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Chapter 1

Categorial Variables and

Related Distributions

1.1 Categorial Variables

Muh of the observed data whih a statistiian enounters is not in the form of

quantitative measurements.

Rather some harateristi or attribute of the individuals is reorded.

Suh harateristis take one or more distint values.

1.1.1 Events

The ases of only one and two values for the variable are of speial interest,

sine they are the most ommonly used.

For a single value, the observations are usually summarized as a ount of

the number of ourrenes of an event of interest.

Example

If the event is the birth of a hild, then the ounts might be the number of

hildren in a family. 2

Variables with two values are alled binary. They are often used to reord

the ourrene and nonourrene of an event, usually over time or through

spae.

Example

Caner patients are observed to be either alive (oded 0) or dead (oded

1) over a period of time. This binary variable an only hange from zero to

one. The sequene is alled a point or ounting proess and is equivalent to

observing the survival time. 2

1.1.2 Nominal Variables

In general, if any one of say I qualitatively di�erent events may our to an

individual, we have a nominal variable.
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Eah di�erent event has a di�erent name, but no mathematial relationship

exists among the events.

Eah possible harateristi or value of the variable is alled a ategory or

level.

Example

The sex of an individual is a binary ategorial variable. More omplex

nominal variables inlude the profession of a worker and the type of illness of a

hospital patient. 2

When a number of individuals are observed, they an be lassi�ed into the

I possible ategories.

The number in eah ategory, n

i

, is alled the (absolute) frequeny.

This may also be transformed by dividing by the total number of individuals,

n

:

=

P

n

i

, to yield the proportion or relative frequeny in eah ategory.

For larity of presentation, these numbers are often multiplied by 100 to

give perentages.

Example

1681 residents of Copenhagen were asked about the type of housing in whih

they lived. The results are summarized in the following table.

Type of Housing

Tower Apart- Atrium Terraed

Blok ment House House

Absolute

Frequeny 400 765 239 277

Relative

Frequeny 0.2380 0.4551 0.1422 0.1648

Perent 23.80 45.51 14.22 16.48

2

1.1.3 Ordinal Variables

Often, a ategorial variable ontains more information than simply the names

of the ategories.

If the ategories an be stritly ordered, we have an ordinal variable.

Suh variables frequently our for the preferenes of individuals or their

state of health.

When available, suh information should be used in the statistial analysis.

Example

256 Amerians who graduated from high shool in 1965 were asked their

politial party identi�ation in 1982. The absolute frequenies are given in the

following table.

2



Strong Demorat 10

Weak Demorat 59

Leaning Demorat 41

Independent 26

Leaning Republian 44

Weak Republian 47

Strong Republian 29

2

1.1.4 Counts and Frequenies

Counts and (absolute) frequenies are very similar and, indeed, are not always

distinguished. Both are numbers of events.

A ount is made of events on one individual unit of observation, suh as the

family above.

A frequeny is an aggregation of events on di�erent units of observation,

with eah unit appearing only one, at least at any given point in time.

Example

Consider the following distribution of aidents:

Aidents Frequeny

0 447

1 132

2 42

3 21

4 3

5 2

6 0

The �rst olumn is the ount per individual; the seond olumn is the fre-

queny with whih that ount ours aross individuals. 2

Similar statistial tehniques an often be used for both ounts and frequen-

ies.

However, sine ounts involve events on the same unit, there will often be

some form of dependene among these events, whih often may need to be taken

into aount.

In ontrast, frequenies refer to numbers of independent events, sine they

our on di�erent units.

1.1.5 Other Types of Variables

Any variable an be redued to a simpler form by ignoring its speial hara-

teristis.

A quantitatively measured variable may be ut into a series of distint at-

egories, usually more or less arbitrarily.

3



Example

Inome is often reorded as a ategorial variable, say to the nearest 500

frans. 2

In fat, any quantitative variable an only be measured in a ategorial way,

sine all measuring instruments have some �nite limit to their resolution.

Example

The length of employment of a ertain type of British postal workers was

reorded to the nearest month:

Months 1 2 3 4 5 6 7 8 9 10 11 12

Freq. 22 18 19 13 5 6 3 2 2 1 0 1

Months 13 14 15 16 17 18 19 20 21 22 23 24

Freq. 0 0 0 1 1 1 3 1 1 0 0 0

2

The question is rather whether the statistial tehnique applied to the data

uses the quantitative information ontained in the labels on the ategories.

When only the nominal information in a variable is used, no (mathematial)

relationships exist among the ategories.

Statistial analysis must rely on the frequenies of ourrene of the ate-

gories to provide the mathematial struture.

Thus, the less is known or assumed about the relationships among the at-

egories, the more observations are required in order to have suÆiently large

frequenies in eah ategory.

1.2 Poisson Distribution

If events of the i

th

type are independent aross individuals and ourring at a

uniform rate, �

i

, then the (random) number of suh events, say N

i

, will have a

Poisson distribution with probability mass funtion

Pr(N

i

= n

i

;�

i

) =

e

��

i

�

n

i

i

n

i

!

where �

i

= 1=�

i

is the mean number of events and where the total number of

events, n

:

=

P

n

i

, is not �xed in advane.

This distribution is haraterized by the relationship between its mean and

its variane:

E[N

i

℄ = �

i

= var[N

i

℄

Example

Consider the lassial data on the numbers of deaths by horse kiks eah

year between 1875 and 1894 in 14 orps of the Prussian army:

4



Deaths/Corps/Year 0 1 2 3 4 5

Frequeny 144 91 32 11 2 0

Here, the mean is estimated to be �̂ = 0:70 deaths per year per orps. 2

If eah ategory of event has a Poisson distribution, then the total number of

events of all kinds, n

:

, will also have a Poisson distribution, with mean � =

P

�

i

.

The hypotheses of the Poisson distribution may often be reasonable for

frequenies sine the events are independent aross individuals.

The question is whether the (ategories of) individuals whose events are

grouped in the frequenies are homogeneous enough so that they all have the

same rate for the event.

Sine a ount refers to a number of events all on the same individual unit,

the dependeny among them must be examined losely.

On the other hand, all of the ounted events will usually have the same rate,

or they would not have been ounted together.

Most often, the Poisson distribution will not be found suitable for ounts.

Example

For the deaths by horse kiks, there are, in fat, two types of orps. One

may need to investigate if they both have the same death rate. 2

Thus, for frequenies, the heterogeneity among individuals must be heked,

while, for ounts, the dependene among events on an individual plays a more

important role.

One indiation will be that the mean and variane are substantially di�erent.

Aording to the diretion of the di�erene, it is known as under- or overdis-

persion.

The most ommon orretion is to replae the Poisson distribution by the

negative binomial.

1.3 Multinomial Distribution

Suppose now that we keep the same hypotheses as for the Poisson distribution,

but �x the total number of events, n

:

, before making the observations.

We must now look at the onditional distribution

Pr(n

1

; : : : ; n

I

jn

:

;�

1

; : : : ; �

I

) =

Q

I

i=1

e

��

i

�

n

i

i

n

i

!

e

��

�

n

:

n

:

!

