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Abstract 

Conditions are investigated whereby the likelihood function contains all of the relevant infor- 
mation from the data necessary for inference, with no knowledge of the sample design. Certain 
designs which result in the same reported likelihood for the final stopped experiment in fact 
have different underlying likelihood Junctions. 

For a likelihood function to be valid, it must, at least, contain the minimum information 
necessary for the experiment to be performable; this is shown to be the minimal filtration of the 
experiment. 
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1. Introduction 

Many statisticians are in agreement that all of  the information about a given model, 

obtainable from a data set, is contained in the l ikelihood function; see, for example, 

Barnard et al. (1962), Birnbaum (1962), or Berger and Wolpert  (1988). Here, we shall 

investigate exactly what might be meant by such an affirmation. We shall investigate 

the conditions under which two reported likelihoods can be taken to be identical, so 

that they do indeed contain all o f  the relevant information from the experiment, q'o 

this end, we need to distinguish between the l ikelihood function which will result from 

some planned observations and the presently reported l ikelihood at the end of  a stopped 

experiment. One may think of  the former as having observations which can only be 

represented algebraically,  say by y, while the latter has actual numerical values. 

To understand why such conditions might be important, we look at a first example. 

Example  1. Consider the reported l ikelihood for n observations, y, with sample mean, 

)5., from a normal distribution with unknown mean parameter, #, and unit variance 

L(kt ) ~x e -(n/2)(~o-u)2. ( 1 ) 
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With the information so far provided, it is impossible to specify the minimal sufficient 
statistic. We also require information as to which quantities were random when the 
observations were made, i.e. at least one aspect of the sample design. Thus, if the 
sample size, N, were fixed at n in advance, the minimal sufficient statistic would 
be 7.- But, if N were random, as, for example, by flipping a fair coin after each 
observation to decide whether or not to continue, it would be (fi°,n). In the first case, 
we have a (1, 1 ) linear exponential family, and, in the second, a (2, 1 ) family. 

We have two different likelihood functions resulting in the same reported likelihood: 
in the first case only, n has a numerical value before the experiment is performed. 
Even a concept as simple as the minimal sufficient statistic for a member of the linear 
exponential family cannot be determined simply by looking at the reported likelihood. 
When N is random, the marginal distribution of fi° generally depends heavily on the 
stopping rule. The conditional distribution of ~°, given N = n, is only independent of 
the stopping rule if the latter does not depend on the sequence observed. 

This has immediate implications for certain aspects of inference. In the second case 
above, with N random, asymptotic properties, even of a Bayesian posterior distribution 
of the mean, are difficult to derive. The reported likelihood does not contain all of  the 
information involved in making inferences. However, one may argue that this has no 
relevance for inferences based on the observed data. The reported likelihood contains 
the necessary information, and is minimal. Such a conclusion is misleading for certain 
sampling schemes, as we shall see. 

The statement that the likelihood function contains all the information in the data 
about the parameters means that it provides all the information for point and interval 
estimation, given the family of  models under consideration. Our central thesis is that 
relevant information about the parameters, that for goodness of  fit, can be available 
from a given experiment, but is absent from the likelihood usually reported. The ap- 
propriate likelihood function for an experiment must be constructed to take this type 
of information into account. 

2. Stopping rules 

One important area of  disagreement between the Bayesian and frequentist approaches 
to inference lies in the relevance of the stopping rule (see, for example, Anscombe, 
1953, 1963; Armitage, 1963; Comfield, 1966; Wetherill and Glazebrook, 1986). The 
Bayesian stopping rule principle states that 'the reason for stopping experimentation 
(the stopping rule) should be irrelevant to evidentiary conclusions about 0'. (Berger 
and Wolpert, 1988, p. 74). In contrast, because the stopping rule determines the sample 
space, knowledge about it is essential for frequentist inference. 

