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Abstrat

Retangular data matries and linear formula spei�ation used in urrent statistial soft-

ware pakages are two of the major impediments to developing and implementing advaned

statistial models.

A set of three data objets is proposed to replae the retangular data matrix. Although

developed for repeated measurements data, these have muh wider appliation, suh as to

independent data and to time series. The three objets ontain, respetively, the response

variable, with all of the information required to speify its probability distribution, the inter-

unit ovariates, and the intra-unit ovariates, neessary for any set of models of interest.

As an extension to the Wilkinson and Rogers (1973) notation widely used to speify the

linear part of regression models, two general proedures for desribing nonlinear models are

proposed. The �rst simply uses the builtin funtion onstrution failities of R or S, whereas

the seond is more losely related to the Wilkinson and Rogers notation, but allows unknown

parameters to have individual names. Then, suh a formula an be automatially transformed

into a suitable funtion, with the software distinguishing between knowns and unknowns.

Both the data objets and the model formulation have been implemented in R. A wide

olletion of model-�tting funtions for nonlinear regression, inluding repeated measurements,

based on them is available.

Keywords: Clustering, data objets, durations, model spei�ation, nonlinear model,

repeated measurements, time series, time-varying ovariates.

1 Introdution

In this paper, I disuss some limitations of urrently available software with respet to data handling

and model spei�ation and make suggestions for improvements. I have implemented all of my

proposals in a library of funtions for R (Ihaka and Gentleman, 1996), demonstrating that they

are all feasible and useful.

One of my onerns is with how urrently available tehniques onstrain statistial users in a
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mind-frame suh that they must think in �xed and old-fashioned ways not suitable for modelling the

data now being olleted in siene and industry. Current omputing power has revolutionized data

olletion; it should also fundamentally hange the ways in whih suh data are analyzed. Some

may laim that modern nonparametri and Bayesian proedures are doing this. However, the �rst

are essentially either desriptive methods (suh as kernel density estimation and other smoothers)

or designed for testing hypotheses (suh as Cox proportional hazards), not for understanding the

mehanisms by whih the data were generated. The seond is a `bigger is better' philosophy that

has not (yet?) fundamentally hanged the way data are atually treated beause of the additional

assumptions and omputer time required.

Two basi theses underly my disussion in this paper:

1. the lassial retangular data matrix is inadequate to handle many modern data types;

2. the now standard Wilkinson and Rogers (1973) formul� for linear models need to be ex-

tended, in user-friendly ways, to the spei�ation of nonlinear models.

All urrent major statistial software systems oblige users to oere their data into a retangular

form, generally with individuals as rows and variables as olumns. Even planned experiments are

not always balaned in this way. Longitudinal repeated measurements studies may have highly

unequal numbers of observations per subjet. Missing values and dropouts may our.

When only a desk alulator was available in data analysis, estimation was usually only feasible

for simple linear models. Everyone agreed that they were often poor approximations to the phe-

nomena under study, but nothing else was possible. Current ommerial software generally retains

this `desk alulator' philosophy, simply allowing users to handle larger data sets in less time. The

one major exeption, generalized linear models, has had a surprisingly narrow impat on urrent

pratie.

In a ertain sense, modern statistis is fundamentally anti-sienti�, attempting to impose

its `generally appliable' methods in all irumstanes instead of trying to understand eah spe-

i� sienti� problem and to adapt spei� proedures to it. The lassial linear model is the

arhetypial ase: it is widely believed that most problems an be transformed in some way so

that least-squares multiple regression an provide a solution. Empirial models are preferred to

mehanisti ones, the extreme example being nonparametri statistis. Those areas of statistis

that have esaped from this rule (for example, statistial mehanis, population and moleular

genetis, or pharmaokinetis) have almost exlusively been developed by nonstatistiians.

In what follows, I shall onentrate on the handling of repeated measurements types of data.