=

 

n

:

n

1

� � �n

I

!

I

Y

i=1

�

�

i

�

�

n

i

=

 

n

:

n

1

� � �n

I

!

I

Y

i=1

�

n

i

i

where �

i

= �

i

=� may take values between zero and one, with sum equal to one,

and hene are probabilities.
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This is known as the multinomial distribution.

It desribes the distribution of I di�erent types of events ourring inde-

pendently, eah type of event with a onstant rate, where the total number of

events is �xed.

This relationship between the Poisson and multinomial distributions is im-

portant.

It allows us to onstrut univariate models for ategorial data whose fre-

quenies are multivariate, simply by onditioning on the total number of events.

Example

In the Copenhagen housing example, the distribution of the n

:

= 1681

residents might be taken to be multinomial, with four ategories.

However, it an be modelled as Poisson by onditioning on the observed

total, n

:

. 2

1.3.1 Binomial Distribution

A speial ase of the multinomial distribution, when only two types of events

are observed, so that the variable is binary, merits mention.

This is the binomial distribution:

Pr(N

1

= n

1

jn

:

;�

1

) =

 

n

:

n

1

!

�

n

1

1

(1� �

1

)

n

:

�n

1

The mean and variane of the random variable, N

1

, are given by

E[N

1

℄ = �

1

= n

:

�

1

var[N

1

℄ = n

:

�

1

(1� �

1

)

1.4 Chi-Squared Distribution

If U

i

are random variables having independent standard normal distributions,

with mean 0 and variane 1,

U

i

� N(0; 1)

then U

2

i

has a Chi-squared distribution with one degree of freedom, �

2

1

and

Z

p

=

p

X

i=1

U

2

i

� �

2

p

a Chi-squared distribution with p degrees of freedom and E[Z

p

℄ = p.

Often, we have a random variable, Y

i

, with mean, �

i

, and variane, �

2

, suh

that

U

i

=

Y

i

� �̂

i

�

6



so that

Z =

P

(Y

i

� �̂

i

)

2

�

2

where the variane, �

2

, is known.

For p large, �

2

p

:

= N(p; 2p).

The Chi-squared distribution is a speial ase of the gamma distribution:

f(y) =

y

p

2

�1

e

�

y

2

�

�

p

2

�

2

p

2

1.4.1 Maximum Likelihood Estimate

The maximum likelihood estimate (m.l.e.),

^

 , has asymptoti distri-

bution N[ ; I

�1

( )℄.

Under mild regularity onditions, for n independent observations, we know

that the mean and variane of the sore, U, are

E[U( )℄ = 0

and

E[UU

T

℄ = E[�U

0

℄

= I > 0

where I is the Fisher information.

Expand the sore in a Taylor series about the true value,  

U(

^

 ) = U( ) +U

0

( )

^

 �  

1!

+ : : :

The left hand side is zero.

By the law of large numbers,

lim

n!1

[�U

0

( )℄ = I( )

so that

(

^

 �  )

:

= I

�1

( )U( )

The mean and variane of the right hand side are 0 and I

�1

( ).

Then, sine U( ) is a sum, by the entral limit theorem, asymptotially

^

 � MVN[ ; I

�1

( )℄

Sine,  is typially unknown, any onsistent estimate of I( ), suh as I(

^

 ),

an be used without a�eting the limiting distribution. 2
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This implies, asymptotially, that the standard error of the parameter esti-

mates is the square root of the diagonal elements of I

�1

( ) and that

(

^

 �  )

T

I( )(

^

 �  ) � �

2

p

where p is the dimension of  .

This result is known as Wald's statisti.

Example

For the parameter of the binomial distribution, with

I(�

1

) =

n

:

�

1

(1� �

1

)

Wald's statisti is

n

:

(�̂

1

� �

1

)

2

�

1

(1� �

1

)

=

(n

1

� n

:

�

1

)

2

n

:

�

1

(1� �

1

)

2

Wald's statisti and the asymptoti standard errors have several major

handiaps, espeially in small samples:

� If the log likelihood is not quadrati (i.e. Gaussian) for a parameter, they

an be very misleading.

� They are not invariant under parameter transformations.

Thus, in ategorial data analysis, Wald's statisti and the asymptoti standard

errors should only be used with great are and as an approximation.

1.4.2 Log Likelihood and Deviane

Expand the log likelihood funtion as a Taylor series at  =

^

 :

l( ) = l(

^

 ) + ( �

^

 )

T

l

0

(

^

 )

+

1

2

( �

^

 )

T

l

00

(

^

 )( �

^

 ) + : : :

Sine l

0

(

^

 ) = 0, we have minus two times the log likelihood ratio, l( ) � l(

^

 )

alled the deviane,

D( )

:

= ( �

^

 )

T

I(

^

 )( �

^

 )

For n suÆiently large,

^

 will be lose to the true value,  , and this will be a

good approximation.

As we have seen above,

( �

^

 )

T

I(

^

 )( �

^

 ) � �

2

p

so that, asymptotially,

D( ) � �

2

p

8



where  is the true value, with dimension p.

Example

For the binomial distribution, the deviane is

D(�

1

) = �2

�

n

1

log

�

�

1

�̂

1

�

+ (n

:

� n

1

) log

�

1� �

1

1� �̂

1

��

= 2

2

X

i=1

n

i

log

�

n

i

n

:

�

i

�

In ategorial data analysis, this is often alled G

2

. 2

Now, suppose that we wish to ompare this full model to some submodel,

 

1

, of dimension r < p, nested in 	, i.e. where 	

1

� 	.

We have

�2[l(

^

 

1

)� l(

^

 )℄ = �2f[l( )� l(

^

 )℄� [l( 

1

)� l(

^

 

1

)℄

� [l( )� l( 

1

)℄g

= D( ) �D( 

1

) + 2[l( ) � l( 

1

)℄

The �rst term has a �

2

p

distribution, the seond, �

2

r

, and the third is a positive

onstant, near zero if the orret model is indexed by  

1

. Then,

D( ) �D( 

1

) � �

2

p�r

under  

1

2 	

1

� 	, sine sums of Chi-squared variables are Chi-squared.

1.4.3 Sore

Sine we know that the mean of the sore is zero and its variane is the Fisher

information, and sine the sore is a sum, by the entral limit theorem, asymp-

totially

U( ) � MVN[0; I( )℄

and, hene,

U

T

( )I

�1

( )U( ) � �

2

p

This is alled the sore statisti.

The same result an be obtained in another way.

From the asymptoti normality of the m.l.e., we know that

^

 �  

:

= I

�1

( )U( )

Substituting this into the asymptoti distribution of the deviane, we obtain

D

U

( ) = U

T

( )I

�1

( )U( )

whih will have an asymptoti Chi-squared distribution.

9



The advantage of this statisti, as ompared to the deviane and its normal

approximation, is that it does not require the alulation of

^

 , but depends

only on the �xed value,  .