We assume that any experiment under consideration is, at least theoretically, per- 
formable given prior knowledge, that the stopping rule is proper, i.e. that Pr(N < oo)=  
1 for all values of the unknown parameter. This criterion is rather arbitrary and unreal- 
istic, because it may still allow E[N] ---cx~. As well, such conditions cannot guarantee 
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that any actual experiment will stop; they are based on prior models which are almost 

surely wrong. 
The stopping rule principle is held to be derivable from the likelihood principle: 

'All information about 0 obtainable from an experiment is contained in the likelihood 
function for 0 given x. Two likelihood functions for 0 (from the same or different 
experiments) contain the same information about 0 if they are proportional to one 
another' (Berger and Wolpert, 1988, p. 19). An argument for the pertinence of the 

stopping rule principle is that inferences should not depend 'upon the intentions of 
the experimenter concerning stopping the experiment' (Berger and Wolpert, 1988, p. 
74.1). On the other hand, such intentions are necessary for a valid prior probability: 
'The uncertainty will be up front in the prior where it belongs, however, with the 
data speaking for itself through the likelihood function' (Berger and Wolpert, 1988, 
p. 79). ' I f  the experimenter forgot to record the stopping rule and then died, it is 
unappealing to have to guess his stopping rule in order to conduct the analysis' (Berger 
and Wolpert, 1988, p. 78). But if the experimenter's prior was not recorded either, can 
a Bayesian legitimately conduct an analysis? Our claim here is that any such intentions 
which reflect prior knowledge of the phenomenon under study must be included in the 
likelihood function. 

The most commonly used example of  the irrelevance of the stopping rule for the 
information in the reported likelihood is the comparison between binomial and negative 
binomial sampling. 

Example 2. Consider independent Bernoulli trials with constant unknown probability 
of success, ~, where the likelihood function for Yl successes and y2 failures is 

L(Tc) ~ ~Y'(1 - -  7~)  y2 .  (2) 

We must have ~ E (0, 1], because Pr(N < e~;~ = 0 ) =  0 when a negative binomial 
stopping rule is applied. This stopping rule comparison is very special because even the 
problem of specifying the sufficient statistic in Example 1 does not occur. The minimal 
sufficient statistic is Y2, without further knowledge. It does not matter if n =- yl + Y2 
or Yl was fixed at some numerical value in advance; in both cases, we have a (1, 1) 
linear exponential family. 

However, let us look at a slight modification of this. 

Example 3. Suppose that the reported likelihood for independent Bernoulli trials is 

L(~) ~x ~1(1 - ~)2 (3) 

with no further information available. According to the stopping rule principle, we are 
in the situation of Example 2. Thus, many statisticians would immediately be prepared 
to draw inferences based only on this information. However, suppose that the stopping 
rule, used by the experimenter but unknown to the statistician, had been: take the first 
three observations if the fourth is a failure or all four if the fourth is a success. Few 
statisticians who learned this would still be prepared to say that Eq. (3) is the same 
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likelihood as if  N = 3 had been fixed in advance. On the other hand, the apparently 
closely related rule, if  the third observation is a failure stop, otherwise, make one more 
trial and stop, is acceptable. 

Can we ignore the intentions of  the experimenter in these cases? The reason for 
distinguishing between them is that the first stopping rule is not a martingale stopping 
time (Dawid, 1979); the decision to stop at some time point requires knowledge of 
events after that stopping point. Information has been discarded in constructing the 
reported likelihood. Such practice is not excluded by the stopping rule principle, as 
usually stated. 

A second common example of  the irrelevance of the stopping rule is based on Wald's 
sequential probability ratio test. 