This has the advantage that it overs both the lassial independent observations and time series

as speial ases, as well as providing simple extensions to spatial data. However, this also means

that I make no pretension of universality. In any ase, it is doubtful that one type of data struture

ould ever be designed to handle all oneivable ases.
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Table 1: An example of repeated response data for three seleted individuals. First line: times,

measured from randomization (with negative times being pre-randomization baseline values). Se-

ond line: response measurement. (Lindsey, 1999, p. 400.)

-27 -13 28 56 84 168 259 331 427 504 672 771 834 945 1008 1092

561 334 157 374 191 465 125 212 232 177 98 207 127 202 143 174

1289 1306 1351

216 245 237

-14 -6 58 253 358 508 574 672 855 924

429 587 446 269 131 50 145 634 273 144

-14 -7 0 56 84 168 336 420 504 672 756 840 924 1000 1135 1260

231 312 123 127 297 337 225 312 178 111 97 133 239 151 115 297

1280 1337

141 113

2 Data objets

2.1 Types of variables

The lassial retangular data struture does not distinguish between response and explanatory

variables. This is justi�able in ertain situations, as for stritly multivariate data or for graphial

models. However, in most ontexts, these two lasses of variables are fundamentally di�erent; this

should be reeted in the data objets ontaining them.

2.1.1 Response variables

The response variable is that for whih a (onditional) probability distribution is assumed in some

given set of models. This an entail a onsiderable amount of supplementary information. Consider

two examples. The usual longitudinal repeated measurements have times assoiated with them,

as in Table 1. These data learly do not have a retangular struture and foring it upon them

would be diÆult and uninformative. In ontrast to muh of lassial time series, here there are

unequal numbers of observations per individual and the time points are both unequally-spaed and

di�erent for eah individual.

Times between events, as in Table 2, provide a seond example. If, in the previous example, the

times might possibly have been �xed in advane, here it is impossible. It is the random times that

are of interest. An additional ompliation is that observation of an individual may not terminate

at an event, so that last reorded time may be ensored.

Thus, at eah observation point, we must ollet more than just a univariate response value.
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Table 2: An example of repeated response data for six seleted individuals: times between repeated

events, with the �nal value indiating whether the last time is ensored or not. (Lindsey, 1999, p.

436.)

5 13 0

12 4 2 0

23 0

3 3 2 4 14 4 0

3 13 7 1

3 6 12 2 0

For repeated measurements, at least one of the following must also be available:

1. Times (if longitudinal).

2. Loation (if spatial).

3. Nesting indiators (if lustered).

4. Censor indiators (if durations).

5. Binomial denominators (if binary).

6. Unit of measurement (if ontinuous).

7. Jaobian of any transformation (if ontinuous).

8. Weights.

Many of these will also be required even for the simpler independent observations.

All of this information is neessary in order to onstrut the statistial model based on a

probability distribution, even if no ovariates are present. It should all be stored together, along

with the orresponding response values, in one data objet.

Nevertheless, the �rst three of these types of information have a somewhat ambiguous status.

They are required with the responses in order to de�ne the dependenies among them. However,

they may also be neessary, in some ontexts, as explanatory variables: times or loations for

trends, nesting for �xed e�ets. I shall return to this point below.

2.1.2 Covariates

For independent observations and for time series, ovariates generally have a simply struture,

being in one-to-one orrespondene with the response values. The same is not true for repeated

measurements. Some distinguish among the individuals (inter-unit or time-onstant), staying

idential for all responses on eah individual whereas others (intra-unit or time-varying) may

hange along with the responses.
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Table 3: An example of repeated time-varying ovariates for the three individuals in Table 1. First

line: times, measured from randomization, but at di�erent moments than the response. Seond

line: dose. (Lindsey, 1999, p. 407.)

0 28 58 85 113 159 203 333 375 585 591 1306

1.0 1.167 1.333 1.5 1.667 1.833 2.0 1.833 2.0 0.0 2.0 0.0

0 218 312 352 403 406 973

1.0 1.2 1.4 1.6 1.8 2.0 0.0

0 29 57 87 119 164 203 241 287 818 835 1280

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 0.0 2.4 0.0

Inter-unit ovariates In the repeated measurements ontext, the retangular data matrix

paradigm fores the user to repliate any inter-unit ovariates as many times as there are re-

peated responses. Not only is this wasteful of storage spae (and opying time in ertain statistial

software), but often statistial alulations an be made more eÆiently if eah suh ovariate has

only one value per subjet.

