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Abstrat

Phase I data on time to toxiity of a new ompound to treat early stage aner are analyzed

as time to event data. Several nonlinear models are onsidered for hanges in risk of the

toxiity event over time at various dose levels, with dependene hanging after treatment

ends. Diret hazard modeling, instead a generalized regression model with a ertain failure

time distribution, is used and shown to allow great exibility for modeling dose dependeny as

well as hanges over time. This o�ers a viable ompromise between a highly omplex and time

onsuming, mehanisti PK/PD-modeling approah and a less informative, purely empirial

approah.
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1 Introdution

One lass of endpoints whih is important in linial trials involves time-to-event data, inluding

the speial ase of survival analysis. This kind of data is usually modeled using lassial parametri

(aelerated failure time) or semi-parametri (Cox proportional hazards) models. These approahes

lak exibility beause they impose onstraints either on the evolution of the hazard over time or

on the e�et of ovariates on the hazard. More general approahes are rare.
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In ontrast to survival analysis, pharmaokinetiists have developed the speialized and so-

phistiated area of pharmaokineti/ pharmaodynami (PK/PD) modeling whih has gained mo-

mentum in the pharmaeutial industry.
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These models are mehanisti in nature, desribing the

behaviour of the drug in the human body, its e�et on intermediate and linial endpoints, as well

as within (intra) patient and between (inter) patient variability.

Alternatively, one an develop models whih inorporate knowledge about the mehanism of

ation in a more qualitative and less mehanisti way. These models are usually simpler in na-

ture but may be able to answer some of the questions of interest. However, they provide less

understanding of the underlying biologial proesses operating.
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One important area of appliation of suh models is at the design stage of a linial trial. In

silio simulation of the outome of a trial has reeived inreasing attention in the pharmaeutial

industry over the last few years.
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The main goals of these simulations have been to assess the

probability of suess of the trial and to explore the inuene of known and unknown fators. To

ahieve this, all available information and knowledge is inorporated in a formalized and strutured

way into a model of drug ation. In many trial simulations, the mehanisti PK/PD models are

used and it would be very useful if suh models were also available for time to event studies.

Usually, signi�ant statistial omplexity is involved in this kind of modeling.

In this paper, we use the diret modeling of the hazard
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to desribe the time to onset of toxiity

in a Phase I linial trial. We attempt to develop more mehanisti models, analogous to those

used in other areas of PK/PD.

2 The linial trial

We shall develop a model for the ourrene of a sub-set of side e�ets during an eight-day, one-

daily treatment with drug X as a funtion of time and dose. Data are from a double-blind Phase I

linial trial to evaluate the safety, pharmaokinetis, and pharmaodynamis of drug X, in whih

49 healthy male subjets were inluded. The drug under development was expeted to yield a

series of drug-related dermatologial adverse events linked to the drug-lass to whih it belonged.

From prior experiene with this lass of ompounds as well as related ompounds available on the

market, a typial side-e�et pattern ould be derived. This enompassed skin rash, dryness of skin

and skin peeling with or without ith. These adverse events form a readily reognizable luster so

that, for any subjet, the onset of dermatologial toxiity is assessed as an event or, more preisely,

as a hange of state.

The trial was dose-esalating in sequential ohorts reeiving doses d, 2d, 4d, 6d and 12d one

daily for eight onseutive days, followed by a follow-up period to at least 14 days (or longer in ase

of side-e�ets). In eah ohort, eight subjets were randomized to be treated either with tablets

with ative drug X (six subjets) or with mathing plaebo-tablets (two subjets). In total, ten

subjets were on plaebo and eight subjets on eah dose (exept seven on 12d). The data used

here are the time in days from the �rst mediation intake to the onset of toxiity for eah subjet

whih is de�ned as the onset of one of the adverse events mentioned earlier.

The data are summarized in Table 1. Figure 1 shows the Kaplan-Meier urves for the time to

onset of toxiity for eah dose group. >From this, it is apparent that

� the time to onset dereases with dose with a lear separation between plaebo, the highest

dose and all intermediate doses;

� in the plaebo-group, only one event was observed on the third day of the treatment, whereas

in the highest dose group all subjets developed toxiity before the end of the eight-day

treatment period. In the lower dose groups, a limited number of events was seen the during

2



Table 1: Summary of the inidene and timing of skin toxiity.

