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1 Introdution

Suppose that a sequene of responses is disrete-valued, often ategories that

would appear to be the observed states of some Markov hain. However, de-

pendene annot adequately be desribed by the simple Markov property. In

a hidden Markov model, an underlying, unobserved sequene of states follows

a Markov hain, the hidden state determining the probabilities of the observed

states. Suh an approah is widely used in speeh proessing and in biologial

sequene analysis of nulei aids in DNA and of amino aids in proteins.

For a binary time series, eah event might be generated by one of two

Bernoulli distributions. The proess swithes from the one to the other a-

ording to the state of the hidden Markov hain, in this way generating state

dependene. Analogous models an be onstruted for other disrete distribu-

tions, suh as the Poisson or binomial distributions.

2 The model

Consider an irreduible homogeneous Markov hain with M � M transition

matrix, T. This gives the probabilities of hanging among the hidden states,

with marginal stationary distribution, �. The latter an be alulated from the

transition matrix and hene does not introdue any new parameters. Then, the

probability of the observed response at time t, �

mt

= Pr(y

t

jm;�

m

), will depend

on the unobserved state, m, at that time.

The series of responses on a given unit are assumed to be independent,

given the hidden state. Thus, there are M(M � 1) unknown parameters in

the transition matrix as well as M times the length of �

m

in the probability

distributions. Although the probability of the observed data is omplex, it an

be written in a reursive form over time:

f(y;�;T) = �

T

R

Y

t=1

(TF

t

)J

T

F

t

is an M �M diagonal matrix ontaining, on the diagonal, the probabilities,

�

mt

, of the observed data given the various possible states.
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To onstrut the likelihood funtion from this, �rst alulate the marginal

probability times the observed probability for eah state at time 1, say a

m

=

�

m

Pr(y

1

jm;�

m

). At the seond time point, the �rst step is to alulate the ob-

served probability for eah state multiplied by this quantity and by the transition

probabilities in the orresponding olumn of T. These are summed yielding, say

b

m

=

P

h

a

m

T

mh

Pr(y

2

jh;�

h

). This is the new vetor of forward probabilities,

but, to prevent underow, it is divided by its average, yielding a new vetor, a.

This average is also umulated as a orretion to the likelihood funtion.

These steps are repeated at eah suessive time point. Finally, the sum

of these a

m

at the last time point is the likelihood exept that the umulative

orretion must be added to it. At eah step, the vetor, a, divided by its sum

gives the (�ltered) onditional probabilities of being in the various possible states

given the previous observations. This model an be applied in ontinuous time

by using a matrix of transition intensities, so that, say, C has rows summing

to zero (instead of one). Then matrix exponentiation is applied to give the

transition probabilities T

�t

= e

�tC

, where �t is the time interval between

observations.

3 Examples

3.1 Loust Behaviour

To investigate the e�et of hunger on loomotory behaviour, 24 lousts three

days into the �fth larval stage were plaed individually in glass observation

hambers. Even numbered subjets were not fed for 5.5 hours whereas odd

numbered subjets reeived as muh food as they ould eat. During subsequent

observation, neither food nor water were available. 161 observations, at 30

seond intervals, were made on eah animal. At eah time point, the loust was

lassi�ed either as loomoting (1) or not (0), the latter inluding quiesene and

grooming.

The question is how loomotory behaviour evolves over time and whether it

di�ers between the two treatment groups. There are 144 loomoting events in

the fed group but 973 in the unfed group, eah in 1932 observation intervals.

As well, there is great individual variability among the lousts.
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Indep Markov HMM

Common interept

Null 2324.5 1869.0 1599.1

Trend 2263.2 1849.2 1591.6

Treatment interepts

Null 2322.9 1869.2 1596.6

Same trend 2261.4 1849.1 1582.7

Di� trend 2248.2 1844.4 1583.2

Individual interepts

Null 1667.6 1577.6 1494.0

Same trend 1575.6 1521.6 1492.1

Di� trend 1566.5 1513.5 1488.3

The trends, ommon to the two states, are estimated to be 0.0140 in the fed

group and 0.0048 in the unfed group. Loomotory behaviour inreases faster

in the former group, perhaps beause it stays rather stable throughout the

observation period for the unfed group. For the fed group, the probability of

loomotion is small in both states, whereas, for the unfed group, there is a lear

distintion between the two states, one of them indiating higher loomotory

behaviour. Indeed, for the fed group, a simple Markov hain �ts better: the

AIC is 386.7 with 14 parameters as ompared to 389.4 with 27 parameters for

the hidden Markov model.