Example

For the binomial distribution, with

U(�

1

) =

n

1

� n

:

�

1

�

1

(1� �

1

)

and Fisher information as given above, we have the sore statisti

(n

1

� n

:

�

1

)

2

n

:

�

1

(1� �

1

)

=

2

X

i=1

(n

i

� n

:

�

i

)

2

n

:

�

i

whih, in this ase, is idential to Wald's statisti. 2

This is a simple ase of the Pearson Chi-squared statisti, whih is the sore

statisti approximation to the deviane,

D(�

1

) = 2

2

X

i=1

n

i

log

�

n

i

n

:

�

i

�

given above.

Both have an asymptoti Chi-squared distribution.

Example

For the postal workers example, suppose that we entertain the null hypoth-

esis of onstant loss over the 24 months.

The onstant probability of loss is �

i

=

1

24

, whih gives a Pearson statisti

of 243.7 and a deviane of 189.5, both with 23 d.f. 2
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Chapter 2

Contingeny Tables and

Independene

2.1 Contingeny Tables

Throughout this hapter, we shall onentrate on the relationships between

only two variables, sine more omplex situations are more easily handled by

the onstrution of formal models, presented in the next hapter.

2.1.1 Two-way Tables

Suppose that X and Y are two ategorial variables having respetively I and

J di�erent levels.

If individuals are lassi�ed simultaneously aording to both variables, IJ

ombinations are possible.

This an be displayed as a retangular table with I rows and J olumns,

with the ells of the table representing the possible outomes.

When the ells ontain the frequenies, say n

ij

, of outomes in a sample,

the table is alled a ontingeny table.

The marginal totals are represented by n

:j

, n

i:

and n

::

.

Example

Injuries in ar aidents in Florida in 1988 are lassi�ed as to whether a seat

belt was being used at the time or not.

Injury

Seat Belt Fatal Nonfatal Total

No 1601 162527 164128

Yes 510 412368 412878

Total 2111 574895 577006

Here, we have a 2� 2 table. 2

In general, we have an I � J table.

When presenting the frequenies of a ontingeny table as proportions or

perentages, it is important to indiate in whih diretion they are alulated.

11



Example

For the ar aident data, the perentages are

Injury

Seat Belt Fatal Nonfatal Total

No 0.98 99.02 100.00

Yes 0.12 99.88 100.00

Total 0.37 99.63 100.00

Perentages might also be alulated separately for eah type of aident (the

olumns) or globally for the omplete table. 2

2.1.2 Types of Designs

Prospetive Studies

In a prospetive study, individuals are sampled from a population and then

followed over a ertain period of time. Two ases may be distinguished.

1. In a linial trial, the subjets are randomly alloated to one of a number

of di�erent treatments before the followup.

Of all the designs mentioned, this is the only one whih is experimental.

2. In a ohort study, all variables are simply observed as they our over

time.

Cross-setional Studies

A ross-setional study simply observes all variables on individuals at one

given �xed point in time.

The data in the ar aident example ome from suh a study.

Retrospetive Studies

In a retrospetive or ase-ontrol study, subjets are hosen aording to

their response values and then the values of the explanatory variables obtained.

Thus, the explanatory variables are random and the response �xed.

Example

58 married women under treatment for myoardial infartion in England

and Wales during 1968{1972 were eah mathed with three ontrol patients in

the same hospitals who were being treated for something else.

All subjets were asked if they had ever used ontraeptives, yielding the

following table:

Myoardial Infartion

Contraeptive Yes No

Yes 23 34

No 35 132

2

12



2.2 Probability and Dependene

2.2.1 Joint and Conditional Probabilities

Suppose, for the moment, that only the total number of events, n

::

, is �xed.

This will be the ase in ross-setional and ohort studies.

Denote the probability of outome (i; j) by �

ij

.

These probabilities desribe the joint distribution of X and Y , and might

be taken to have a multinomial distribution.

The marginal distributions are obtained by summing the joint probabilities

to obtain row or olumn totals.

Denote these by

�

i:

=

X

j

�

ij

�

:j

=

X

i

�

ij

These marginal probabilities ontain no information about the relationships

between the variables. Only the joint probabilities do.

Often, one variable, say Y , is taken to be a response and the other, an

explanatory variable.

In other words, Y is random, but X is �xed, so that the joint distribution

is no longer meaningful. Suh will be the ase in a linial trial.

The distribution of Y for �xed X, with probabilities

�

jji

=

�

ij

�

i:

is alled the onditional distribution.

Then, we wish to ompare the onditional distribution of Y at various levels

of the explanatory variable, X.

The maximum likelihood estimates an be shown to be

�̂

ij

=

n

ij

n

::

for the joint distribution,

�̂

i:

=

n

i:

n

::

�̂

:j

=

n

:j

n

::

for the marginal distributions, and

�̂

jji

=

n

ij

n

i:

for the onditional distribution.

Example

In an Amerian soial survey, people were asked about their opinions on the

death penalty and gun registration, with the following results:

13



Death Penalty

Gun Registration Favour Oppose

Favour 784 236

Oppose 311 66

The maximum likelihood estimates of the joint probabilities are (0.56, 0.17,

0.22, 0.05), of the marginal probabilities, (0.73, 0.27) for gun registration and

(0.78, 0.22) for the death penalty, and of the onditional probabilities, (0.77,

0.23) for those favouring gun registration and (0.83, 0.17) for those opposing

it. 2

2.2.2 Independene

The variables X and Y are statistially independent if all joint probabilities

equal the produt of the orresponding marginal probabilities:

�

ij

= �

i:

�

:j

8i; j

This is also equivalent to

�

jji

= �

:j

8i; j

Eah onditional distribution of Y is equal to the marginal distribution.

Thus, the response, Y , does not depend on the �xed onditions, X, when

the probabilities are the same for all of those onditions.

Example

In the death penalty example, neither variable might be taken as a response

with the other �xed, so we look at the joint probabilities.

Under independene, they are estimated as (0.57, 0.16, 0.21, 0.06) as om-

pared to (0.56, 0.17, 0.22, 0.05) given above, indiating some dependene.

In the ar aident example, the type of injury might be taken as a response,

given the fat that a seat belt was being worn at the time or not.

The onditional probability of a fatal aident, given that a seat belt was

worn, is estimated as 0.0012 ompared with 0.0098 without a seat belt.

Again, this indiates a dependene of type of aident on whether a seat

belt was worn or not. 2

2.2.3 Comparison of Probabilities

All estimates involved in the omparison of probabilities an be obtained di-

retly from the maximum likelihood estimates of the probabilities, due to their

invariane property.

Di�erenes

For the onditional probabilities, any two rows of the table an be ompared

by taking the appropriate di�erenes of probabilities: �

jji

� �

jji

0 for rows i and

i

0

.
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Suh di�erenes must lie between �1:0 and 1.0. If all di�erenes are zero,

the onditional probability distributions are idential and the two variables are

independent.

The drawbak of this rather intuitive approah is that a di�erene in prob-

abilities of given size may have greater importane when the proportions are

lose to the limits, 0 or 1, than in the middle, near 0.5.

Relative Risk

The ratio of onditional probabilities under di�erent onditions is known as

the relative risk, �

jji

=�

jji

0 , whih an take any nonnegative real value.

