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SUMMARY

When testing for a treatment effect or a difference among groups, the distributional assumptions made about
the response variable can have a critical impact on the conclusions drawn. For example, controversy has
arisen over transformations of the response (Keene). An alternative approach is to use some member of the
family of generalized linear models. However, this raises the issue of selecting the appropriate member,
a problem of testing non-nested hypotheses. Standard model selection criteria, such as the Akaike informa-
tion criterion (AIC), can be used to resolve problems. These procedures for comparing generalized linear
models are applied to checking for difference in T, cell counts between two disease groups. We conclude that
appropriate model selection criteria should be specified in the protocol for any study, including clinical
trials, in order that optimal inferences can be drawn about treatment differences. © 1998 John Wiley
& Sons, Ltd.
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1. INTRODUCTION

Many clinical trials and other medical studies involve responses that might be considered to have
a normal distribution. However, this is not invariably the case and models based on this
distribution are often indiscriminately applied to data which might be better handled otherwise.
This is especially true of count data. One possibility is to transform the data to normality, for
example by using the approach of Box and Cox.! The problems with incorporating this
procedure in the protocol for a medical study have recently been discussed by Keene.?

An alternative approach which may yield models that are more biologically reasonable
in many situations is to use a generalized linear model.> Whereas normally distributed data
are interpreted as arising as the sum of a large number of unknown factors, Poisson data may
be thought, for example, to be produced as counts of random events of constant intensity
and gamma data, in certain contexts, as durations that are sums of exponentially distributed
times.

In a generalized linear model, the mean is transformed, by the link function, instead of
transforming the response itself. The two methods of transformation can lead to quite different
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results; for example, the mean of log-transformed responses is not the same as the logarithm of the
mean response. In general, the former cannot easily be transformed to a mean response. Thus,
transforming the mean often allows the results to be more easily interpreted, especially in that
mean parameters remain on the same scale as the measured responses.

Other advantages of this family, as compared to normal-based models, include fitting skewed
distributions, allowing the variance to be non-constant (varying as a function of the mean), and
providing a choice of scales, through the link transformation of the mean, one of which may yield
an additive (no interaction) linear model. Thus, various types of data, continuous, binary, or
count, can be modelled by members of this richer class of generalized linear models. This does not,
however, imply that one should restrict choice to this family. Sometimes, analysis will indicate
that a model outside the generalized linear family is required, the most common case being when
overdispersion is present in count data, as illustrated below.

Although generalized linear models have been available for almost 25 years, they are not as
widely used in medical statistics as might be expected, with two notable exceptions: classical
normal models and logistic models. Now that such models are generally available in most
statistical packages and not just in the more specialized ones like GLIM,* it is important that
their advantages be more widely known.

One handicap in choosing a generalized linear model has been their comparison to determine
which might best fit a particular data set. For a frequentist, this is extremely difficult because the
models are not nested, so that likelihood ratio tests are not applicable. Certain special procedures
have been proposed, as by Cox,®> Atkinson,® and Royston and Thompson,’ but they are rather
ad hoc, not really fitting in with the mainstream of frequentist theory, this perhaps explaining
why they have not become widely used.

However, with the wider use of Bayesian and direct likelihood methods in medical statis-
tics, where the nesting restriction does not apply, this problem does not arise. For example,
one simple solution is to use the Akaike information criterion® (AIC) or the Bayesian informa-
tion criterion® (BIC) for model selection. As we shall see below, for the relatively small
samples often found in clinical trials, they will give similar results; here we shall be primarily
concerned with the AIC. As is usual in direct likelihood and Bayesian procedures, we are
interested in inferences from a given small sample of data, not with the asymptotic properties of
the methods. Frequentist small sample techniques look at the whole sample space, not just the
given data.

Recent texts where use of the AIC has been recommended in medical statistics include Clayton
and Hills,'® Collet,'! and Lindsey.!? For strong arguments in its favour in one particular
biostatistics context, see Burnham et al.'3

When counts are small, a Poisson distribution may often be suitable. Such is not the case for
larger counts, where the choice of distribution may be in question. One common example is the
use of blood cell counts in medical diagnosis. We shall consider such an example below as
a potential application of model selection within the generalized linear model family.

2. MODEL SELECTION

In its general form, a canonical generalized linear model, for one observation, y;, can be
written

f(i30;,0) = exp{[y:0; — c(0;)1/0 + d(d, ;) } (1)
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where 0; is the canonical location parameter and J a dispersion parameter, c(-) and d(-) being
known functions. The associated canonical linear regression is

01' = Zﬁjxij (2)

where the x;; are explanatory variables with fixed known values. In fact, the function, c(0;)
completely characterizes the model within the family, so that model selection might be thought to
involve the choice of an appropriate function here.

For example, the Poisson model can be written

S (yi:0:) = exp {y;0; — exp(6;) — log(yi!)} 3)

where 0 = 1 and 0; = log(y;) with y; the Poisson mean, so that the function, c¢(6;) = exp(6;),
characterizes this model.

Usually, the likelihood function is only defined as proportional to the probability (density), so
that all parts not involving the parameters can be omitted. Thus, from equation (3), the Poisson
likelihood, still for a single observation, would be written

L(0;y;) = eXp{yiHi - eXp(ei)}-

However, to compare models for different members of the family, the likelihood must use the
complete probability (density) from equation (1), including all constants not involving the
parameters.'* !5 Recall also that a likelihood gives the probability of the data for the given
model, thus yielding a criterion for direct comparison among models, those making the data more
probable being said to be more likely.