The hidden transition matries are estimated respetively to be

T =

�

0:978 0:022

0:073 0:927

�

and

T =

�

0:975 0:025

0:025 0:975

�

in the fed and unfed groups with respetive stationary distributions (0:77; 0:23)

and (0:51; 0:49). The large diagonal values indiate that the lousts tend to

remain a relatively long time in the same state, a spell, induing a dependene

among onseutive observations. The fed group stays about three-quarters of

the time in the �rst state (but reall that two states are not required) whereas

the unfed group spends about half the time in eah state.
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3.2 DNA Sequene Analysis

The double-stranded helial form of DNA is well known. Eah strand onsists

of a linear sequene of the four nulei aid bases, adenine (A), ytosine (C),

guanine (G), and thymine (T). Opposite strands ontain omplementary pairs:

A with T and C with G so that only one of the strands need by studied. In

a gene, onseutive, non-overlapping triplets of bases ode orresponding se-

quenes onsisting of the twenty di�erent amino aids that make up a protein.
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Beause there are 64 possible ombinations of the bases, the ode is redundant,

partiularly in the third base, with several triplets often oding the same amino

aid.

Most bases in a DNA sequene do not ode for proteins. Only seletive

setions of the strands are atually ative. In addition, the bases oding a

given protein are not neessarily all onseutive but may be split into several

setions. These are alled the exons of the gene whereas the non-oding setions

in between are alled introns. Beause the set of exons de�ne a protein, they

are subjet to natural seletion; one may expet the bases in the introns to be

more random. A mutation in an exon sequene will often result in a ode for a

non-viable or inappropriate protein, whereas a mutation in an intron does not

have this harmful e�et.

DNA sequenes oding similar proteins must be similar. This will be true

of two proteins in the same organism but also of those in two losely related

organisms. On the other hand, the non-oding sequenes may di�er widely.

In order to ompare suh sequenes, the DNA must be aligned. To do this

optimally, gaps may have to be left in some of the sequenes, where breaks may

have ourred during mutations in the evolutionary proess.

Consider four suh aligned sequenes, for oding two losely-related proteins

(�

1

- and �

1

-globin) in two primates (the orang-utan, Pongo pygmeus, and the

olive baboon, Papio anubis).

CCAATGAGCG CCGCCCGGCC GGGCGTGCCC CTGCGCCCCA AGCATAAA++

CCAATGAGCA CCGCCCTGCC GGGCGTGCCC CCGCGCCCGG AGCATAAA++

CCAATTTTTG TGTTTTTAGT AGAGACTAAA AACCATATGG TGAACACCTA

CCAATTTTTG TGTTTTTAGT AGAGACTAAA AACTATATGG TGAACACCTA

++++++++++ ++++++++++ ++++++++++ ++++++++++ ++++++++++

++++++++++ ++++++++++ ++++++++++ ++++++++++ ++++++++++

AGACG+GGGG GCCTTGGATC CAGGGCAATT CAGAGGGCCC CCGGTCGGAG

AGACGCGGGG GCCTTGGATC CAGGGCGATT CAGAGTTCCC CCGGTCGGAG

++++++++++ ++++++++++ ++++++++++ ++++++++++ ++++++++++

++++++++++ ++++++++++ ++++++++++ ++++++++++ ++++++++++

CTGTCGGAGA TGGAGCGCGC GCGCTCCCGG GATCCCGGAC GAGGCCCTGC

CAGTCGGAGA TGGAGGCCGC GCGGTCCCGG GATCCGGGAC CAGGCCCTGC

++++++++++ ++++++++++ ++++++++++ ++++++++++ ++++++++++

++++++++++ ++++++++++ ++++++++++ ++++++++++ ++++++++++

GCCCCAGGGC GGCGAGGCTG CAGCGCGGCG CCCCCTGGAG GCCGCGGGAC

ACCCCAGGGT GGCGAGGCTG CAGCGCGGCG CCCCCTGGTG GCCGCGGGAC

CCCTGGCGCG CTCGCGGCCC CGCACTCTTC TGGTCCCCAC AGACTCAGAA

CCCTGGCGCG CTCGCGGCCC GGCACTCTTC TGGTCCCCAC AGACTCAGAA

CCCTAGCCGG TCCGCGCAGG CGCGGCGGGG ACGCAGGGCG CGGCGGGTTC

CCCTGGCCGG TCCGCGCAGG CGCAGCGCGG GCGCAGGGCG CGGCGGGTTC

5



AGAACCCACC ATG GTG CTG TCT CCT GCC GAC AAG ACC AAC GTC

AGAACCCACC ATG GTG CTG TCT CCT GAC GAC AAG AAA CAC GTC

CAGCGCGGGG ATG GCG CTG TCC GCG GAG GAC CGG GCG CTG GTG

CAGCGCGGGA ATG GCG CTG TCC GCG GAG GAC CGG GCG CTG GTG

AAG ACC GCC TGG GGG AAG GTC GGC GCG CAC GCC GGC GAC

AAG GCC GCC TGG GGT AAG GTC GGC GAG CAC GCT GGC GAG

CGC GCC CTG TGG AAG AAG CTG GGC AGC AAC GTC GGC GTC

CGC GCC CTG TGG AAG AAA CTG GGA AGC AAT GTT GGC GTC

TAT GGT GCG GAG GCC CTG GAG AG GTGAGGCTCC CTCCCCTGCT

TAT GGT GCG GAG GCC CTG GAG AG GTGAGGCTCC CTCCCCTGCT

TAC ACG ACA GAG GCC CTG GAG AG GTGCGGC+++ +GAGGCTGGG

TAT GCT ACT GAG GCC CTG GAG AG GTGCGGC+++ +GAGGCTGGG

The total length of the three exons is 429 bases for eah of the four genes,

whereas the total length of the two introns is 260 bases. The relative frequenies

are

A C G T

Exon 0.17 0.36 0.29 0.17

Intron 0.10 0.40 0.36 0.14

Let us �t hidden Markovmodels with various numbers of states, separately to

the omplete sequenes of exons and of introns. For the moment, for the exons,

these models will not take into aount the triplet struture of the oding.