Number of Number of events Number of events Total number

subjets on days 1-8 on days 9{12 of events

Plaebo 10 1 0 1

d 8 3 0 3

2d 8 2 3 5

4d 8 1 3 4

6d 8 2 2 4

12d 7 7 0 7
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Figure 1: Kaplan-Meier urves for the time to onset of toxiity in the di�erent treatment groups.
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Figure 2: Cumulative hazard plot for the onset of toxiity for the di�erent treatment groups (S(t)

is the Kaplan-Meier survival estimate).

�rst four days of treatment, while a number events happened between days 9 and 12 after

the end of treatment.

Figure 2 shows a plot of the umulative hazard for eah treatment group. This plot shows a hazard

inrease over time for the dose groups lower than 12d, whih is sustained for several days after the

end of the treatment (day 8).

>From these observations it is lear that the model should aommodate the following features:

� the hazard inreases during the 8-day treatment; the rate of inrease seems dose-dependent

with a very low or maybe zero hazard during the �rst days of treatment;

� the hazard does not fall to zero for at least several days immediately after the end of treat-

ment.

Both features are ompatible with the pharmaokineti and pharmaologial harateristis of drug

X. During the �rst days of treatment, plasma levels of the drug might be too low to have any toxi

e�et. Distribution of the ompound into the tissues might be another ause for the delay in onset
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Table 2: Summary of the model �ts.

Dose-dependene Time-dependene for log� Number of

for log� during treatment after treatment parameters AIC

1 None None None 1 112.1

2 Fators None None 6 103.6

3 Linear None None 2 101.9

4 Exponential None None 2 102.6

5 Linear None Linear Deay 3 94.1

6 Exponential None Linear Deay 3 94.2

7 Linear None Exponential Deay 3 93.0

8 Exponential None Exponential Deay 3 93.1

9 Linear 3-parameter Hill Linear Deay 5 94.2

10 Linear 2-parameter Hill Linear Deay 4 93.2

11 Linear 2-parameter Hill Exponential Deay 4 91.8

12 Exponential 2-parameter Hill Linear Deay 4 93.8

13 Exponential 2-parameter Hill Exponential Deay 4 92.6

14 Linear Linear Linear Deay 4 92.1

15 Linear Linear Exponential Deay 4 91.0

of toxiity. The delay might also be explained by the normal di�erentiation yle of the skin ells.

Drug X a�ets the basal layers of the skin, whereas the side e�ets only beome apparent when

these ells reah the surfae of the skin. After treatment is stopped, plasma and tissue levels will

gradually derease over time. Therefore the risk of toxiity will also gradually derease as all drug

is eliminated from the body.

In order to inorporate these features into the model, we hoose to model the hazard as a

funtion of time and dose instead of �tting a generalized regression model with di�erent failure

time distributions. Event history modeling also allows the time to reovery from toxiity to be

easily inluded, although this will not be attempted here.

3 Model development

3.1 Time-invariant models

In this �rst set of models, the hazard is assumed to be onstant during the total observation period.

This is learly an oversimpli�ation, but these models are onsidered as the simplest ones possible

with whih more omplex ones an be ompared. The model with a onstant hazard independent

of time and dose has one parameter and an AIC of 112.1 (Table 2). A model with six parameters, a

di�erent onstant hazard for eah dose, results in a fair drop of the AIC to 103.6. When we onsider
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these two models as nested, a lassial likelihood ratio test yields a 26.9 with 5 d.f. (p < 0:001).

The (onstant over time) hazard thus di�ers between treatments.

A plot of the hazard estimate as a funtion of dose (not shown) suggests a linear relationship

between the log hazard and dose, at least for the ative dose groups. The plaebo hazard tends to

deviate from this. A linear model has an AIC of 101.9 whih is slightly better than the previous

one. An exponential model for the log hazard, whih might aount for the low plaebo hazard, is

not better (the AIC is higher than for the linear model).

3.2 Time-variant models

3.2.1 Hazard derease after end of treatment

In these models, the hazard is allowed to derease after the end of the treatment at day 8. The

general form of these models is:

log(�) = f(d) + I(t > t

end

)g(t� t

end

)

where t is the time (days) sine the start of the treatment, d is the dose, and t

end

is the day of

the last mediation intake.

Two di�erent models are onsidered:

1. log� dereases in a linear fashion with time after the end of treatment:

g(t� t

end

) = �(t� t

end

)

2. log� dereases exponentially with time after the end of treatment. Here

g(t� t

end

) = 1� exp(��(t� t

end

))

The �rst model is the simplest. The seond makes sense from a pharmaokineti point of

view beause this implies an exponential deay of the log risk. Suh a deay an be expeted on

pharmaokineti grounds if the log risk is diretly related to the amount of drug in the body.