Example 4. Suppose that the following procedure had been used to obtain the reported 
likelihood of Eq. (1): stop if 

k k 
)5° ~ < B -  ~ or f i ° > > , A + - ~ ,  B<~A (4) 

for n < n* or at some very large fixed value, n*. Most authors using this example take 
A : B  : 0, as, for example, Basu (1975), Berger and Wolpert (1988, p. 76), or Cox 
and Hinkley (1974, pp. 50-51), in which case the limit on n is not necessary (n* : ~ )  
in order for the experiment to be performable. Here, the maximum likelihood estimate, 
fi, can never lie in the interval, [B,A], unless n : n*. For a suitable choice of k, the 

reported likelihood at fi q[ [B,A] will be arbitrarily larger than that for any /z E [B,A]. 
In particular, if A - - B  = 0, it can be made arbitrarily larger than that for the true value, 
if  kt = 0, with probability one, without specifying n*. 

In this example, no posterior distribution, derived in ignorance of the stopping rule, 
can reasonably take into account the 'information' in this reported likelihood. A closed 

set of values of  the parameter can be excluded from the region of plausible values 
based on this reported likelihood, with probability close to or equal to one, simply 
by the 'scientist' appropriately choosing the values of  A, B, k, and n* and not telling 
the statistician. Kerridge (1963) provides bounds for errors in similar conditions, but 
where the number of  possible models is finite; unfortunately, this cannot help us here. 

This example illustrates clearly that the stopping rule can modify the likelihood 
function. With such a stopping rule and n very large, but less than n* (the statistician 
only knows the value of n, not whether n = n*, nor even that n* exists), the reported 
likelihood for/~ E [B,A] is not comparable to that for/~ ~ [B,A]. Does this reported like- 
lihood still have meaning? This stopping rule reduces the information available about 
values of/~ E [B,A]: if/2 > A, values in [(A + B)/2,A] are more plausible than those 
in the other half of the exclusion interval, without providing any more precise rela- 
tive weighting (and vice versa for fi < B). A large n supports the relative plausibility 
of/~ E [B,A] as opposed to # ~ [B,A], with no further information as to where in the 
interval it might be located. As n becomes very large, all of the information is con- 
tained in (n, sign[/~-(A +B)/2]) ,  so that/2 contains no further information about/~. The 
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shape of the reported likelihood outside of the excluded interval must become distorted 
as n increases. How can this information be used? At what point is an observed n so 

large that it is more likely, from the reported data alone, that /z lies in rather than 

outside the exclusion interval? 
A solution to this problem does not appear to have been given in the literature. We 

shall apply our approach in the last section below. 

3. Conditions on the stopping rule 

From these examples, we can derive a series of conditions on the stopping rule 

which cannot be ascertained simply by inspecting the reported likelihood. 
Condition 1: The rule must be independent of  the unknown parameter. In their 

discussion of stopping rules, statisticians often state that these must not depend on 
the unknown parameter. For example: 'stop for whatever reasons, which (conditional 
on the data) do not depend on 0' (Berger and Wolpert, 1988, p. 77) or 'we have a 
'stopping rule' depending in some way on the data currently accumulated but not on 
further information about the unknown parameter' (Cox and Hinkley, 1974, p. 401. 
However, this lack of dependence seems never to be explicitly defined. For example, 
how does the first quotation permit one to distinguish between the two stopping rules 
suggested above in Example 3 for Bernoulli trials'? 

Such a condition cannot mean that the distribution of the sample size, given the 
observed responses, Pr(N = nit ), does not depend on the unknown parameter, where t 
is the minimal sufficient statistic in the corresponding fixed sample size case, because 
this would have the consequence that t must also be sufficient for the parameter in 

the sequential case. We saw in Example 1 that this will not be true even for simple 
sequential sampling. (It will in cases where t : y, so that there is no reduction; then, 
the vector length gives n.) 

Condition 2: The rule must be a martingale stopping time. This arises from Example 
3. It serves to eliminate unscrupulous experimenters; for other relevant examples, see 
Dawid and Dickey (1977). 

This condition is closely related to the conditions whereby a missing data mecha- 
nism need not be included in the likelihood function (Rubin, 1976): the reason for 
stopping or for missingness must be non-informative or ignorable, only depending on 
the observed, and reported, data. 

