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1 Introduction

Suppose that a sequence of responses is discrete-valued, often categories that
would appear to be the observed states of some Markov chain. However, de-
pendence cannot adequately be described by the simple Markov property. In
a hidden Markov model, an underlying, unobserved sequence of states follows
a Markov chain, the hidden state determining the probabilities of the observed
states. Such an approach is widely used in speech processing and in biological
sequence analysis of nucleic acids in DNA and of amino acids in proteins.

For a binary time series, each event might be generated by one of two
Bernoulli distributions. The process switches from the one to the other ac-
cording to the state of the hidden Markov chain, in this way generating state
dependence. Analogous models can be constructed for other discrete distribu-
tions, such as the Poisson or binomial distributions.

2 The model

Consider an irreducible homogeneous Markov chain with M x M transition
matrix, T. This gives the probabilities of changing among the hidden states,
with marginal stationary distribution, 7. The latter can be calculated from the
transition matrix and hence does not introduce any new parameters. Then, the
probability of the observed response at time ¢, v,,,+ = Pr(y¢|m; K,,), will depend
on the unobserved state, m, at that time.

The series of responses on a given unit are assumed to be independent,
given the hidden state. Thus, there are M (M — 1) unknown parameters in
the transition matrix as well as M times the length of k,, in the probability
distributions. Although the probability of the observed data is complex, it can
be written in a recursive form over time:

R
fly;r,T) = n" J[(TF)I"
t=1
F; is an M x M diagonal matrix containing, on the diagonal, the probabilities,
Umt, Of the observed data given the various possible states.



To construct the likelihood function from this, first calculate the marginal
probability times the observed probability for each state at time 1, say a,, =
Tm Pr(y1|m; k). At the second time point, the first step is to calculate the ob-
served probability for each state multiplied by this quantity and by the transition
probabilities in the corresponding column of T. These are summed yielding, say
b = > @m T Pr(yz|h; kp,). This is the new vector of forward probabilities,
but, to prevent underflow, it is divided by its average, yielding a new vector, a.
This average is also cumulated as a correction to the likelihood function.

These steps are repeated at each successive time point. Finally, the sum
of these a,, at the last time point is the likelihood except that the cumulative
correction must be added to it. At each step, the vector, a, divided by its sum
gives the (filtered) conditional probabilities of being in the various possible states
given the previous observations. This model can be applied in continuous time
by using a matrix of transition intensities, so that, say, C has rows summing
to zero (instead of one). Then matrix exponentiation is applied to give the
transition probabilities Ta; = e2*C, where At is the time interval between
observations.

3 Examples

3.1 Locust Behaviour

To investigate the effect of hunger on locomotory behaviour, 24 locusts three
days into the fifth larval stage were placed individually in glass observation
chambers. Even numbered subjects were not fed for 5.5 hours whereas odd
numbered subjects received as much food as they could eat. During subsequent
observation, neither food nor water were available. 161 observations, at 30
second intervals, were made on each animal. At each time point, the locust was
classified either as locomoting (1) or not (0), the latter including quiescence and
grooming.

The question is how locomotory behaviour evolves over time and whether it
differs between the two treatment groups. There are 144 locomoting events in
the fed group but 973 in the unfed group, each in 1932 observation intervals.
As well, there is great individual variability among the locusts.



Indep Markov HMM
Common intercept

Null 2324.5 1869.0 1599.1

Trend 2263.2 1849.2 1591.6
Treatment intercepts

Null 2322.9 1869.2 1596.6

Same trend 2261.4 1849.1 1582.7
Diff trend 2248.2 1844.4 1583.2
Individual intercepts
Null 1667.6 1577.6 1494.0
Same trend 1575.6 1521.6 1492.1
Diff trend 1566.5 1513.5 1488.3

The trends, common to the two states, are estimated to be 0.0140 in the fed
group and 0.0048 in the unfed group. Locomotory behaviour increases faster
in the former group, perhaps because it stays rather stable throughout the
observation period for the unfed group. For the fed group, the probability of
locomotion is small in both states, whereas, for the unfed group, there is a clear
distinction between the two states, one of them indicating higher locomotory
behaviour. Indeed, for the fed group, a simple Markov chain fits better: the
AIC is 386.7 with 14 parameters as compared to 389.4 with 27 parameters for
the hidden Markov model.