If all relative risks are equal to unity, the variables are independent.

Relative risks will di�er depending on whih variable is taken as response

and whih as explanatory.

Thus, it is not appropriate in situations where there is no suh distintion

among the variables.

Example

In the ar aident example, the relative risk of a fatal aident is estimated

as

1601

1601+162527

510

510+412368

= 7:90

when not wearing a seat belt as ompared to wearing one, while that of a

nonfatal aident is

162527

1601+162527

412368

510+412368

= 0:99

Nonseat belt wearers have a higher risk of a fatal aident than seat belt wearers,

but not of a nonfatal aident.

This indiates a dependene of type of aident on whether or not a seat

belt was worn. 2

Odds Ratio

The ratio of probabilities under the same onditions is known as the odds,

�

jj

0

ji

=

�

jji

�

j

0

ji

=

�

ij

�

ij

0

whih an take any nonnegative real value.

The log odds is often alled the logit.

�

jj

0

ji

is greater than unity when response j is more probable than response

j

0

and onversely.

For independene, the vetor of odds under eah ondition, i, must be the

same.

Example
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In the ar aident example, the odds of a fatal as ompared to a non-

fatal injury is estimated to be 1601/162527=0.0099 without a seat belt and

510/412368=0.0012 with one.

Again, this indiates a dependene of type of aident on whether or not a

seat belt was worn. 2

Note that the estimation of the odds does not involve the marginal frequen-

ies.

The odds ratio or ross produt ratio is de�ned as

�

ij;i

0

j

0

=

�

jj

0

ji

�

jj

0

ji

0

=

�

jji

�

j

0

ji

0

�

j

0

ji

�

jji

0

=

�

ij

�

i

0

j

0

�

ij

0

�

i

0

j

whih again an take any nonnegative real value.

Degrees of dependene are measured from unity, whih indiates indepen-

dene.

A value greater than unity indiates the same degree of dependene, but in

the opposite diretion, as its reiproal, whih will be less than unity.

Thus, the ranges are not symmetri, being (1;1) above unity and (0; 1)

below.

However, the odds ratio is symmetri in the variables, as an be seen from

its de�nition in terms of joint probabilities.

Often, it is more onvenient to use the log odds ratio,

�

ij;i

0

j

0

= log(�

ij;i

0

j

0

)

whih an take any real value and is symmetri in measuring dependene on

eah side of independene (at 0).

Example

In the ar aident example, the estimated odds ratio is

1601=162527

510=412368

= 7:96

and the orresponding log odds ratio, 2.075.

Both indiate a positive dependene between fatal injuries and not wearing

a seat belt, i.e. that there is a muh greater hane of a fatal aident without

a seat belt. 2

However, one major problem with any ratio of probabilities, suh as relative

risk and odds, is that its estimate is not de�ned if a denominator probability is

estimated as zero.

The log odds is not de�ned if any probability is estimated as zero.

Sampling Distributions
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In ohort and ross-setional studies, the total number of observations to

be made is usually �xed.

Thus, a multinomial distribution over all ombinations of ategories is ap-

propriate. This is known as multinomial sampling.

In a linial trial, the marginal distribution of the treatments is �xed.

Thus, the frequenies for eah �xed value of the explanatory variables will

have a multinomial distribution.

This is known as independent or produt multinomial sampling.

However, when a distintion is to be made between response and explana-

tory variables, it usually makes sense to treat all sampling shemes as if they

were produt multinomial.

2.3 Charateristis of the Odds Ratio

2.3.1 Retrospetive Studies

As we have seen, the odds ratio is symmetri in the variables and its estimation

does not involve the marginal frequenies.

Due to these harateristis, it has a further useful property.

It an measure dependene even when the study is performed \bakwards",

as in a retrospetive or ase-ontrol study.

There, the marginal distribution of the response variable is �xed by the

design.

Example

In the myoardial infartion example, the marginal distribution of myoar-

dial infartion is �xed by the design of the study.

The dependene of infartion on ontraeptive use, as measured by the log

odds ratio, is

log

�

23� 132

34� 35

�

= 0:937

indiating a strong positive relationship between them. 2

2.3.2 Relation to Relative Risk

For a 2� 2 table, we have

�

11;22

=

�

1j1

�

1j2

�

�

2j2

�

2j1

=

�

1j1

�

1j2

�

1� �

1j2

1� �

1j1

The �rst fator is the relative risk.

If the onditional probability of response one, �

1ji

, is small for both groups,

the seond fator will be lose to unity and the relative risk and odds ratio will

be very similar.
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Example

In the ar aident example, the onditional probabilities of fatal injury are

0.0099 for nonseat belt wearers and 0.0012 for seat belt wearers.

The odds ratio was found to be 7.96 while the relative risk of a fatal aident

is 7.90. 2

This result is espeially important in retrospetive studies where the appro-

priate onditional probability estimates are not available, so that the relative

risk annot be diretly estimated.

2.3.3 I � J Tables

In the 2� 2 table, all four possible odds ratios are simply permutations of the

frequenies in the numerator and denominator.

For larger tables, a number of distint odds ratios an be alulated.

The (I � 1)(J � 1) loal odds ratios

�

ij;i+1;j+1

=

�

ij

�

i+1;j+1

�

i;j+1

�

i+1;j

i = 1; : : : ; I � 1; j = 1; : : : ; J � 1

between adjaent ategories determine all possible odds ratios and ontain all

of the information in them.

However, the onstrution of a minimal set of odds ratios is not unique.

Another possibility would be to make omparisons with the �rst ategory:

�

11;ij

=

�

11

�

ij

�

1j

�

i1

i = 2; : : : ; I; j = 2; : : : ; J

2.4 Tests

2.4.1 Goodness of Fit

If the statistiian has some spei� model in mind for the data, its goodness of

�t an be tested.

Any of the statistis disussed in Chapter 1 might be used. The deviane

gives a likelihood ratio test and the sore the Pearson Chi-squared test.

In the simplest ases, the omplete model is known from theory, so that all

probabilities an be alulated without knowledge of the data.

Example

In a geneti experiment, with two gene types, G-g and H-h, a number of

Pharbitis plants were bred, yielding the table

G g

H 123 27

h 30 21

18



The theoretial probabilities are (

9

16

;

3

16

;

3

16

;

1

16

).

The deviane, using the multinomial distribution, is

2

�

123 log

�

123 � 16

9� 201

�

+ 30 log

�

30� 16

3� 201

�

+27 log

�

27 � 16

3� 201

�

+ 21 log

�

21� 16

1� 201

��

= 10:61

Sine the total number of plants is �xed, there are three degrees of freedom,

orresponding to three of the four observed frequenies.

Then, the Chi-squared value is large enough to indiate signi�ant departure

from the model.

The Pearson statisti is

�

123�

9�201

16

�

2

9�201

16

+

�

30�

3�201

16

�

2

3�201

16

+

�

27�

3�201

16

�

2

3�201

16

+

�

21�

1�201

16

�

2

1�201

16

= 11:14

giving the same onlusion. 2

2.4.2 Independene

Independene is a speial model whih very often is of interest.