Condition 3: The rule must not exclude the possibility of  experiments leading /o 
high likelihoods in certain regions of the parameter space. What information can an 

experiment supply about the parameter if values with relatively high likelihood could 
not possibly occur in a given region of the parameter space? This condition states that 
the stopping rule must not constrain the possible positions of the likelihood function 
with respect to the parameter space. 

When Condition 3 is not fulfilled, what information is there in the reported likeli- 
hood? Should it be declared to correspond to no possible likelihood function, as when 
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Condition 2 is broken? As in that case, the reported likelihood, by itself, can provide 
very misleading information. However, in Example 3, which breaks Condition 2, incor- 
poration of the discarded information will yield a usable likelihood. On the other hand, 
even with complete information on the stopping rule of  Example 4, how can useful 
information be extracted from the reported likelihood for estimation of the unknown 

parameter? 
To see the amount of  information which may be contained in n, the reader can 

calculate the series of  possible reported likelihoods for Bernoulli trials, based on Eq. 
(2), with a Wald-type stopping rule analogous to Eq. (4) (see Armitage, 1958, for 
examples where A = B = 0 ) .  One can calculate r~ from n alone, without being informed 

of  the number of successes! 
We conclude that the stopping rule principle must be severely conditioned in order 

to be tenable. In the same way, the likelihood principle, in its strict form, is question- 
able. Conditions 2 and 3 must be fulfilled. Although all information about an unknown 
parameter, obtainable from an experiment, may be contained in the appropriate re- 
ported likelihood, the corresponding likelihood function must be determined through 
some minimal knowledge of the sample design. The likelihood must correspond to an 
appropriate probability model describing the sequential nature of  the experiment, i.e. 
its sample path. It is not sufficient that the usually reported likelihoods be proportional 
to one another for the experiments to contain the same information about the unknown 

parameter. 

4. Performable experiments 

In order to understand better the implications of  an experiment being performable, 
let us now examine what minimal knowledge an experimenter must have in order to 
complete an experiment. We suppose that the experimenter has complete control over 
the conduct of  the experiment, although not necessarily of  the point in time at which 
each result becomes available, choosing a design to maximize the required information 
produced and to minimize effort and expense. For simplicity, we look again at Bemoulli 

trials, to ascertain the probability of heads of  coins. 
I f  the trials are not sequential, there is one basic way in which they can be performed. 
Exper iment  1: The experimenter receives a container of  indistinguishable coins, with- 

out necessarily being told how many, and throws them all simultaneously. 

Here, the total number of  trials is fixed before the experiment, and is not random, 
whether the experimenter is aware of  it or not before performing the experiment. Two 
pieces of  relevant information become available: the number of  trials and the number 
of  heads. Because the coins are indistinguishable and are thrown in the same way, 
the only reasonable model is the usual binomial likelihood. However, it only contains 
information about the probability of  heads for an average of all coins in the container, 
supposed to be sufficiently identical for this to be meaningful; the coins are assumed 
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to be exchangeable. This is typical of the usual cross-sectional survey or experiment. 
(The only other possibility would be to assume all coins to be distinct, in which case 

all Bernoulli probabilities are estimated to be either zero or one - -  not very useful.) 
I f  the intention is to obtain information about the probability of  heads for one given 

coin, the experiment must be sequential, a stochastic process. Exchangeability will 
now refer to interchanging the order of the results, which is only possible if  the trial 
outcomes are assumed to be independent and identically distributed. Suppose, first, 
that the experimenter, who will decide when to stop, tosses the same coin each time. 
However, the result recorded cannot be known to the experimenter until all trials are 
completed. What are the possible stopping rules, the perJormable experiments'. ) 

Experiment  2: The experimenter fixes the total number of trials in advance. 
Experiment  3: The experimenter fixes the total time of the experiment in advance. 
Experiment  4: The experimenter stops when some external random (in the sense of 

not being predictable within the context of the experiment) event occurs. 