Intra-unit ovariates Consider again the example responses above in Table 1; the time-varying

ovariate, dose, is also available. The values are presented in Table 3. Here, not only is the ovariate

reorded at unequally-spaed times, di�erent for eah individual, but the times are di�erent than

those for the responses. Thus, some kind of mathing may be required in order to know, in the

model, what ovariate value is in e�et at the time a given response value is measured.

Thus, an intra-unit ovariate may require manipulation before storage. It requires one value

per response value, in ontrast to an inter-unit ovariate that needs only one value per individual.

3 Data manipulation

Following upon this typology of variables, we an ask a number of questions:

� How should we read in suh data?

� How should we store them?

� What should we do with missing values?

I shall now desribe my attempted solution to some of these problems.
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3.1 Reording and reading

It should be lear that eah type of variable should be reorded in a separate �le (maximum 3

�les). Suh data an reate problems as muh of the reording tehnology (spreadsheets) onforms

to the retangular format. Foolproof ways of making the links among values in the di�erent �les

must be available, as in database tehnology.

In simple ases, the data an �rst be read into the statistial software in retangular form (for

example, the dataframe in R or S). If the data are not in suh balaned retangular form, they will

generally have to be read as a list (read.list or read.surv, respetively, for the two examples

given above) with one element (vetor or matrix) per individual. In either ase, they will then

have to be onverted into the data objets to be desribed next.

3.2 Storage

In an objet-oriented language suh as R or S, data are stored in objets. In those languages, the

prinipal data objet is the retangular dataframe. From the above arguments and examples, this

is not always appropriate for modern data handling.

The one major innovation of the dataframe struture was the ability to store quantitative and

qualitative (fator) variables together. However, this is aompanied by subsequent important

ineÆienies as the fator variables do have to be transformed into the appropriate set of indiator

variables before a model an be �tted. This ontrasts with a program suh as GLIM where suh

a matrix ontaining indiator variables is never atually onstruted in the model-�tting proess.

Suh a proedure, although very desirable, would require major modi�ations (suh as bit-oding)

to R or S and hene has not been pursued here.

Objets ontain slots in whih various items of di�erent types an be stored and have methods

by whih they an be aessed without the user knowing the internal struture. The objets have

lasses so that the language an reognize whih methods are appropriate for whih objets. Here,

in the implementation in R, the objets will simply be onstruted internally as lists (as is a

dataframe), permitting storage of varying types of information. The methods to aess them will

be funtions spei� to the objet.

However, lists annot easily be diretly transferred to and eÆiently aessed in a lower level

language suh as C or Fortran where the more omplex model onstrution needs to be done.

Hene, for modelling eÆieny, data for all individuals, in an objet's slots, will stored together as

vetors or matries so that these an be diretly aessed in the lower level language.

Another major ineÆieny of Lisp-like languages suh as R and S is that opies of objets

are generally made when they are passed between funtions. In ontrast to Fortran or C, objets

annot be aessed through pointers. In R, this problem an be minimized by using R's soping

rules and funtion losure. However, this implies that many of the spei� proedures developed

here for R will not work in S.
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In the R implementation, three lasses of objets, orresponding to types of variables, are

available, alled response, tov, and tvov.

The response lass ontains all of the relevant supplied information disussed above as sepa-

rate vetors; for a given problem, irrelevant slots are NULL. Beause of its importane in repeated

measurements for loating the appropriate observations, the �rst level of nesting, indiating the

number of observations per individual, is kept as a vetor in a separate slot. The unit of mea-

surement and Jaobian are ombined in one slot: the unit of measurement is the preision of the

instrument used (when di�erent from unity) whereas the Jaobian of the transformation is a set of

numerial values. For example, if the response is stored in its slot as say log(y), then the Jaobian

is stored as 1=y (times the unit of measurement).

