
An introdu
tion to hidden Markov

models

J.K. Lindsey

Medi
al Statisti
s, De Montfort University, Lei
ester

1 Introdu
tion

Suppose that a sequen
e of responses is dis
rete-valued, often 
ategories that

would appear to be the observed states of some Markov 
hain. However, de-

penden
e 
annot adequately be des
ribed by the simple Markov property. In

a hidden Markov model, an underlying, unobserved sequen
e of states follows

a Markov 
hain, the hidden state determining the probabilities of the observed

states. Su
h an approa
h is widely used in spee
h pro
essing and in biologi
al

sequen
e analysis of nu
lei
 a
ids in DNA and of amino a
ids in proteins.

For a binary time series, ea
h event might be generated by one of two

Bernoulli distributions. The pro
ess swit
hes from the one to the other a
-


ording to the state of the hidden Markov 
hain, in this way generating state

dependen
e. Analogous models 
an be 
onstru
ted for other dis
rete distribu-

tions, su
h as the Poisson or binomial distributions.

2 The model

Consider an irredu
ible homogeneous Markov 
hain with M � M transition

matrix, T. This gives the probabilities of 
hanging among the hidden states,

with marginal stationary distribution, �. The latter 
an be 
al
ulated from the

transition matrix and hen
e does not introdu
e any new parameters. Then, the

probability of the observed response at time t, �

mt

= Pr(y

t

jm;�

m

), will depend

on the unobserved state, m, at that time.

The series of responses on a given unit are assumed to be independent,

given the hidden state. Thus, there are M(M � 1) unknown parameters in

the transition matrix as well as M times the length of �

m

in the probability

distributions. Although the probability of the observed data is 
omplex, it 
an

be written in a re
ursive form over time:

f(y;�;T) = �

T

R

Y

t=1

(TF

t

)J

T

F

t

is an M �M diagonal matrix 
ontaining, on the diagonal, the probabilities,

�

mt

, of the observed data given the various possible states.
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To 
onstru
t the likelihood fun
tion from this, �rst 
al
ulate the marginal

probability times the observed probability for ea
h state at time 1, say a

m

=

�

m

Pr(y

1

jm;�

m

). At the se
ond time point, the �rst step is to 
al
ulate the ob-

served probability for ea
h state multiplied by this quantity and by the transition

probabilities in the 
orresponding 
olumn of T. These are summed yielding, say

b

m

=

P

h

a

m

T

mh

Pr(y

2

jh;�

h

). This is the new ve
tor of forward probabilities,

but, to prevent under
ow, it is divided by its average, yielding a new ve
tor, a.

This average is also 
umulated as a 
orre
tion to the likelihood fun
tion.

These steps are repeated at ea
h su

essive time point. Finally, the sum

of these a

m

at the last time point is the likelihood ex
ept that the 
umulative


orre
tion must be added to it. At ea
h step, the ve
tor, a, divided by its sum

gives the (�ltered) 
onditional probabilities of being in the various possible states

given the previous observations. This model 
an be applied in 
ontinuous time

by using a matrix of transition intensities, so that, say, C has rows summing

to zero (instead of one). Then matrix exponentiation is applied to give the

transition probabilities T

�t

= e

�tC

, where �t is the time interval between

observations.

3 Examples

3.1 Lo
ust Behaviour

To investigate the e�e
t of hunger on lo
omotory behaviour, 24 lo
usts three

days into the �fth larval stage were pla
ed individually in glass observation


hambers. Even numbered subje
ts were not fed for 5.5 hours whereas odd

numbered subje
ts re
eived as mu
h food as they 
ould eat. During subsequent

observation, neither food nor water were available. 161 observations, at 30

se
ond intervals, were made on ea
h animal. At ea
h time point, the lo
ust was


lassi�ed either as lo
omoting (1) or not (0), the latter in
luding quies
en
e and

grooming.

The question is how lo
omotory behaviour evolves over time and whether it

di�ers between the two treatment groups. There are 144 lo
omoting events in

the fed group but 973 in the unfed group, ea
h in 1932 observation intervals.