Under the stated conditions, a negative binomial experiment cannot be performed, 
because that would require the unavailable knowledge of the cumulative number of 
heads at each step. Thus, only two relevant pieces of information directly concerning 
the performance of the experiment are available sequentially in the history or filtration 
of the experiment: the time passed and the number of trials. A third, the number of 
heads, is only available after termination. 

Now, consider the negative binomial experiment. 
Exper iment  5: The experimenter stops after Yl = Yl heads. 
Here, the experimenter must  know the result of each trial at each step (except for 

the first yl trials, for which the total number of heads after these is sufficient). If  
this design is chosen, the experimenter's intentions have changed from the previous 
experiments; otherwise, the additional effort in registering each individual result would 
not be warranted. The trials are not exchangeable; one-half of the permutations of' a 
given observed result yield unperformable experiments. The sample path is additional 
information, necessarily provided by the experiment, as part of  the filtration, in order 
for it to be performable. This is relevant information, as expressed in the experimenter's 
intentions, which cannot be discarded from the likelihood function, in a similar way 
to the extra trials violating the martingale stopping time for Example 3 not being 
discarded. Thus, Condition 2 is not sufficient to prevent important information from 
being excluded from the likelihood function. 

One might argue that the sample path is irrelevant because we are studying indepen- 

dent Bernoulli trials. However, this can only be an hypothesis, a model. We can see 
the statistician, believer in the stopping rule principle, muttering silently ' i  shall stop 
after Yl heads and only record the number of tails' as the following sequence unfolds: 

HTTTTHTTTTHTTTTHTTTTHTTTTHTTTT . . . 15) 

The sample path does provide information about the model of independent, constant 
probability, Bemoulli trials: whether the hypotheses of independence and constant prob- 
ability are reasonable or not (Barnard et al. 1962, give a similar example to make the 
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same point). This is not information necessary for point or interval estimation of the 
Bemoulli probability, assuming the model to be true, but it is a relevant information 
about that probability. This information is necessarily available, determining the exper- 
imenter's intentions, in contrast to the first four experiments; it must be included in 
the likelihood function. Thus, the negative binomial distribution is the correct formula 
to describe independent, constant probability, Bernoulli trials stopped after yl heads, 
but is not the correct likelihood function for such an experiment, because it discards 
relevant information about the Bernoulli probabilities being studied. The latter func- 
tion must display the sample path necessarily observed for the experiment. It can be 
modelled by standard statistical procedures for stochastic processes, for example, by a 
Markov chain. 

We now return to experiments with more than one coin. 
Experiment 6: n different coins are to be used, one at each trial performed sequen- 

tially, with each result immediately available. 
The coins must be distinguishable, so that the filtration now also contains which coin 

corresponds to each result in the sample path, but its individual Bernoulli probability 
will be estimated as zero or one. For useful inferences about the probability of  heads, 
one must return to the same exchangeability hypothesis as in Experiment 1. 

Finally, 
Experiment 7: For each of n coins, the experimenter stops after a series of trials, 

each time with Y1 ---Yl heads. 
We can now, in this repeated measurement situation, reasonably compare proba- 

bilities of heads for different coins, i.e. check that exchangeability hypothesis. We 
necessarily have available a distinct sample path for each coin. We could collapse 
observations over coins or over sample paths; both would entail discarding informa- 
tion about the Bernoulli probabilities, necessarily produced by the experiment. One 
corresponds to assuming exchangeability of  coins, the other to assuming independent 
and constant probabilities among trials. Is it, a priori, more reasonable to collapse 
over one rather than the other? And yet the classical negative binomial experiment 
would only collapse over trials, to obtain a product, over coins, of reported binomial 
likelihoods. 