At present, in the R implementation, if fator variables are present among either the intra-unit

or inter-unit ovariates, the user may hoose to store them in the orresponding slot in the objet as

a dataframe instead of as an ordinary matrix. Model-�tting funtions need to know how to handle

this. This approah leads to serious ineÆienies as a opy of all of the data must be made when

the indiator variables are onstruted in setting up a model; in ontrast, when the ovariates are

stored as a matrix, with the indiator variables already alulated for the fator variables, they an

be diretly read in the objet without making a opy. The tradeo� is between ease of referening

variables by name (indiator variables must all be spei�ed by name) and speed of model �tting.

When the observation times for the response and a time-varying ovariate di�er, the most

reent value of the latter an be brought forward to the response time (using the funtion, gettv).

However, are must be taken with ties in the times when the two are reorded. If the ovariate

and the response are measured at the same time, does the e�et begin instantaneously? If the

ovariate is, say blood pressure, the urrent value should be used, but if it is the new level of dose

of mediation, the hange will not have had time to take e�et, and the previous dose level should

be used.

The speial ovariates, times and nesting indiators ontained in the response objet, an be

aessed in model formul� by keywords: times, individuals (for the �rst level of nesting), and

nesting (for lusters within individuals, for example in ertain ross-over trials).

The handling of missing values is a partiularly thorny issue. The missing value proess will

rarely be independent of the proess of interest. The only appropriate proedure would seem to be

to have a separate slot ontaining information as to why eah partiular value is missing so that a

model for missingness ould be onstruted. This would be required in all three lasses of objets.

Suh a struture has not yet been implemented, but suh information ould, at present, in many

ases, simply be stored as extra ovariates.

Finally, all of the information from a set of one to three objets of lasses response, tov,

and tvov must be ombined to produe an objet of the new lass alled repeated (using rmna).

In this way a given ombination of variables in a model is ombined, with missing values (NAs)

removed. This objet provides all of the information that will be required to �t some set of models
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of interest that will be diretly omparable beause they are based on the same set of data (for

example, with the same missing values removed).

3.3 Methods

Some of the funtions and methods required for this approah have already been disussed above.

It is now time to look at the required methods in some more detail.

The �rst basi set of proedures must be able to transform the matries and/or lists read into

the software to reate the required objets just desribed. In my R implementation, these methods

are restove to reate response objets, ttomat to reate tov objets, and tvtomat for

tvov objets. (The names arise for historial reasons, indiating the original underlying data

forms ontained in the objets.) These an generally automatially transform vetors, matries, or

lists of data to the appropriate objet. For example, if a list of matries (one for eah individual,

ontaining responses as the �rst olumn and possibly times as the seond olumn) is supplied

to restove, it an automatially detet whih other olumns ontain binomial denominators,

ensoring, nesting, and/or units of measurement.

One the objets have been reated, methods are available to print summary information for

eah lass, not the whole data array, and to plot longitudinal responses and time-varying ovariates.

The latter allows

� hoie of subsets.

� individual points or pro�les.

� if nesting, times starting over at zero in eah luster (for example, in a ross-over design).

Methods must also be available to �nd all information about eah individual for a given model.

� As desribed above, time-varying ovariates may need to be arried forward to response times

(gettv).

� Interations among time-varying ovariates or with time-onstant ovariates may be required

(tvtomat).

� The user may want to transform the response, the times, or ertain ovariates (transform).

If the response is transformed, the Jaobian is also automatially updated.

� If the model-�tting proedure does not perform the task itself in onstruting the likelihood,

time-onstant ovariates must be mathed to individual responses (ovind).

