0.10 0.43

1 2 0.31 0.13 0.13 0.43

3 0.29 0.14 0.11 0.46

1 0.19 0.21 0.29 0.31

2 2 0.25 0.25 0.27 0.23

3 0.22 0.23 0.28 0.27

As for the omplete sequene, adding a third

state improves the model, with an AIC of

1896.9, but does not further help to loate

the oding regions.
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This example should not be taken as typial

of the suess with whih oding setions of

a sequene an be loated.

It happens that intron 2 of this gene is rather

speial; this greatly helped in loating the

areas of interest.

4.5 Extensions

� nonstationary marginal distribution

� inhomogeneous hidden transition matrix

� higher order hidden Markov hain
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5. Appliations of Hidden Markov Models

5.1 Finding CpG Islands

The dinuleotide, CG (written CpG to

distinguish it from the C{G base pair aross

strands) ours rarely.

In this ombination, C is usually methylated

and mutated to T.

In ertain short setions of a genome,

methylation is suppressed, suh as in

promoter regions of a gene.

These CpG islands are generally a few

hundred to a few thousand bases long.
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In a CpG island, the transition matrix will be

di�erent than elsewhere in the genome.

The transition probability, C!G will be larger.

In a set of 41 human DNA sequenes with 48

known CpG islands, the transition matries

are

A C G T

A 0.18 0.27 0.43 0.12

C 0.17 0.37 0.27 0.19

G 0.16 0.34 0.38 0.13

T 0.08 0.36 0.38 0.18

for CpG islands and

A C G T

A 0.30 0.21 0.29 0.21

C 0.32 0.29 0.08 0.30

G 0.25 0.25 0.29 0.21

T 0.18 0.24 0.29 0.29

elsewhere.
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The problem is that we do not know at what

point the transition matrix hanges.

One of the �rst appliations of hidden

Markov models in moleular biology was to

resolving this problem.

In the above 41 sequenes, all but two CpG

islands were found but, 121 others were also

predited.

However, the falsely predited ones were quite

short ompared to the real ones.

Preditions less than 500 bases apart an be

onatenated and those shorter than 500

bases ignored.

This redues the false preditions to 67.
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5.2 Pairwise Alignment

Consider a short setion of the human

betaglobin sequene,

TGTACATATACACATATATATATATATTT as aligned with

that of a himpanzee,

GTATATATACATACATATATATATATATATATATAT:

TG.....TACATATACACATATATATATATAT..TT

GTATATATACATACATATATATATATATATATATAT

After optimal alignment, the observed states

in the two sequenes may be

� idential nuleotides,

� di�erent nuleotides,

� a gap in one sequene and a nuleotide in

the other.
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In aligning two sequenes, we an have three

possible hidden states:

1. the bases in the two sequenes are aligned

(M),

2. the �rst sequene requires an insert

opposite a gap in sequene 2 (X

1

),

3. the seond sequene requires an insert

opposite a gap in sequene 1 (X

2

),

Then, the hidden transition matrix will be

M X

1

X

2

M 1� 2Æ Æ Æ

X

1

1� � � 0

X

2

1� � 0 �
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Æ is the probability of opening a gap.

� is the probability of widening an existing

gap.

1� � is the orresponding probability of

losing a gap

There will be 16 emission probabilities in

state M orresponding to all possible

ombinations of pairs of nuleotides

and four emission probabilities in eah of

states X

1

and X

2

orresponding to the

possible nuleotide insertions.
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Using hidden Markov models for alignment

instead of dynami programming algorithms

provides

� likelihood measures of reliability of the

alignment obtained,

� omparison of suboptimal alignments.

Generally, there will be several alternative

alignments with almost the same likelihood.

Some will di�er only in a few positions from

the optimal alignment.

If there are repeats in one or both sequenes,

suboptimal alignments may di�er substantially

or ompletely from the optimal alignment.
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5.3 Multiple Alignments

Aligning simultaneously several sequenes is

muh more omplex.

Usually they are sequenes of DNA for similar

proteins (�-, �-, and -globin) or sequenes

for the same protein from di�erent speies.

For di�erent speies, they are used to

onstrut phylogeni trees in the study of

evolution.
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