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1. Construting ompartment models

Suppose that some sort of individual elements

(atoms, moleules, people, : : :) an move

among a number of di�erent ompartments.

In hemistry, the ompartments may be

moleules between whih atoms are moving.

In pharmaokinetis, they may be organs or

tissues of the body.

In event histories, they may be states of a

patient.

Often, all potential movements among

ompartments will not be possible.
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The dynamis of the system an be desribed

by the rates or intensities with whih the

elements move among the ompartments.

These rates will depend on a number of

fators, espeially the numbers of elements in

the two ompartments between whih moves

are made.

Thus, the rates an be desribed

mathematially by one or more di�erential

equations.

Unless these equations an be assumed to be

linear, the problem may be intratable.
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In the simple ase, there are no inputs to the

system after t = 0 when the proess begins.

The system of linear di�erential equations will

have the form

d�

T

(t)

dt

= �

T

(t)A

�(t) is a olumn vetor of length P , the

number of ompartments.

A is a P � P transfer matrix ontaining rate

onstants of movement between states in the

system.

In diret analogy to the solution of one suh

equation, the general solution is

�

T

(t) = �

T

(0)e

At

If there are inputs to the system over time,

the funtion desribing these, say b(t), must

be inluded:

�

T

(t) = �

T

(0)e

At

+

Z

t

0

b(u)e

A(t�u)

du
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Matrix exponentiation is de�ned by

e

At

= I+

At

1!

+

(At)

2

2!

+ � � �

A preferable way to alulate the exponential

is by spetral deomposition.

If W is a matrix with the eigenvetors of A as

olumns and D is a diagonal matrix

ontaining the orresponding eigenvalues,

then

A =WDW

�1

The exponential is then

e

At

=We

Dt

W

�1

In simple ases, the di�erential equations an

be solved analytially, but often only a

numerial solution will be available.
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Generally, we may be interested in

� how the quantities of the elements in one

or more of the ompartments hange over

time (a marginal question) or

� the probable length of time an element

stays in a given ompartment (a

onditional question).

As an example, onsider a model often used

in pharmaokinetis.

Suppose that a substane is ingested at one

point in time (not ontinuously over the

study period).
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The orresponding di�erential equations are

d�

0

(t)

dt

= �k

a

�

0

(t)

d�

1

(t)

dt

= k

a

�

0

(t)� k

e

�

1

(t)

�

0

is the mean amount at the absorption site

(often the stomah),

�

1

is the mean of the onentration that

interests us, usually measured in the blood,

k

a

is the absorption rate at that site,

k

e

the elimination rate at that site.
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Then,

A =

 

�k

a

k

a

0 �k

e

!

We an set the initial ondition to

�(0) = (x;0)

T

, where a dose of size x is the

input to the �rst ompartment.

When solving the above di�erential

equations, we shall be interested in the

seond element of �(t), the amount in the

seond ompartment.

For given, �xed values of the parameters, this

an be alulated numerially using the

equation involving matrix exponentiation.
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Suppose that k

a

= 0:4, k

e

= 0:05, and x = 1.

The urves of total onentration in the

system and of onentration in the seond

ompartment are
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In fat, in this example, numerial

exponentiation of the transfer matrix is not

neessary.

The di�erential equations an be solved

analytially.

The resulting nonlinear funtion for the

ompartment of interest is

�

1

(t) =

xk

a

(k

a

� k

e

)

�

e

�k

e

t

� e

�k

a

t

�

This ommonly used funtion is alled the

open, �rst-order, one-ompartment model.

The �rst ompartment does not appear in

the �nal funtion.
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2. Event histories

A Markov hain desribes a proess that

moves from state to state (the

ompartments).

Let �(t) be the vetor of marginal

probabilities of being in the various states at

(disrete) time t and

T be the transition matrix of onditional

probabilities of hanging among states.

Then,

�

T

(t+1) = �

T

(t)T

and

�

T

(t) = �

T

(0)T

t

where t is an integer.
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For a Markov hain in ontinuous time, T is

replaed by a matrix � of transition

intensities suh that

T = e

�

so that

�

T

(t) = �

T

(0)e

�t

This involves the following assumptions:

the proess remains in eah state i a stritly

positive length of time

the sojourn times in eah state have

independent exponential distributions,

eah with a di�erent mean time in the state

�

i

or intensity of leaving the state �

i

= 1=�

i

.

If the state is absorbing, the mean duration is

in�nite and �

i

= 0.
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The matrix � ontains the onditional

transition intensities �

jji

of moving from state

i to state j 6= i.

The diagonal element is set equal to ��

i

where

�

i

=

X

j 6=i

�

jji

so that the sum of eah row is zero.

The orresponding matrix of transition

probabilities for a given time interval �t an

be obtained by matrix exponentiation:

T

�t

= e

��t

Modelling involves allowing the onditional

intensities �

jji

to depend on ovariates.
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Advantages:

� Simple to estimate.

� Missing values and dropouts easily

handled (add ompartments).

Disadvantages:

� Unrealisti onstant intensity (exponential

distribution) assumption of random

movement among states.
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Possible extensions:

� semi-Markov models where the

onditional intensities depend on time;

� variation in intensities among individuals

(frailty);

� time-varying random external inuenes;

� nonlinear di�erential equations.
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Consider the example of people who may

ontrat a nonfatal infetious disease that

onfers immunity upon reovery.