As well, there is great individual variability among the lo
usts.
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Indep Markov HMM

Common inter
ept

Null 2324.5 1869.0 1599.1

Trend 2263.2 1849.2 1591.6

Treatment inter
epts

Null 2322.9 1869.2 1596.6

Same trend 2261.4 1849.1 1582.7

Di� trend 2248.2 1844.4 1583.2

Individual inter
epts

Null 1667.6 1577.6 1494.0

Same trend 1575.6 1521.6 1492.1

Di� trend 1566.5 1513.5 1488.3

The trends, 
ommon to the two states, are estimated to be 0.0140 in the fed

group and 0.0048 in the unfed group. Lo
omotory behaviour in
reases faster

in the former group, perhaps be
ause it stays rather stable throughout the

observation period for the unfed group. For the fed group, the probability of

lo
omotion is small in both states, whereas, for the unfed group, there is a 
lear

distin
tion between the two states, one of them indi
ating higher lo
omotory

behaviour. Indeed, for the fed group, a simple Markov 
hain �ts better: the

AIC is 386.7 with 14 parameters as 
ompared to 389.4 with 27 parameters for

the hidden Markov model.

The hidden transition matri
es are estimated respe
tively to be

T =

�

0:978 0:022

0:073 0:927

�

and

T =

�

0:975 0:025

0:025 0:975

�

in the fed and unfed groups with respe
tive stationary distributions (0:77; 0:23)

and (0:51; 0:49). The large diagonal values indi
ate that the lo
usts tend to

remain a relatively long time in the same state, a spell, indu
ing a dependen
e

among 
onse
utive observations. The fed group stays about three-quarters of

the time in the �rst state (but re
all that two states are not required) whereas

the unfed group spends about half the time in ea
h state.
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3.2 DNA Sequen
e Analysis

The double-stranded heli
al form of DNA is well known. Ea
h strand 
onsists

of a linear sequen
e of the four nu
lei
 a
id bases, adenine (A), 
ytosine (C),

guanine (G), and thymine (T). Opposite strands 
ontain 
omplementary pairs:

A with T and C with G so that only one of the strands need by studied. In

a gene, 
onse
utive, non-overlapping triplets of bases 
ode 
orresponding se-

quen
es 
onsisting of the twenty di�erent amino a
ids that make up a protein.
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Be
ause there are 64 possible 
ombinations of the bases, the 
ode is redundant,

parti
ularly in the third base, with several triplets often 
oding the same amino

a
id.

Most bases in a DNA sequen
e do not 
ode for proteins. Only sele
tive

se
tions of the strands are a
tually a
tive. In addition, the bases 
oding a

given protein are not ne
essarily all 
onse
utive but may be split into several

se
tions. These are 
alled the exons of the gene whereas the non-
oding se
tions

in between are 
alled introns. Be
ause the set of exons de�ne a protein, they

are subje
t to natural sele
tion; one may expe
t the bases in the introns to be

more random. A mutation in an exon sequen
e will often result in a 
ode for a

non-viable or inappropriate protein, whereas a mutation in an intron does not

have this harmful e�e
t.

DNA sequen
es 
oding similar proteins must be similar. This will be true

of two proteins in the same organism but also of those in two 
losely related

organisms. On the other hand, the non-
oding sequen
es may di�er widely.

In order to 
ompare su
h sequen
es, the DNA must be aligned. To do this

optimally, gaps may have to be left in some of the sequen
es, where breaks may

have o

urred during mutations in the evolutionary pro
ess.

Consider four su
h aligned sequen
es, for 
oding two 
losely-related proteins

(�

1

- and �

1

-globin) in two primates (the orang-utan, Pongo pygmeus, and the

olive baboon, Papio anubis).