In ombination with the linear and exponential dose-dependeny models from Setion 3.1, we

onsider four models (Table 2, Models 5 to 8). All provide a onsiderable improvement ompared

to the time-invariant models although the models with an exponential deay of log� after end of

treatment �t better. There is no di�erene here between dose-dependeny models.

3.2.2 Hazard inreases during the treatment period

As it is very plausible that the hazard is not onstant during the eight-day period of treatment,

it was attempted to model the time-dependeny using a Hill-equation.

2

This equation allows to

model a exible range of sigmoid-shaped time ourses :

�(t) =

�

max

t

h

�

h

0:5

+ t

h
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where t is the time (days) sine the start of the treatment, �

max

is the maximal hazard (asymptote);

�

0:5

is the time at whih the hazard equals half of its maximum, and h is the Hill-oeÆient whih

governs the steepness of the inrease. After the end of treatment, t retains it value to the last day

of the trial. �

max

depends on dose either in a linear fashion or in an exponential fashion as before.

The general form of the models onsidered is as follows:

f(d; t) = log(

�

max

t

h

�

h

0:5

+ t

h

)

A model with a linear dose-dependeny and a linear deay (Model 9) is not better than the

orresponding one with a onstant hazard during treatment (Model 5). However, the estimate of

the Hill-oeÆient was very lose to 1. The same model with h = 1 (Model 10) is better than the

orresponding Model 5.

Models 10 to 13 orrespond to Models 5 to 8 with regard to the dose-dependeny and the

hazard deay after end of treatment. Here, those with exponential deay �t better. Model 11 is

best, also being an improvement over the one with onstant hazard during treatment (Model 7).

Although Model 11 �ts best of those onsidered so far, as judged by the AIC, there is a problem

with the parameter estimation. The normed likelihood surfae (not shown) for the interept of the

linear dose-dependeny relation and �

0:5

shows that the likelihood is extremely at for the latter

parameter. The maximum likelihood estimate is

^

�

0:5

= 30 whih is implausible beause it is far

beyond the times observed. This indiates that the asymptote is not estimable so that a simpler

model would have a linear trend in time during treatment, resulting in Models 14 and 15. The

latter of these, with exponential deay after end of treatment �ts best. Although these models

�t best, as judged by the AIC, they are probably not realisti. We would not expet the hazard

to ontinously inrease during treatment, as this implies that when treating subjets with a low

dose or even plaebo for a long enough period, everyone will develop toxiity. Extrapolation of the

model beyond the urrent treatment duration must be done with aution anyhow.

The �tted hazard funtions for several of these models are plotted in Figure 3. Finally, Figure

4 shows the survival urves, giving the proportion of subjets not having had toxiity, predited

by Model 15 as a funtion of time and dose.

4 Conlusion

The risk of developing toxiity due to drug X inreases with dose during an eight-day treatment.

The log of the risk inreases linearly with dose implying that the probability of a subjet having

experiened toxiity at a given time point inreases exponentially with dose. After the end of the

eight-day treatment, the risk of toxiity remains and gradually dereases to plaebo levels in three

to four days. There is also evidene that the risk inreases during the eight-day treatment period,

but the urrent data do not allow development of a model that adequately desribes this.

The use of diret hazard modeling to desribe the onset of toxitiy, instead of �tting a general-

ized regression model with a ertain failure time distribution, allows great exibility for modeling
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11. Non−linear increase during treatment,
 then exponential decay
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Figure 3: Fitted hazard funtions for Models 3, 7, 11, and 15.
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Figure 4: Survivor urves predited by Model 15 as a funtion of time and dose.
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dose dependeny as well as hanges over time. Although a formal pharmaokineti model was

not used, qualitative knowledge about the pharmaokineti and pharmaodynami behaviour of

the ompound was inorporated in the model. Given the mehanism of ation of the drug, a

fully mehanisti PK/PD model would imply the use of indiret response models.

2

The modeling

strategy presented here o�ers a ompromise between a highly omplex and time onsuming, meh-

anisti PK/PD-modeling approah and a less informative, purely empirial approah. Usually a

fully mehanisti PK/PD-modeling approah is a hallenging task due to the statistial omplexity,

lak of enough data or time onstraints. Depending on the objetives of the modeling exerise, a

simpler model an be useful. This is espeially the ase in the ontext of linial trial simulation.

It has been reognized that in rih data sets the time ourse of a pharmaodynami parameter may

ontain enough information on the kinetis of the system to built a sensible simulation model.

4

In the appliation of modeling and simulation in the design of linial trials, �nding a balane

between model realism and feasibility is an important hallenge.
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