Model Exons Introns

Independene 2290.2 1109.0

Markov hain 2236.4 1058.6

Hidden Markov hain

2 2287.2 1087.0

3 2268.1 1085.4

States 4 2250.5 1075.0

5 2227.5 1075.7

6 2207.3

The hidden Markovmodels provide an improvement over the ordinaryMarkov

hain only for the oding sequenes. However, the intron base sequenes are not

ompletely random beause the Markov hain �ts better than the independene

model. The six-state hidden Markov model ontains 48 parameters but, for the

exons, it an be greatly simpli�ed by setting a number of the probabilities to

zero.

These models do not take into aount the fat that the oding setions of a

DNA sequene de�ne the amino aids in the orresponding protein by triplets of
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nulei aids. Let us then modify the hidden Markov model by allowing state-

dependent probabilities of the four nulei aid bases to be di�erent for eah of

the three positions in a triplet. Now, only a four-state model is required, with

a muh improved AIC of 2032.4, ontaining 24 parameters after setting various

probabilities to zero. There is little indiation of di�erene between the two

globin types (AIC of 2031.0 with 48 parameters) and none for di�erene among

all four sequenes (AIC of 2067.9).

The equivalent ordinary Markov hain, with a di�erent marginal probability

distribution at eah of the three positions but the same transition matrix, has

an AIC of 2091.9 with 21 parameters. The hidden transition matrix is estimated

to be

0

B

B

�

0:41 0 0 0:59

0:26 0:74 0 0

0:12 0:62 0:26 0

0 0 1 0

1

C

C

A

with stationary distribution (0.23, 0.45, 0.18, 0.14).

For the �rst position, the probabilities of the four bases, when in a given

state, are

State A C G T

1 0:11 0:67 0:22 0

2 0:25 0:20 0:39 0:17

3 0:30 0 0:58 0:12

4 0 0:51 0:13 0:35

For the seond position, they are

State A C G T

1 0:87 0:13 0 0

2 0:19 0:57 0:24 0

3 0 0 0:19 0:81

4 0 0 0 1

and, for the third position,

State A C G T

1 0 0:59 0:39 0:02

2 0:10 0:64 0:11 0:14

3 0 0 1 0

4 0 0:45 0:51 0:05
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3.3 Luteinizing Hormone Levels

Thirty-two ows divided into two groups, sukled and non-sukled, were followed

for ten days post-partum. Their levels of luteinizing hormone (ng/ml�1000)

were measured 15 times at unequally-spaed intervals. Conentrations of luteiniz-

ing hormone are inuened by semi-periodi pulsing of the glands that produe

the hormone.
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Variability inreases as time goes on with non-sukled ows show more vari-

ation than the sukled ones.

HMM

Distribution Indep Same Di�erent

Log normal 3270.5 3198.3 3174.1

Gamma 3314.6 3225.9 3195.0

Weibull 3387.1 3262.3 3261.9

Inverse Gauss 3264.8 3187.0 3176.7

Burr 3250.6 3160.4 3150.3

A di�erent transition matrix is learly neessary for sukled and for non-

sukled ows.

The Burr distribution

f(y;�; �; �) =

��

�

y

�

�

��1

�

�

h

1 +

�

y

�

�

�

i

�+1

�ts onsiderably better than the others.

For the non-sukled ows, the loation parameters in the two hidden states

are estimated to be �̂ = 346:8 and 553.4, whereas the other parameters are

�̂ = 9:39 and �̂ = 0:30 for both states. For the sukled ows, the orresponding

values are �̂ = 285:0 and 475.1, and �̂ = 10:4 and �̂ = 0:50.

The intensity transition matries, and the orresponding (one-day) prob-

ability transition matries, the latter obtained by matrix exponentiation, are

respetively

T =

�

�0:102 0:102

0:119 �0:119

�

and

�

0:908 0:092

0:107 0:893

�

for the sukled ows and

T =

�

�0:0556 0:0556

0:0392 �0:0392

�

and

�

0:947 0:053

0:037 0:963

�
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for the non-sukled ones.

The stationary distributions are, respetively, (0.54, 0.46). and (0.41, 0.59).
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Some of the ows, suh as number 8 (and 10), have suh low levels of hormone

that they probably stay primarily in the lower state most of the time, at least

as ompared to the other ows. Others, suh as 1, 5, 20, 22 seem to stay in

the high state. However, most ows swith between the two states during the

period of observation, with inreasing probability of being in the high state as

time passes. However, the two states have somewhat di�erent levels in the two

groups.
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