CCAATGAGCG CCGCCCGGCC GGGCGTGCCC CTGCGCCCCA AGCATAAA++

CCAATGAGCA CCGCCCTGCC GGGCGTGCCC CCGCGCCCGG AGCATAAA++

CCAATTTTTG TGTTTTTAGT AGAGACTAAA AACCATATGG TGAACACCTA

CCAATTTTTG TGTTTTTAGT AGAGACTAAA AACTATATGG TGAACACCTA

++++++++++ ++++++++++ ++++++++++ ++++++++++ ++++++++++

++++++++++ ++++++++++ ++++++++++ ++++++++++ ++++++++++

AGACG+GGGG GCCTTGGATC CAGGGCAATT CAGAGGGCCC CCGGTCGGAG

AGACGCGGGG GCCTTGGATC CAGGGCGATT CAGAGTTCCC CCGGTCGGAG

++++++++++ ++++++++++ ++++++++++ ++++++++++ ++++++++++

++++++++++ ++++++++++ ++++++++++ ++++++++++ ++++++++++

CTGTCGGAGA TGGAGCGCGC GCGCTCCCGG GATCCCGGAC GAGGCCCTGC

CAGTCGGAGA TGGAGGCCGC GCGGTCCCGG GATCCGGGAC CAGGCCCTGC

++++++++++ ++++++++++ ++++++++++ ++++++++++ ++++++++++

++++++++++ ++++++++++ ++++++++++ ++++++++++ ++++++++++

GCCCCAGGGC GGCGAGGCTG CAGCGCGGCG CCCCCTGGAG GCCGCGGGAC

ACCCCAGGGT GGCGAGGCTG CAGCGCGGCG CCCCCTGGTG GCCGCGGGAC

CCCTGGCGCG CTCGCGGCCC CGCACTCTTC TGGTCCCCAC AGACTCAGAA

CCCTGGCGCG CTCGCGGCCC GGCACTCTTC TGGTCCCCAC AGACTCAGAA

CCCTAGCCGG TCCGCGCAGG CGCGGCGGGG ACGCAGGGCG CGGCGGGTTC

CCCTGGCCGG TCCGCGCAGG CGCAGCGCGG GCGCAGGGCG CGGCGGGTTC
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AGAACCCACC ATG GTG CTG TCT CCT GCC GAC AAG ACC AAC GTC

AGAACCCACC ATG GTG CTG TCT CCT GAC GAC AAG AAA CAC GTC

CAGCGCGGGG ATG GCG CTG TCC GCG GAG GAC CGG GCG CTG GTG

CAGCGCGGGA ATG GCG CTG TCC GCG GAG GAC CGG GCG CTG GTG

AAG ACC GCC TGG GGG AAG GTC GGC GCG CAC GCC GGC GAC

AAG GCC GCC TGG GGT AAG GTC GGC GAG CAC GCT GGC GAG

CGC GCC CTG TGG AAG AAG CTG GGC AGC AAC GTC GGC GTC

CGC GCC CTG TGG AAG AAA CTG GGA AGC AAT GTT GGC GTC

TAT GGT GCG GAG GCC CTG GAG AG GTGAGGCTCC CTCCCCTGCT

TAT GGT GCG GAG GCC CTG GAG AG GTGAGGCTCC CTCCCCTGCT

TAC ACG ACA GAG GCC CTG GAG AG GTGCGGC+++ +GAGGCTGGG

TAT GCT ACT GAG GCC CTG GAG AG GTGCGGC+++ +GAGGCTGGG

The total length of the three exons is 429 bases for ea
h of the four genes,

whereas the total length of the two introns is 260 bases. The relative frequen
ies

are

A C G T

Exon 0.17 0.36 0.29 0.17

Intron 0.10 0.40 0.36 0.14

Let us �t hidden Markovmodels with various numbers of states, separately to

the 
omplete sequen
es of exons and of introns. For the moment, for the exons,

these models will not take into a

ount the triplet stru
ture of the 
oding.

Model Exons Introns

Independen
e 2290.2 1109.0

Markov 
hain 2236.4 1058.6

Hidden Markov 
hain

2 2287.2 1087.0

3 2268.1 1085.4

States 4 2250.5 1075.0

5 2227.5 1075.7

6 2207.3

The hidden Markovmodels provide an improvement over the ordinaryMarkov


hain only for the 
oding sequen
es. However, the intron base sequen
es are not


ompletely random be
ause the Markov 
hain �ts better than the independen
e

model. The six-state hidden Markov model 
ontains 48 parameters but, for the

exons, it 
an be greatly simpli�ed by setting a number of the probabilities to

zero.