As disussed above, missing values an only be handled after all information has been joined for

a given model. Methods must be available so that, when appliable, this an be oordinated for

eah given ombination of variables (rmna).
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The only method urrently available for handling missing values in my implementation is the

elimination of these reordings (rmna), with the aompanying (generally inorret) assumption

of randomness. This an only be done for a given ombination of all three types of variables, as

otherwise the individual values ould no longer be mathed up. It has the onsequene that the

number of reorded observations an hange with the ovariates present in the model and that entire

individuals an disappear when the model is hanged, for example if an inter-individual ovariate

value is missing and this ovariate is added to the model. However, it would be tehnially, if not

oneptually, easy to develop other methods for handling missing values to be used in plae of the

rmna method.

4 Formul�

In the mid 1970s, statistis was at the forefront of omputations using eletroni omputers with

the introdution of the GLIM interative system for generalized linear models. Later, S (Beker

and Chambers, 1984) extended the same basi paradigm to a wider lass of statistial operations,

the major innovation for modelling being to allow the user to extend the language, something

that was rather diÆult with GLIM maros. This lead was, however, rather quikly lost as more

powerful pakages were developed in other areas, suh as Matlab for linear algebra and Maple and

Mathematia for symboli algebrai manipulation. For example, the latter pakages ontain pow-

erful failities for distinguishing among known and unknown variables, for translating funtions

diretly into C or Fortran, and for exporting formul� into T

E

X. These, and other, useful possibil-

ities that would be invaluable aids for speifying models, are not available in standard pakages

designed spei�ally for statistiians.

4.1 Models

4.1.1 Calulating the likelihood

One data are available in an appropriate form, as desribed above, and some model has been

hosen, the major role of the statistial software is to �t the model by likelihood methods and then

to provide any required information about the results. Various riteria an be spei�ed for suh a

proess. Among others, these inlude

1. orret model formulation;

2. speed: �tting in real time;

3. ease of user spei�ation;

4. default information displayed should not be erroneous or misleading in any ontext.

Readers will have varying orders of preferene for these riteria and will ertainly add others.
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4.1.2 Speifying the model

Any statistial model generally has two basially distint parts, the probability distribution and

the regression model(s). These are reeted in the data objets desribed above.

GLIM learly separated spei�ation of the distribution ($yvariate and $error) from the

linear struture in the model ($fit) using the Wilkinson and Rogers (1973) notation. Between

these is the link funtion ($link). S (Chambers and Hastie, 1992) obsured this larity in model

onstrution by ombining the �rst and third GLIM instrutions as, in a simple ase, y�x1+x2.

This struture appears to imply that Y is distributed with mean depending linearly on x

1

and

x

2

. However, this an only be true when the link funtion is the identity and hene is generally

misleading. Both GLIM and S have the additional defet of maintaining the user in a mentality

whereby only the mean parameter an possibly depend on ovariates.

The probability distribution is generally hosen by the user from a list of possibilities. In the

future, one may expet that software will be able to optimize over some set of prespei�ed model

funtions in the same way as over a set of parameter values; from a likelihood point of view,

the two are logially equivalent. Stepwise and all subsets regression illustrate the misuse of suh

proedures. What is required is some penalty for the number of models tried, just as the AIC

penalizes for the number of parameters in a model.

Regression models desribe the ways in whih the various parameters (loation, dispersion,

shape) of this distribution depend on ovariates. For linear (parts of) regression models for the

mean, the standard way is now by a Wilkinson and Rogers formula set up by the user.

4.1.3 Probability distribution

For the probability distribution, the �rst riterion is the need for a wide hoie. The �ve gen-

eralized linear models usually provided (even the Weibull distribution is exluded!) by statistial

software are entirely insuÆient. This urrent restrition is essentially a tehnially one: the linear

parameters of all generalized linear models an easily be estimated by the iterated weighted least

squares algorithm.

For repeated measurements, the stohasti dependene relationships among the responses of an

individual must be spei�ed. These inlude the longitudinal dependenies and lustering e�ets.