The hidden transition matrices are estimated respectively to be

o (0978 0.022
~\0.073 0927

and

T — 0.975 0.025
~\0.025 0.975

in the fed and unfed groups with respective stationary distributions (0.77, 0.23)
and (0.51,0.49). The large diagonal values indicate that the locusts tend to
remain a relatively long time in the same state, a spell, inducing a dependence
among consecutive observations. The fed group stays about three-quarters of
the time in the first state (but recall that two states are not required) whereas
the unfed group spends about half the time in each state.
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3.2 DNA Sequence Analysis

The double-stranded helical form of DNA is well known. Each strand consists
of a linear sequence of the four nucleic acid bases, adenine (&), cytosine (C),
guanine (G), and thymine (T). Opposite strands contain complementary pairs:
A with T and C with G so that only one of the strands need by studied. In
a gene, consecutive, non-overlapping triplets of bases code corresponding se-
quences consisting of the twenty different amino acids that make up a protein.



Because there are 64 possible combinations of the bases, the code is redundant,
particularly in the third base, with several triplets often coding the same amino
acid.

Most bases in a DNA sequence do not code for proteins. Only selective
sections of the strands are actually active. In addition, the bases coding a
given protein are not necessarily all consecutive but may be split into several
sections. These are called the ezons of the gene whereas the non-coding sections
in between are called introns. Because the set of exons define a protein, they
are subject to natural selection; one may expect the bases in the introns to be
more random. A mutation in an exon sequence will often result in a code for a
non-viable or inappropriate protein, whereas a mutation in an intron does not
have this harmful effect.

DNA sequences coding similar proteins must be similar. This will be true
of two proteins in the same organism but also of those in two closely related
organisms. On the other hand, the non-coding sequences may differ widely.
In order to compare such sequences, the DNA must be aligned. To do this
optimally, gaps may have to be left in some of the sequences, where breaks may
have occurred during mutations in the evolutionary process.

Consider four such aligned sequences, for coding two closely-related proteins
(a1~ and 61-globin) in two primates (the orang-utan, Pongo pygmeus, and the

olive baboon, Papio anubis).

CCAATGAGCG
CCAATGAGCA
CCAATTTTTG
CCAATTTTTG
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AGAACCCACC ATG GTG CTG TCT CCT GCC GAC AAG ACC AAC GTC
AGAACCCACC ATG GTG CTG TCT CCT GAC GAC AAG AAA CAC GTC
CAGCGCGGGG ATG GCG CTG TCC GCG GAG GAC CGG GCG CTG GTG
CAGCGCGGGA ATG GCG CTG TCC GCG GAG GAC CGG GCG CTG GTG

AAG ACC GCC TGG GGG AAG GTC GGC GCG CAC GCC GGC GAC
AAG GCC GCC TGG GGT AAG GTC GGC GAG CAC GCT GGC GAG
CGC GCC CTG TGG AAG AAG CTG GGC AGC AAC GTC GGC GTC
CGC GCC CTG TGG AAG AAA CTG GGA AGC AAT GTT GGC GTC

TAT GGT GCG GAG GCC CTG GAG AG GTGAGGCTCC CTCCCCTGCT
TAT GGT GCG GAG GCC CTG GAG AG GTGAGGCTCC CTCCCCTGCT
TAC ACG ACA GAG GCC CTG GAG AG GTGCGGC+++ +GAGGCTGGG
TAT GCT ACT GAG GCC CTG GAG AG GTGCGGC+++ +GAGGCTGGG

The total length of the three exons is 429 bases for each of the four genes,
whereas the total length of the two introns is 260 bases. The relative frequencies
are

A C G T
Exon 0.17 036 0.29 0.17
Intron 0.10 040 0.36 0.14

Let us fit hidden Markov models with various numbers of states, separately to
the complete sequences of exons and of introns. For the moment, for the exons,
these models will not take into account the triplet structure of the coding.

Model Exons Introns
Independence 2290.2 1109.0
Markov chain 2236.4 1058.6

Hidden Markov chain
2 2287.2 1087.0
3 2268.1 10854
States 4 2250.5 1075.0
5 2227.5 1075.7
6 2207.3

The hidden Markov models provide an improvement over the ordinary Markov
chain only for the coding sequences. However, the intron base sequences are not
completely random because the Markov chain fits better than the independence
model. The six-state hidden Markov model contains 48 parameters but, for the
exons, it can be greatly simplified by setting a number of the probabilities to
Zero.

These models do not take into account the fact that the coding sections of a
DNA sequence define the amino acids in the corresponding protein by triplets of



nucleic acids. Let us then modify the hidden Markov model by allowing state-
dependent probabilities of the four nucleic acid bases to be different for each of
the three positions in a triplet. Now, only a four-state model is required, with
a much improved AIC of 2032.4, containing 24 parameters after setting various
probabilities to zero. There is little indication of difference between the two
globin types (AIC of 2031.0 with 48 parameters) and none for difference among
all four sequences (AIC of 2067.9).