Reall that it is de�ned by

�

ij

= �

i:

�

:j

8i; j

Although the probabilities are not ompletely de�ned by the theory, as

they were in the previous setion, this relationship among them is spei�ed and

plaes a onstraint on their values.

We an proeed by estimating the required marginal probabilities from the

data and using them in our deviane or Pearson statisti.

However, the degrees of freedom must be adjusted to allow for eah proba-

bility estimated.

Example

For the ar aident example, the deviane is 2041 and the Pearson statisti

2338.

For the death penalty and gun registration example, they are respetively

5.32 and 5.15.

For the myoardial infartion example, they are respetively 7.87 and 8.33.

In eah ase, two marginal probabilities are estimated so that the degrees

of freedom equal one.

In all ases, the hypothesis of independene is rejeted. 2
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2.4.3 Fisher's Exat Test

The preeding Chi-squared tests require the asymptoti assumption that the

sample size is very large.

In many situations, espeially where it is very ostly to obtain observations

or where the phenomenon under study is very rare, only small frequenies will

be available in a table.

In suh ases, it is often even more important to make an aurate inferene

about the meaning of the results.

Under the null hypothesis of independene, an exat distribution of the ob-

servations an be obtained by onditioning on both sets of marginal frequenies.

The result is a hypergeometri distribution, whih, for the 2� 2 table, may

be written

�

n

1:

n

11

��

n

2:

n

:1

�n

11

�

�

n

::

n

:1

�

Here, the only random element is n

11

whih, when the margins are �xed, de-

termines all frequenies in the table

To obtain a test, all possible tables with the given marginal frequenies must

be enumerated.

Those with probabilities at least as small as for that observed are retained

and those probabilities summed to give a P-value.

Example

For the myoardial infartion example, the P-value for Fisher's exat test

an be alulated to be 0.0052.

This ompares with an asymptoti P-value of 0.0050 for the deviane and

0.0039 for the Pearson statisti.

The similarity among the values is not surprising, given the relatively large

number of observations in this table. 2
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Chapter 3

Log Linear and Logisti

Models

The logisti and log linear models for ategorial data use respetively the

binomial and Poisson distributions for regression analysis.

Hene, they are generalized linear models, using respetively the logit and

the log links.

In fat, logisti regression is just a speial ase of a log linear model and all

logisti models an be �tted as log linear models.

3.1 Log Linear Models

3.1.1 Poisson Regression

To introdue log linear models, we shall �rst look at the simplest ase, when

there is only one variable, a one-dimensional table of frequenies or ounts.

Poisson regression, as the name implies, uses the Poisson distribution.

With the log link, this an be written

log(�

i

) =

X

k

�

k

x

ik

where �

i

= E[N

i

℄ is the mean of the Poisson distribution.

In the speial ase of an ANOVA type situation, the x

ik

will be indiator or

fator variables.

If the values of the variable are numerial quantities, three simple models

are possible.

The simplest, or null, model, with only x

i0

= 1, �ts a ommon mean to all

ategories.

The most omplex, or saturated, �ts a di�erent parameter value to eah

ategory using a fator variable, or, equivalently, a series of indiator variables.

In between are situated the usual regression models, of whih the most

ommon is a simple linear Poisson regression:

log(�

i

) = �

0

+ �

1

x

i
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Note that, in terms of the mean values, this is an exponential urve:

�

i

= �

0

0

e

�

1

x

i

where �

0

0

= e

�

0

.

Sine, in all models, the total number of observations is �xed, Poisson re-

gression is equivalent to �tting a multinomial distribution.

Comparison of models is ustomarily performed using the deviane.

Example

Consider a study where subjets were asked to reall one reent stressful

event.

The number of months prior to the study when the event ourred was

reorded:

Months 1 2 3 4 5 6 7 8 9

Subjets 15 11 14 17 5 11 10 4 8

Months 10 11 12 13 14 15 16 17 18

Subjets 10 7 9 11 3 6 1 1 4

The model with a ommon mean for all 18 months has a deviane of 50.84 and

17 d.f., indiating a poor �t.

The log mean is estimated as 2.100 with s.e. 0.08248.

As always, the saturated model has zero deviane and zero d.f., sine it �ts

perfetly, having a di�erent mean for eah ategory.

The linear regression model, where x

i

is the number of months, has a de-

viane of 24.57 with 16 d.f., indiating a reasonable �t and a very signi�ant

improvement over the null model.

The parameters are estimated as

^

�

0

= 2:803 and

^

�

1

= �0:08377 showing

that the number of subjets realling an event dereases over time. 2

3.1.2 Two-way Tables

In a two-way table, we have two ategorial variables whih must be related to

the mean.

Thus, the saturated log linear model for a two-way table may be written as

a Poisson regression:

log(�

ij

) = �+ �

i

+ �

j

+ 

ij

in the familiar ANOVA-style notation.

As usual, some arbitrary onstraints must be plaed on the parameters for

them to be identi�able.

The \onventional" onstraints are

P

i

�

i

= 0, et., although very few sta-

tistial omputer pakages use them.

Here, we hoose to set the �rst element to zero: �

1

= 0, et.

If there is no interation between the variables, they are independent, as

disussed in the previous hapter.
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Thus, when 

ij

= 0 8i; j, we obtain the independene model.

The deviane of this model is that given in the previous hapter.

The estimates of 

ij

in the saturated model are a minimal set of log odds

ratios, the set produed depending on the onstraints hosen.

This implies that log linear models may be �tted to data from any of the

study designs desribed in the previous hapter, and, in partiular, to retro-

spetive studies.

The hoie of whih variable (or both) is the response does not a�et the

estimate of the interation log odds ratio parameter.

Example

For the myoardial infartion example of the previous hapter, the saturated

model yields parameter estimates, �̂ = 3:135 (s.e. 0.2085), �̂

2

= 0:4199, (s.e.

0.2684),

^

�

2

= 0:3909, (s.e. 0.2700), ̂

22

= 0:9366, (s.e. 0.3302).

As expeted, the value of ̂

22

is idential to the log odds ratio alulated in

the previous hapter.

The deviane of 7.8676 with 1 d.f. for the independene model is also iden-

tial to that obtained there. 2

If one or more of the variables in the table refer to measurements, as in

the event reall example above, the ategorial variables an be replaed by

ontinuous ones in the interations in the log linear model.

However, in order to �x the marginal totals, fator variables should be used

for the main e�ets.

Example

Consider data on the number of albinos in families of di�erent sizes.

Number of Size of family

Albinos 4 5 6 7

1 22 25 18 16

2 21 23 13 10

3 7 10 18 14

4 0 1 3 5

5 � 1 0 1

6 � � 1 0

This is a 4�6 table, but of a speial form sine three ategories are impossible.

These are alled strutural zeroes and should not be inluded in the data

set when the models are �tted.

The other zeroes in the table are alled sampling zeroes sine, in another,

perhaps larger, sample positive frequenies might be observed.