Exept in speial ases, the former will require reursive updating. The latter are generally handled

by random e�ets, but this requires either some form of eÆient multidimensional integration or

reursive updating. For speed, reursive likelihoods (suh as Kalman �ltering) must be alulated

in a lower level language suh as C, dynamially loaded into R or S. Only vetorized operations

are suÆiently fast for likelihood onstrution diretly in R or S and suh reursion annot be

vetorized.
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4.1.4 Covariate dependene

Nonlinear funtion onstrution In a language suh as R or S, one natural way to speify

omplex regression models, not handled by the Wilkinson and Rogers notation, is to use the builtin

funtion onstrution abilities of these languages. Let us �rst look at this approah.

As an example, onsider an open �rst-order one-ompartment model widely used in pharma-

okinetis. The loation parameter over time varies as

�

t

=

V k

a

k

a

� k

e

�

e

�k

e

t

� e

�k

a

t

�

where t is time, V is volume, k

a

is the absorption rate, and k

e

is the elimination rate. The latter

three are unknown parameters. In R or S, this an be spei�ed as a funtion of the parameter

vetor:

mu <- funtion(p)f

p[1℄*p[2℄/(p[2℄-p[3℄)*(exp(-p[3℄*times)-exp(-p[2℄*times))g

Note that the funtion does not have, as argument, the times, so that they are not opied when the

funtion is evaluated, but must be found somewhere in the environment, preferably in a spei�ed

data objet.

In addition, the dispersion parameter depends on time through the loation parameter, often

assumed to be

�

2

= �

Æ

t

The orresponding funtion for the log dispersion might be

disp <- funtion(p, mu) p[1℄*log(mu)

Another possibility is that the regression funtions for two parameters of the probability distribu-

tion may have parameters in ommon without one being a strit funtion of the other, as here.

The parameters in suh a regression model, k

a

; k

e

; V , may also depend, in various ways, on

other ovariates. I next onsider this.

Linear (in parameters) part As already mentioned, the linear part of a model is now generally

spei�ed by the Wilkinson and Rogers notation for formul�. Any extensions should retain this as a

subset. On the other hand, link funtions are only useful for a (transformed) parameter depending

on ovariates through a stritly linear model.

To pursue our example, if the dependene of a parameter on the ovariates ontains a stritly

linear part, this might be spei�ed as

mu <- funtion(p, linear)f

tmp <- exp(linear)

p[4℄*tmp/(tmp-p[5℄)*(exp(-p[5℄*t)-exp(-tmp*t))g

Here, the absorption parameter depends on the ovariates through a linear (in the parameters) part,
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after appliation of a log link to ensure that its value is always positive. Then, some model-�tting

funtion might have the following general form:

modelfn(..., mu=mu, linear=�height+gfr, ...)

Here, the expression following the tilde is in standard Wilkinson and Rogers notation and may

refer to fator variables. It never ontains anything before the tilde and, hene, an be used to

speify how any parameter of a probability distribution depends on ovariates.

This approah has been implemented in my suite of nonlinear regression and repeated mea-

surements R libraries that I shall desribe briey below. The funtion, fnenvir, an modify an R

funtion suh as the above so that it reads the ovariates from the data objets desribed above.

4.1.5 General nonlinear spei�ation

The above approah to speifying nonlinear models, through R or S funtions, is powerful and

useful, but ertainly not always as intuitively lear and user-friendly as it might be. However, for

very omplex models where a series of funtions and subfuntions may be required, it may be the

only feasible and eÆient method at present possible.

In a linear regression model, the positions of the parameter oeÆients in the formula do

not need to appear expliitly. They an be impliitly assumed, as in the Wilkinson and Rogers

notation. This is no longer possible in any extension to nonlinear regression models. To implement

nonlinear spei�ation, the ability to distinguish variables and parameters (existing vetors and

unknowns) in formul� (like Maple, Mathematia) would be a step forward. Then, both variables

and parameters ould retain their individual names. Thus, for the above example, the user should

be able to speify, as an argument to a model-�tting funtion,

mu = �volume*absorption/(absorption-elimination)*

(exp(-elimination*times)-exp(-absorption*times))

and the model-�tting funtion an detet automatially whih are known ovariates (preferably

stored in the data objets desribed above) and whih are unknown parameters.