The equivalent ordinary Markov chain, with a different marginal probability
distribution at each of the three positions but the same transition matrix, has
an AIC of 2091.9 with 21 parameters. The hidden transition matrix is estimated
to be

041 O 0 0.59

026 074 O 0

012 062 026 O
0 0 1 0

with stationary distribution (0.23, 0.45, 0.18, 0.14).
For the first position, the probabilities of the four bases, when in a given
state, are

State A C G T
1 0.11 0.67 022 0
2 0.25 020 0.39 0.17
3 030 0 058 0.12
4 0 051 0.13 0.35

For the second position, they are

State A C G T
1 087 013 0 0
2 019 057 024 O
3 0 0 019 0381
4 0 0 0 1

and, for the third position,

State A C G T
1 0 0.59 0.39 0.02
2 0.10 0.64 0.11 0.14
3 0 0 1 0
4 0 045 0.51 0.05
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3.3 Luteinizing Hormone Levels

Codon number

Codon number

Thirty-two cows divided into two groups, suckled and non-suckled, were followed
for ten days post-partum. Their levels of luteinizing hormone (ng/mlx1000)
were measured 15 times at unequally-spaced intervals. Concentrations of luteiniz-
ing hormone are influenced by semi-periodic pulsing of the glands that produce

the hormone.
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Variability increases as time goes on with non-suckled cows show more vari-
ation than the suckled ones.

HMM
Distribution Indep Same Different
Log normal 3270.5 3198.3  3174.1

Gamma 3314.6 32259  3195.0
Weibull 3387.1 3262.3  3261.9
Inverse Gauss 3264.8 3187.0  3176.7
Burr 3250.6 3160.4  3150.3

A different transition matrix is clearly necessary for suckled and for non-
suckled cows.
The Burr distribution

(g
%

w1 (2]
fits considerably better than the others.

For the non-suckled cows, the location parameters in the two hidden states
are estimated to be g = 346.8 and 553.4, whereas the other parameters are
k£ =9.39 and 7 = 0.30 for both states. For the suckled cows, the corresponding
values are i = 285.0 and 475.1, and & = 10.4 and 7 = 0.50.

The intensity transition matrices, and the corresponding (one-day) prob-

ability transition matrices, the latter obtained by matrix exponentiation, are
respectively

T — —-0.102  0.102 and 0.908 0.092
o 0.119 -0.119 0.107 0.893

f(y; p, k,v)

)

for the suckled cows and

o ( 00556  0.0556 o4 (0947 0053
= 0.0392 —0.0392 ) *™* \0.037 0.963



for the non-suckled ones.
The stationary distributions are, respectively, (0.54, 0.46). and (0.41, 0.59).

Cow 1 Cow 2 Cow 3 Cow 4
a a o o
] © © ©
o 7 < c 7 S 7
© ©0 © ©
o o T o 7 o T
e
< 4 ~ 4 ~ <~
o o o o
~ ~ ~ ~
o o T o T o T
o o o <
S rTT T T e e N L s S N L O N L
0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10
Cow 5 Cow 6 Cow 7 Cow 8
o S S e
a a o o
o «© © 0
S //_\/ c 7] c 7] S 7
© © © ©
[Sh o o [SH
=4
< 4 < ~ <~
o o o o
~ ~ ~ ~
c 7 o o o 7
o o o <
S T T T e S L e S T T T O L B E
0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10
Cow 17 Cow 18 Cow 19 Cow 20
o S S S
— — — — ﬁ_
(=] © © 0
o c 7 c 7 c T
© © © ©
o 7 S S c 7
=4
< 4 < 4 ~ ~
o o o o
o~ o~ N ~N
o 7 S S o 7
o o o <
S rTT T T C T T T S T T T O e N L
0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10
Cow 21 Cow 22 Cow 23 Cow 24
o S S S
a o o o
] «© © 0
c c 7 v c 7 c T
© © © ©
o 7 S S c 7
=4
< | < | < ] = 4
o o o o
~N N N ~N
o 7 S o 7 (<
o | o o ] < |
S rTT T T S S N N s e N L S T T T
0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10
Days Days Days Days

Some of the cows, such as number 8 (and 10), have such low levels of hormone
that they probably stay primarily in the lower state most of the time, at least
as compared to the other cows. Others, such as 1, 5, 20, 22 seem to stay in
the high state. However, most cows switch between the two states during the
period of observation, with increasing probability of being in the high state as
time passes. However, the two states have somewhat different levels in the two
groups.
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