If we �t the independene model,

log(�

ij

) = �+ �

i

+ �

j

the deviane is 24.326 with 12 d.f., whih gives a P-value of 0.01836, so that we

rejet the hypothesis of independene.
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If we use a linear interation between family size and number of albinos, the

model is

log(�

ij

) = �+ �

i

+ �

j

+ x

1i

x

2j

where x

1i

refers to the number of albinos and x

2j

to the family size.

For this model, the deviane is 15.774 with 11 d.f. for a P-value of 0.1497

so that the model �ts aeptable well.

The interation parameter is estimated as  = 0:2076 (s.e. 0.07283), reveal-

ing a positive relationship between family size and albinism. 2

3.1.3 Multi-way Tables

The extension to higher dimensional tables is diret, as in the lassial ANOVA

ase.

Here, it is useful to introdue a di�erent notation. In addition to the `+',

the symbols `.' and `*' will be used.

The `+' has the usual meaning, while the `.' signi�es an interation.

The `*' is a more omplex operator, with the following meaning:

W*X=W+X+W.X

This will indiate a saturated model, with interation, for a two-way table, suh

as that used in the previous setion.

Thus,

W*X*Z=W+X+Z+W.X+W.Z+X.Z+W.X.Z

is the saturated model for a three-way table, and so on.

This is known as the Wilkinson and Rogers notation.

With an inreased number of variables indexing the table, the ways of hoos-

ing the response variables beomes more omplex.

Thus, all variables might be taken to be responses, with no explanatory

variables, as in the gun registration and death penalty example, or any smaller

number down to only one response variable.

Usually, all marginal totals for the explanatory variables are taken to be

�xed, so that a minimal model would be

R1+R2+R3+� � �+X1*X2*X3*� � �

where Rn indiates a response variable and Xn an explanatory variable.

This is a model for independene among all responses and of responses on

explanatory variables.

Assoiation among responses an be introdued as R1.R2, et., and depen-

dene of responses on explanatory variables as R1.X1, et.

Any neessary degree of interation an be inluded.

Example

Consider a study of the dependene of delinqueny on soioeonomi status

and on whether the person onerned had been a boy sout.
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Soioeonomi Boy Delinquent

Status Sout Yes No

Low Yes 10 40

No 40 160

Medium Yes 18 132

No 18 132

High Yes 8 192

No 2 48

This is a 2� 2� 3 ontingeny table.

If we let D, BS, and SS signify, respetively, the variables delinquent, boy

sout, and soioeonomi status, the minimal model is

D+BS*SS

whih has a deviane of 32.752 with 5 d.f.

Thus, we rejet the hypothesis that delinqueny is simultaneously indepen-

dent of soioeonomi status and having been a boy sout.

If we introdue the dependene of delinqueny on boy sout,

D+BS*SS+D.BS

the deviane is redued by 6.882 with 1 d.f.

The parameter estimate of -0.579, orresponding to D.BS, indiates that

delinqueny is lower among former boy souts.

If, instead, we introdue the dependene on soioeonomi status,

D+BS*SS+D.SS

it is redued by 32.75 to about zero with 3 d.f.

Thus, the boy sout variable is no longer needed in the model when soioe-

onomi status is present. By itself, it explains di�erenes in delinqueny, but

this is beause it is linked with soioeonomi status.

The parameter estimates for dependene of delinqueny on soioeonomi

status, orresponding to D.SS, are (0:000; 0:6061; 1:792), showing that nondelin-

queny is higher in the higher statuses. 2

3.2 Logisti Models

The logisti model is a speial ase of log linear models when there is only one

response variable, and that variable has only two ategories.

The binomial distribution is used with the logit link.

3.2.1 Binary Data

This model an be more easily applied to individual data whih have not been

grouped into the frequenies of a ontingeny table than an a log linear model.
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Suh data are known as binary data.

If there are ontinuous variables available, having many distint values, this

individual approah will be the only one available to analyze suh data, unless

the values of those variables are grouped into a small number of ategories.

The general logisti regression model is now

log

�

�

i

1� �

i

�

=

X

k

�

k

x

ik

and the speial ases are as for log linear models.

However, in distintion to log linear models, the response variable is not

inluded among the x

ik

.

As we shall see, all terms inluded in the model are, in fat, `interations'

with the binary response variable.

Example

Let us look at a small data set with 7 individuals, whih will illustrate the

relationships among the various approahes.

X1 X2 Y

1 1 0

1 2 1

1 2 0

2 1 0

2 2 1

1 2 1

1 1 1

These are individual data, not grouped into a ontingeny table.

For the response variable, Y , a one indiates the ourrene of the event of

interest.

When we �t the independene model

log

�

�

i

1� �

i

�

= �

we obtain a deviane of 9.561 with 6 d.f.

However, in ontrast to the ase of frequeny data in a ontingeny table,

here, for binary data, the deviane gives no indiation of goodness of �t.

Adding X1 redues this deviane by 0.058, and X2 by 1.185, eah with 1

d.f.

As an example, the parameter value for X2 is 1.792.

These di�erenes in devianes are interpretable in the usual way.

The saturated model has a deviane of 6.592 with 3 d.f., in ontrast to the

zero deviane of saturated models in ontingeny tables.

The di�erene in deviane between the saturated and the null model is 2.969

with 3 d.f. 2
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3.2.2 Grouped Binomial Data

Logisti models an also be applied to the frequeny data of ontingeny tables

when there is one response variable and it is binary.

The same proedures are used as for individual binary data and the results

will be idential in ases where the data ould be lassi�ed into a ontingeny

table.

Example

Our binary data example an be grouped into the following 2� 2 � 2 on-

tingeny table:

Y

X1 X2 0 1

1 1 1 1

1 2 1 2

2 1 1 0

2 2 0 1

The deviane for the null model is now 2.969 with 3 d.f., whih was our di�erene

in deviane above.

This may here be interpreted as a goodness of �t.

The same redutions in deviane are found as previously and the parameter

value for X2 is again 1.792, so that all of our results are idential.

However, we an also �t this table as a log linear model.

The independene model

Y+X1*X2

gives a deviane of 2.969, as might be expeted.

The parameter estimate for the term, Y.X2, in the model

Y+X1*X2+Y.X2

is 1.792 as previously.

Thus, all three approahes give absolutely idential results. 2

3.2.3 Alternative Link Funtions

Binary models an sometimes be interpreted as arising when some underlying

ontinuous stimulus is present whih only gives a positive response after some

ritial level is reahed.

If this underlying ontinuous variable has a logisti distribution, the result-

ing binary response will follow a logisti regression.

The underlying ontinuous distribution an be altered by speifying a dif-

ferent link funtion.

The two most ommonly used are the probit, orresponding to a normal

distribution, and the omplementary log log, for an extreme value distribution.
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3.3 Ordinal Variables

3.3.1 Fixed Sales

All of the models so far presented in this hapter impose no struture on the

values of the variables.

The ategories an be reordered in any way without hanging the results.

If a variable does have an ordering, this will lead to a loss of information.

If reasonable, the simplest approah is to assign numerial values to the

ategories, often just a linear sale involving the onseutive integers.