We an then divide a given population into

three distint ategories:

1. suseptibles (S) who an ath the

disease;

2. infetives (I) who have the disease and

are ontagious so that they an transmit

it;

3. reovered (R), who have had the disease

and are now immune.
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Closed SIR model

Susceptible
k2 Infective

k3 Recovered

Open SIR model

k1 Susceptible
k2 Infective

k3 Recovered

Assumptions:

� the rate (k

2

) of exit from the suseptible

ategory and entry to the infetive

ategory is proportional to the present

numbers of infetives and suseptibles;

� the rate (k

3

) of exit from the infetive

ategory and entry to the reovered

ategory is proportional to the present

number of infetives;
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� eah ategory of people is uniformly

mixed so that every pair of individuals has

the same probability of meeting; and

� the population is of onstant size.

Then, the model an be de�ned by the

nonlinear di�erential equations

dS(t)

dt

= �k

2

S(t)I(t)

dI(t)

dt

= k

2

S(t)I(t)� k

3

I(t)

dR(t)

dt

= k

3

I(t)

with initial onditions S(0) = S

0

> 0,

I(0) = I

0

> 0, and R(0) = 0.

If the population is not losed so that

suseptibles are born or an immigrate at the

onstant rate k

1

, the �rst equation beomes

dS(t)

dt

= k

1

� k

2

S(t)I(t)
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3. Pharmaokinetis

Individuals following a stohasti proess an

move through a number of di�erent states in

an event history.

Similar proedures an be used to desribe

the quantity (partiles) of some material that

moves through the di�erent parts (the states)

of a system.

In ertain stohasti systems, we annot

observe hanges for individual elements but

only in aggregation.
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For example, in a hemial reation, we

annot observe the hanges of state of the

partiipating atoms but only the total

onentration of eah reatant and produt.

In the growth of a biologial organism, we

annot observe the addition of individual

proteins, or even of ells, but only the

inrease in weight or length.

In other words, reords of hange in suh a

system are averages of the stohasti

hanges of the omponents involved.

Suh a system an generally be desribed by

rates of hange among ompartments.
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Thus, one way to onstrut a mehanisti

model for a proess of material moving

through a system is

to divide that system into ompartments;

to assume that the rate of ow of the

substane between these obeys �rst-order

kinetis.

The rate of transfer to a reeiving or sink

ompartment is proportional to the

onentration in the supply or soure

ompartment.

Then, the di�erential equations are linear.

These are alled the mass balane equations.
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However, a seond level of stohasti

variability is usually also present, resulting

from random external inuenes to the

system:

hanges in pressure or temperature of a

hemial reation, hanges in food supply,

stress, and so on, to a biologial organism.

Thus, hanges at the level of the individual

omponents an only be modelled as a mean

funtion, with variation about it arising from

the seond level.

The probability distribution of elements in a

ompartment over time is used as a nonlinear

regression urve.
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Simple models are progressive.

For the open, �rst-order, one-ompartment

model,

�(t) =

xk

a

V (k

a

� k

e

)

�

e

�k

e

t

� e

�k

a

t

�

is the nonlinear regression funtion.

However, the total dose x may not be

absorbed into the blood.

Hene, V , alled the apparent volume of

distribution, is inluded as an extra

parameter, a proportionality onstant.
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Modelling questions:

1. What ompartments are required?

2. Whih distribution adequately desribes

random external inuenes?

3. What rate onstants vary among

individuals (`frailty')?

4. In what way is the proess inuened by

unknown internal and external fators

over time?
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When only one ompartment is studied, an

arbitrary set of additional ompartments an

be added to the system to modify the

harateristis of the one of interest.

Consider a series of ompartments where

input ours to one of the last ompartments

in the series.

Output only ours by passing through the

ompartments to the right and out the last

ompartment, all with rates k

e

.

1

kr

kl

2

kr

kl

3
ke

Input

4
ke
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Elimination through the ompartments to the

right of input orresponds to a

gamma-distributed learane time.

The dispersion parameter equals the number

of elimination ompartments, inluding the

input ompartment.

However, some of the material an also move

through the ompartments to the left of the

input, one ompartment at a time.

This is a random walk with reeting barrier

at ompartment 1.

The rates are k

l

to the left and k

r

to the

right (drift if k

l

6= k

r

; generally, k

l

< k

r

).

A large number of ompartments to the left

of input indiates a delay in elimination.
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The random walk desribes retention of the

material.

With a large number of random walk

ompartments, this approximates a di�usion

proess.

Thus, the model has two omponents:

di�usion within the site of input and

gamma-distributed learane from that site.

The transfer matrix will be

A =

0

B

B

B

B

�

�k

r

k

r

0 0

k

l

�k

l

� k

r

k

r

0

0 k

l

�k

l

� k

e

k

e

0 0 0 �k

e

1

C

C

C

C

A

and �(0) = (0;0; x;0)

T

for an input dose of x.

The number of parameters to estimate in this

model does not hange with the number of

ompartments.
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4. Comparison

Event history Pharmaokinetis

Level Individual `Eologial'

Modelling Conditional Marginal

External

disturbane No Yes

Realisti

assumptions Not usually Yes
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