These models do not take into a

ount the fa
t that the 
oding se
tions of a

DNA sequen
e de�ne the amino a
ids in the 
orresponding protein by triplets of
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nu
lei
 a
ids. Let us then modify the hidden Markov model by allowing state-

dependent probabilities of the four nu
lei
 a
id bases to be di�erent for ea
h of

the three positions in a triplet. Now, only a four-state model is required, with

a mu
h improved AIC of 2032.4, 
ontaining 24 parameters after setting various

probabilities to zero. There is little indi
ation of di�eren
e between the two

globin types (AIC of 2031.0 with 48 parameters) and none for di�eren
e among

all four sequen
es (AIC of 2067.9).

The equivalent ordinary Markov 
hain, with a di�erent marginal probability

distribution at ea
h of the three positions but the same transition matrix, has

an AIC of 2091.9 with 21 parameters. The hidden transition matrix is estimated

to be

0

B

B

�

0:41 0 0 0:59

0:26 0:74 0 0

0:12 0:62 0:26 0

0 0 1 0

1

C

C

A

with stationary distribution (0.23, 0.45, 0.18, 0.14).

For the �rst position, the probabilities of the four bases, when in a given

state, are

State A C G T

1 0:11 0:67 0:22 0

2 0:25 0:20 0:39 0:17

3 0:30 0 0:58 0:12

4 0 0:51 0:13 0:35

For the se
ond position, they are

State A C G T

1 0:87 0:13 0 0

2 0:19 0:57 0:24 0

3 0 0 0:19 0:81

4 0 0 0 1

and, for the third position,

State A C G T

1 0 0:59 0:39 0:02

2 0:10 0:64 0:11 0:14

3 0 0 1 0

4 0 0:45 0:51 0:05
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3.3 Luteinizing Hormone Levels

Thirty-two 
ows divided into two groups, su
kled and non-su
kled, were followed

for ten days post-partum. Their levels of luteinizing hormone (ng/ml�1000)

were measured 15 times at unequally-spa
ed intervals. Con
entrations of luteiniz-

ing hormone are in
uen
ed by semi-periodi
 pulsing of the glands that produ
e

the hormone.
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Variability in
reases as time goes on with non-su
kled 
ows show more vari-

ation than the su
kled ones.

HMM

Distribution Indep Same Di�erent

Log normal 3270.5 3198.3 3174.1

Gamma 3314.6 3225.9 3195.0

Weibull 3387.1 3262.3 3261.9

Inverse Gauss 3264.8 3187.0 3176.7

Burr 3250.6 3160.4 3150.3

A di�erent transition matrix is 
learly ne
essary for su
kled and for non-

su
kled 
ows.

The Burr distribution

f(y;�; �; �) =

��

�

y

�

�

��1

�

�

h

1 +

�

y

�

�

�

i

�+1

�ts 
onsiderably better than the others.

For the non-su
kled 
ows, the lo
ation parameters in the two hidden states

are estimated to be �̂ = 346:8 and 553.4, whereas the other parameters are

�̂ = 9:39 and �̂ = 0:30 for both states. For the su
kled 
ows, the 
orresponding

values are �̂ = 285:0 and 475.1, and �̂ = 10:4 and �̂ = 0:50.

The intensity transition matri
es, and the 
orresponding (one-day) prob-

ability transition matri
es, the latter obtained by matrix exponentiation, are

respe
tively

T =

�

�0:102 0:102

0:119 �0:119

�

and

�

0:908 0:092

0:107 0:893

�

for the su
kled 
ows and

T =

�

�0:0556 0:0556

0:0392 �0:0392

�

and

�

0:947 0:053

0:037 0:963

�
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for the non-su
kled ones.

The stationary distributions are, respe
tively, (0.54, 0.46). and (0.41, 0.59).
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Some of the 
ows, su
h as number 8 (and 10), have su
h low levels of hormone

that they probably stay primarily in the lower state most of the time, at least

as 
ompared to the other 
ows. Others, su
h as 1, 5, 20, 22 seem to stay in

the high state. However, most 
ows swit
h between the two states during the

period of observation, with in
reasing probability of being in the high state as

time passes. However, the two states have somewhat di�erent levels in the two

groups.
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