If suh a sale an be derived, the methods already desribed an be used

diretly, sine the variable has been promoted to being ontinuous.

Example

Consider the lassi�ation of shizophreni patients in a London institution,

where the types of visit are (A) goes home or visited regularly, (B) visited less

than one a month and does not go home, and (C) never visited and never goes

home.

Length Type of Visit

of Stay A B C

2-10 43 6 9

10-20 16 11 18

>20 3 10 16

Here, both variables might be taken to be ordinal.

The independene model has a deviane of 38.353 with 4 d.f.

The model with a linear sale for visit and nominal for length has deviane

6.46 while that with a linear sale for length and nominal for visit has 0.02,

both with 2 d.f.

This indiates that the linear sale is aeptable for length of stay, but not

for type of visits allowed. 2

3.3.2 The Log Multipliative Model

The logial extension of the �xed sale model is to estimate the position of the

ategories on an arbitrary sale.

This model will have the form

log(�

ij

) = �+ �

i

+ �

j

+ x

i

Æ

j

where Æ

j

is an unknown sale for the ordinal variable indexed by j.

The last term of this model ontains a produt of two unknown parameters,

hene the name, log multipliative model, so that it is not a log linear model

and annot be estimated by standard software.

Example
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When this model is applied to the shizophreni data, the estimated sale

is

^

Æ

j

= (0:00; 0:98; 1:00), with deviane 0.02 on 2 d.f., when length has a linear

sale as above.

This indiates that the seond and third ategories of patients, who never

go home, are similar and might be lassed together.

The regression oeÆient is ̂ = 1:63, showing that the longer is the length,

the more hane there is of the patient being higher on the visit sale. 2

3.3.3 The Continuation Ratio Model

A seond type of approah to ordinal variables regroups the ategories of re-

sponse instead of reating a sale.

It is only appliable to a response variable.

In the ontinuation ratio model, eah suessive ategory is onsidered in

turn and the frequeny of response at least up to that point is ompared to that

for the next higher ategory.

In this way, the original ontingeny table, with a J ategory ordinal sale

is onverted into a series of J � 1 subtables, eah with a binary ategorization,

lower/higher than that given point.

Sine this is only a reparametrization of the multinomial distribution for

the table, a standard logisti model an be applied to the reonstruted table.

Example

For the shizophreni data, the reonstruted table is

Length Type of Visit

of Stay A B

2-10 43 6

10-20 16 11

>20 3 10

A+B C

2-10 49 9

10-20 27 18

>20 13 16

The logisti model

log

 

�

ij

1� �

ij

!

= �+ �x

i

+ �

j

gives a deviane of 2.69 with 3 d.f.

The parameter for length of stay is �̂ = �2:36, indiating less hane of

being in the lower ategory as the length of stay inreases. 2

3.3.4 The Proportional Odds Model

The proportional odds model, the ontinuation ratio model, exept that the

frequeny up to a given point is ompared to that for all points higher.
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Again, a new table is onstruted, but, this time, it is not a simple re-

parametrization of the multinomial distribution, so that the logisti model an-

not be applied. Speial software is required.

Example

For the shizophreni data, the reonstruted table is

Length Type of Visit

of Stay A B+C

2-10 43 15

10-20 16 29

>20 3 26

A+B C

2-10 49 9

10-20 27 18

>20 13 16

This model gives a deviane of 3.55 with 6 d.f.

The parameter for length of stay is �3:05, again indiating less hane of

being in the lower ategory as the length of stay inreases. 2

3.4 Square Tables

One speial type of table whih is frequently enountered is the square table of

two or more dimensions.

This may arise, for example, in panel studies, where the same question is

asked to the same people at two or more di�erent points in time.

It is often useful for mobility and migration studies, and for hanges in voter

preferenes.

3.4.1 Quasi-independene and the Mover-Stayer Model

One harateristi of suh tables is that the frequenies on the main diagonal

are usually very large.

This arises beause a large majority of individuals do not hange ategories

between time points.

In many ases, the responses would be independent at di�erent time points

if it were not for these high frequenies.

Suh a model �tted without the diagonal is known as quasi-independene.

Two type of people may be distinguished in a given population: those who

may potentially hange (the movers) and those who will never hange (the

stayers).

This is alled the mover-stayer model.

However, between any two time points when observations are made, some

of the movers will not have hanged and will be inextriable mixed up with the

stayers.
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Thus, we know that individuals o� the main diagonal are movers. But,

movers and stayers are mixed up on the diagonal.

For this reason, we estimate the model from the o�-diagonal frequenies

only.

The number of movers who did not move an then be estimated.

Example

A study was made of migration among four areas of Britain between 1966

and 1971. We immediately notie the large diagonal frequenies.

1971 Central Lans. West Greater

1966 Clydes. & Yorks. Midlands London

Central

Clydes. 118 12 7 23

Lans.

& Yorks. 14 2127 86 130

West

Midlands 8 69 2548 107

Greater

London 12 110 88 7712

The usual independene model gives a deviane of 19884 with 9 d.f.

When we �t the same model, but without the main diagonal, the deviane

is only 4.37 with 5 d.f.

This result is somewhat surprising sine it means that the arrival point is

independent of the origin, and thus of the distane travelled.

The number of potential movers who did not move between 1966 and 1971

is estimated to be (1:6; 95:2; 60:3; 154:6). 2

3.4.2 Symmetry

One may wish to know if the probability of hange between two ategories

between two time points is the same in both diretions.

This is alled the symmetry model.

log(�

ij

) = 

ij

with 

ij

= 

ji

It implies that the marginal distributions are idential, instead of being �xed

at the observed values, as is usually the ase for log linear models.

A less demanding model is produed if the exhange is idential in both

diretions within the limits imposed by the observed marginal distributions.

This is known as quasi-symmetry:

log(�

ij

) = �+ �

i

+ �

j

+ 

ij

with 

ij

= 

ji

On the other hand, if the marginal distributions are idential but there is

not reiproal exhange, we have marginal homogeneity.

This is not a log linear model, although the other two are.
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Example

For the migration example, the symmetry model gives a deviane of 9.13

with 6 d.f.

Sine this is an aeptable �t, the quasi-symmetry model will also �t well:

2.67 with 5 d.f.

The parameter values (0:00;�0:55; 0:30; 1:79; 2:22; 2:01) indiate that the

highest migration is between Lanashire/Yorkshire and London, and the lowest

between Central Clydesdale and the West Midlands. 2
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Chapter 4

Diagnostis

A �rst step, where possible, is always to plot the model along with the data.

Example

Throughout this hapter, we shall take as an example the Poisson regression

for the reall of events over 18 months.

We plot our �tted log linear regression model with the observations:
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Most of the standard diagnosti tehniques for normal theory models an

easily be extended to generalized linear models, and, hene, to log linear and

logisti models.

4.1 Residuals

In the study of departures from a model, the role of residuals is essential.