Here, the tilde begins the formula to indiate that it is a formula; again, it is not preeded by

the response variable. Thus, it does not have the restritive S signi�ation that the response is

`distributed as' the model in the formula. Thus, again, suh formul� an be used to desribe how

any parameter in a probability distribution depends on ovariates.

Note that suh a formulation may be ineÆient in omplex situations, as with the linear part

for the dependene of the absorption parameter on ovariates above. Here, this would have to be

given twie whereas it was only given one above in the R funtion. Matters quikly beome worse

in still more omplex ases so that the diret use of R funtions is then still neessary.

Various riteria are required for handling suh expressions in model-�tting funtions:

� deteting existing ovariate vetors;

� ignoring onits of unknown parameters with existing (non-variable) objet names, suh as
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funtions;

� transforming the formula into a funtion of one vetor of unknown parameters;

� substituting the resulting funtion into a probability distribution funtion to onstrut a

likelihood funtion that an be rapidly evaluated by a nonlinear optimizer;

� evaluating it either in the appropriate environment or with respet to the data objet(s)

supplied to the model-�tting funtion, without opying the data.

All of the above riteria have been ful�lled in my R implementation: the funtion, finterp,

onstruts the appropriate R funtion from suh a model formulation with known ovariates and

unknown parameters, using funtion losure to retain the environment in whih it was de�ned.

As for Wilkinson and Rogers formul�, whih finterp also reognizes and an also transform into

R funtions, the formul� begin with a tilde so that they have lass, formula and are language

objets.

Although its primary use is to de�ne regression models, this formulation an also be used to

onstrut a omplete likelihood funtion as the following example for Poisson nonlinear regression

shows.

# the regression funtion

regfn <- finterp(�a+exp(b0+b1*x1+b2*x2))

# the terms of the negative log likelihood funtion

poisfn <- finterp(�-y*theta+exp(theta)+lgamma(y+1), vetor=F)

# the null likelihood

poislikefn <- funtion(p) sum(poisfn(theta=p))

# the regression likelihood

poisreglikefn <- funtion(p) sum(poisfn(theta=regfn(p)))

The latter two assignments yield R funtions that an be fed diretly into the nonlinear optimizer.

Here, the variables, y, x1, and x2, are searhed for in the global environment and a, b0, b1, and b2

are reognized to be unknown parameters (if they do not exist), being olleted together to form

one vetor argument to the funtion, regfn. If the appropriate data objet were spei�ed as the

environment in an additional argument to finterp, the variables would, instead, be sought in that

objet (and only there).

5 Disussion

Both the proedures for reating data objets and for handling model formul� have been imple-

mented in my R library alled rmutil. They are used in a wide variety of model-�tting funtions

in my libraries, gnlm for generalized nonlinear regression models, growth for multivariate normal

and elliptial distribution models for repeated measurements, repeated for non-normal repeated
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measurements models, and event for event histories. Many of the model-�tting funtions in these

libraries provide the hoie among approximately 25 di�erent probability distributions.

The latest soure ode for all of these libraries is available at

www.lu.a.be/�jlindsey/rode.html

All of the examples of the analysis of repeated measurements data in Lindsey (1999) were analyzed

using this system. The data and R ode are available at

www.lu.a.be/�jlindsey/books.html

Some of the weaknesses of the implementations have been mentioned above. As well, ertain

data types de�nitely annot be handled by the proposed data objets, suh as overlapping lusters.

Others not yet available ould easily be implemented, for example, multivariate responses by storing

them in the slot as a matrix instead of a vetor. Still others are ineÆiently implemented, suh as

spatial oordinates whih might better be stored as some sort of tree system rather than simply

as a pair of vetors.

Fator variables annot be handled in the nonlinear formul� beause they refer to a vetor of

parameters. It would also be nie to be able to nest the spei�ation of models (a formula within a

formula), for example, a linear part spei�ed by Wilkinson and Rogers notation within a nonlinear

regression.

Aknowledgments I thank Robert Gentleman and Ross Ihaka and the ore group for developing

the R software in whih the funtions desribed in this paper were written.
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