The choice of  experiment, including the stopping rule, has direct implications for the 
definition of the likelihood function. Our final condition to define a valid likelihood 
function is 

Condition 4: A likelihood function must contain all the information in the minimal 

filtration necessary for  the experiment to be performable. This is closely related to 
the idea of informative stopping rules: 'to be informative, a stopping rule must carry 
information about 0 additional to that available in X x '  (Berger and Wolpert, 1988, 
p. 90), the solution being to 'consider all available observational information as part 
of  the data' (Berger and Wolpert, 1988, p. 89). However, we have gone further by 
showing that many common sample designs, not usually considered to be informative, 
contain relevant available information and by defining precisely what must be included 
in the likelihood function. 
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5. Discussion 

What these results tell us is that the relevant information in an experiment for models 
of interest is not just that which allows estimation of the parameters in those models, 
but also must include any available information about goodness of fit. If the likelihood 
function is to contain all relevant information, it cannot be restricted to a function only 
of these models of direct interest. 

We can now look again at the Wald-type experiment of Example 4. For the likelihood 
function to contain the sample path, the model might be some general diffusion process. 
Suppose that the true mean,/~, lies somewhere in the interval, [B,A]. Then, the sequence 
of maximum likelihood estimates, which are necessarily available from the minimal 
filtration, should hover near the true value, with increasing precision, for some time, 
before wandering off, with probability (close to) one, over the nearest boundary, at 
which time the experiment is stopped. Although the final, 'stopped', likelihood does 
not allow estimation of the parameter, this series of values, and the full likelihood 
function for this process, do inform us as to what has happened. 

Frequentist theory has long held that goodness of fit of a model can be judged 
from Pr(ylt), where t is the minimal sufficient statistic. Box (1980) has proposed 
a Bayesian interpretation of this. Similar possibilities are available directly from the 
likelihood function. (For examples of the direct likelihood approach to goodness of fit, 
see Lindsey (1974a, b, 1995) and Lindsey and Mersch (1992)). 

Our results establish an important area of commonality between Bayesian and fre- 
quentist inference, through direct likelihood inference. Likelihood functions which are 
proportional contain the same information about the model, as the likelihood princi- 
ple states, but these likelihoods must contain all relevant information from the sample 
design, information which a frequentist has always considered pertinent. 

One can argue that this proposed likelihood is unnecessary if the trials are indepen- 
dent. But, independence is only an hypothesis; information about the model is being 
discarded. All other models are being given prior probability zero. If a sequence like 
Eq. (5) starts to appear, how would such a prior be suitably updated? This cannot be 
done from the previous posterior probability in the sequence; once a model has zero 
probability under the application of Bayes' theorem, it always does. A Bayesian cannot 
make scientific discoveries using strictly Bayesian inference procedures; the completely 
unforeseen has zero prior probability. The current prior cannot be modified by any form 
of updating using Bayes' formula. How, then, does a realistic Bayesian accomplish this 
updating in the face of an unexpected event? 

Thus, unfortunately, for 'stopping rule Bayesians', if the possibility of anything un- 
foreseen becomes apparent from the sample path, they, obliged to update, are incoher- 
ent (Dawid, 1982; Oakes, 1985; see also Shafer, 1985). Bayesians, by affirming the 
stopping rule principle, have placed themselves in a contradictory position, because 
their prior for any unforeseen event is irrevocably zero. An experiment is necessarily 
providing them with information which they cannot use without stepping outside the 
Bayesian paradigm, but which then may show their prior to be miscalibrated. 
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Hence,  the l ikelihood principle is emptied of  much  o f  its import.  How often will two 

reported likelihoods, from differently designed experiments ,  be proport ional  once the 

min ima l  filtration is included? Must  we conclude that, for sequential  trials, the current 

Bayesian  approach is wrong,  but  that the only  approach is a Bayes ian  one, based on 

a revised l ikelihood pr inciple?  
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