Plots of residuals are very useful in deteting departures from the model.
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4.1.1 Raw Residuals

The raw residual for eah observation is its di�erene from its estimated ex-

peted value:

"

R

i

= y

i

� E[Y

i

℄

= y

i

� �̂

i

= y

i

� ŷ

i

For ategorial data, suh residuals are of little use, sine their variability de-

pends on E[Y

i

℄.

4.1.2 The Hat Matrix

We have

"

R

= y� �̂

= y�
^
y

= (I

n

�H)y

so that H is alled the hat matrix, sine it puts the hat on y.

It is idempotent and symmetri.

For generalized linear models,

H =W

1

2

X(X

T

WX)

�1

X

T

W

1

2

where W is the diagonal of the information matrix for the linear preditor.

For the Poisson distribution, it ontains the elements, �

i

, and for the bino-

mial distribution, n

i

�

i

(1� �

i

).

4.1.3 Studentized Residuals

Sine, in generalized linear models, the variane is a funtion of the mean, it is

useful to standardize the raw residuals by dividing them by the standard error

to obtain a standardized studentized residual:

"

S

i
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y

i

� �̂

i

p

w

ii

(1� h

ii

)

where w

ii

and h

ii

are the i

th

diagonal elements of the weight and hat matries.

This is also sometimes alled the standardized Pearson residual beause

(y

i

�ŷ

i

)

2

=w

ii

is the ontribution of the i

th

observation to the generalized Pearson

(sore) statisti.
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4.1.4 Deviane Residuals

Standardized deviane residuals are de�ned as the ontribution of the i

th

obser-

vation to the (lak of �t) deviane:
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where ~�

i

is the value of the linear preditor, �, whih maximizes the unon-

strained likelihood for the data.

4.1.5 Likelihood Residuals

Another possibility is to ompare the deviane for a �tted model for the om-

plete set of observations with that when eah observation, in turn, is omitted.

Sine this requires a great deal of alulation, it may be approximated by

"

L

i

= sign(~�

i

� �̂

i

)

q

h

ii

("

S

i

)

2

+ (1� h

ii

)("

D

i

)

2

a weighted average of the previous two.

4.1.6 Residual Plots

Residuals an be plotted against a variety of statistis, eah providing di�erent

information about departures from the model.

In an index plot, the residuals are shown against the orresponding obser-

vation number.

Ordering in this way may make identi�ation of departures from the model

easier.

If the order has intrinsi meaning, for example, as the order of olletion of

the data in time, the plot may indiate systemati variability in this sense.

Residuals an be plotted against the estimated means or estimated linear

preditor.

They may also be plotted against eah of the explanatory variables.

Finally, a normal probability plot shows the residuals, arranged in asending

order, against an approximation to their expeted values, whih is given by a

standard normal distribution, �

�1

[(i�

3

8

)=(n+

1

4

)℄.

If the model �ts well, this should yield a straight line at 45 degrees.

A half-normal plot uses the absolute values of the residuals against �

�1

[(i+

n�

1

8

)=(2n+

1

2

)℄.

Example

Let us ompare the residual plots for the regression model with those for

the null model when �

1

= 0.

The index plots of the studentized residuals are, for the null model,
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and, for the regression model,
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The null model shows positive residuals on the left and negative residuals

on the right.

With a onstant mean, early values are underestimated and later values

overestimated.

The plot for the regression model shows no suh trend.

The plots of residuals against the expeted values are, for the null model,
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and, for the regression model,
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For the null model, all observations have the same estimated value. The

regression model shows no abnormalities. The residual plot against the ex-

planatory variable is idential to the index plot.

The normal probability plots are, for the null model,
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and, for the regression model,
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The departure from a straight line for the null model indiates that it �ts

poorly.

The regression model is muh loser to the straight line, although it is still

urved. 2

4.2 Isolated Departures from a Model

When only a very few observations do not �t the model, several possibilities

may be onsidered.

1. there may be some error in hoosing ertain members of the population

sampled or it may not be homogeneous for the fators onsidered,

2. there may be some error in reording the results, either on the part of

people doing the reording or transribing it, or on the part of the re-

spondents, not understanding a question,

3. some rare ourrene may have been observed,

4. the model may not be suÆiently well spei�ed to aount for ompletely

aeptable observations, thus, pointing to unforeseen aspets of the phe-

nomenon under study.

If there is no error, one will eventually have to deide if the departure is impor-

tant enough to modify the model to take it into aount. This will be overed

in the next setion.

4.2.1 Outliers

Any individual observation whih departs in some way from the main body of

the data is alled an outlier.

It will not be well �tted by the model.
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Outliers may be due to extreme values of the random variable (the response)

or of one or more of the explanatory variables.

The likelihood that the i

th

observation is an outlier is obtained by �tting

the model without that observation. This yields a redution in deviane for the

possibility that it is an outlier, whih an be approximated by

"
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2

However, in omplex situations, it is rarely wise simply to eliminate an

outlier, unless it is known to be an error.

Eliminating one outlier and re�tting the model will quite often result in a

seond outlier appearing, and so on.

It is usually preferable, either to �nd out why the model annot easily

aommodate the observation or to aept it as a rare value.

4.2.2 Inuene

An inuential observation is one whih, when hanged by a small amount or

omitted, will modify substantially the parameter estimates of the model.

It is an observation whih may have undue impat on onlusions from the

model.

However, it may not be an outlier, in the sense that it may have a small

residual.

Leverage is an indiation of how muh inuene an observation has.

A measure of leverage is the diagonal element of the hat matrix, h

ii

, sine

it is the e�et of the observation, y

i

, in the determination of �̂

i

.

It is a measure of the distane of that observation from the remaining ones.

Example

The plots of residuals against leverage are, for the null model,
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and, for the regression model,
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All points have the same leverage in the null model.

No points show large leverage in the regression model.

All of the residual plots seem to point to the regression model �tting well.2

Cook's statisti is used to examine how eah observation a�ets the omplete

set of parameter estimates.

The parameter estimates, with and without eah observation, are ompared

using
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^

� and

^

�

(i)

.

This an be approximated by
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These are most usefully presented as a plot against index values.

Example

The index plots of Cook's statisti are, for the null model,
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and, for the regression model,
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We see that observations 1, 16, and 17 inuene most the parameter esti-

mates for the null model and 13 for the full model. 2

4.3 Systemati Departures from a Model

Systemati departures from a model an often be deteted from the residual

plots already desribed.

Certain patterns will appear when the residuals are plotted against some

other statisti.

Misspei�ation of a model may ome about in a number of ways:

1. an inorret probability distribution (for example, overdispersion),

2. an inorret spei�ation of the way in whih the mean hanges with the

explanatory variables,

� the systemati omponent may be misspei�ed,
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� the link funtion may not be appropriate,

3. missing variables,

4. inorret funtions of the explanatory variables in the model or not enough

suh di�erent funtions,

5. dependene among the observations, for example over time.

These an be veri�ed by �tting the appropriate models and omparing the

likelihoods.

Sometimes, the appropriate sore statistis are heked or plotted, sine

they do not involve atually �tting the new, more omplex model.

For ategorial data, two of the most important things to verify are overdis-

persion and the appropriateness of the link funtion.
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