From this likelihood, the AIC for comparing models can easily be derived. It is just based on
a penalized likelihood which takes into account the number of parameters estimated in each
model. Thus, if we consider the minus two log-likelihood based on equation (1), for the classical
AIC, we simply add two times the number (p) of parameters estimated in the model:

— 21og[f(6,0:y)] + 2p = = 23 {[yibi — c(0:)1/6 — d(d,y:)} + 2p

now for all n observations. The count of parameters, p, will generally include the f;’s in equation
(2) plus one for ¢, if it is estimated. Because larger (penalized) likelihoods are preferable and we are
working on the negative log scale, smaller values of this AIC point to better models. Evidently,
a difference of two between two models indicates that the model with smaller of the two AICs
could have been one parameter more complex, with the same fit (likelihood) and would still have
been competitive, but, if the AIC is at all smaller for one model than another, it is indicating
a preference for the former.
For the Poisson models, we obtain, as our AIC

— 2log[L(G;y)] = =2 {Z [yi0; — exp(0:) — log(y:)] — p}
while, for the normal distribution, it will be

— 2log[L(0,0:y)] = — 2{2 [(:0; — 07)/(20) — y?/(20) — log(218)/2] — P}
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where 0; = y; is the normal mean and = ¢? is the normal variance. Thus, here the function
characterizing the model is ¢(0;) = 07. Similar equations for the gamma and inverse Gaussian
models can also be developed, and will be used below.

When the models to be compared are nested, so that the simpler model is the null hypothesis,
the classical AIC, as just described, is, in some ways, analogous to a significance test that is always
used with some fixed level. In the same way that this level can be changed, to 1 per cent, 5 per cent,
or 10 per cent, more or less stringent criteria can be obtained in the AIC by changing the penalty,
that is, the factor that multiplies the number of parameters. Thus, Bhansali and Downham'® and
Atkinson!” suggest trying more severe criteria, such as a factor of three times the number of
parameters. Just as a test level corresponds to a confidence interval, a given AIC penalty
corresponds to the precision required of the parameter for it to be eliminated; the greater the
penalty, the wider the precision interval. Obviously, this penalty must be fixed before looking at
the data, preferably in the protocol.

On the other hand, the BIC, with the factor of two replaced by log(n), automatically be-
comes more severe as sample size increases, but, as we can see, provides similar results to the
AIC for small n. Bai et al.'® compare various approaches for the special case of log-linear
models, which is closely related to Poisson regression, but without comparing distributions as we
do here.

Model selection criteria, such as the AIC, were originally designed specifically for prediction
purposes in time series (although they are much more widely used now). This is one of the reasons
that they do not provide the same results as classical frequentist tests. Thus, for differences of up
to seven parameters between two models, the AIC (with a factor of two) will yield more complex
models than a test fixed at 5 per cent but it will indicate simpler models than the test for larger
differences in the number of parameters. For example, the usual AIC with a penalty of two
corresponds to a 15-7 per cent significance level for 1 d.f., but to a 5-1 per cent level for 7 d.f. For
a penalty of three, these are respectively 8:3 per cent and 0-4 per cent so that the penalty against
more complex models increases rapidly.

One major advantage of proper model selection criteria, such as the AIC and the BIC, as
compared to testing (which assumes that hypotheses are specified before inspecting the data) is
that they avoid a contradiction of testing, what Lindsey (references 19 and 20, pp. 104-110, 212,
302) calls compatibility. Thus, for example, two orthogonal parameters each tested as non-
significantly different from zero at the 5 per cent level (say both with chi-squared values of about
3-5) will simultaneously be shown to be different from zero at the same significance level
(chi-squared of 7 with 2 degrees of freedom). Such a compatibility contradiction cannot occur
with criteria such as the AIC or BIC.

Once the appropriate penalty has been selected, the AIC will indicate which models are more
appropriate, given the data. However, just as one does not use a significance test blindly, always
rejecting when the 5 per cent level is attained, so also one will not always select the model with the
smallest AIC when several have similar values. Often, there will be good scientific reasons for
preferring one model to another and this will be taken into account in the choice. The AIC only
provides an objective evaluation of the models given the current data.

3. MODELLING BLOOD CELL COUNTS

Altman (reference 21, p. 199) provides counts of T, cells/mm? in blood samples from 20 patients
in remission from Hodgkin’s disease and 20 other patients in remission from disseminated
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Table 1. T, cells/mm? in blood samples from 20 patients in

remission from Hodgkin’s disease and 20 patients in remission

from disseminated malignancies, ordered within groups (refer-
ence 21, p. 199)

Hodgkin’s disease Non-Hodgkin’s disease
171 116
257 151
288 192
295 208
396 315
397 375
431 375
435 377
554 410
568 426
795 440
902 503
958 675
1004 688
1104 700
1212 736
1283 752
1378 771
1621 979

2415 1252

malignancies, as shown in Table I where they have been reordered within groups to make more
evident the form of the distributions. A simple naive approach to model the difference in cell
counts between the two diseases would be to look at the difference in estimated means and to
make inferences using the estimated standard deviation. Such a procedure implicitly assumes
a normal distribution. If we calculate a Student ¢-test for no difference in means, we obtain a value
of 2.11.

Because these are counts, a more sophisticated method would be to use a simple Poisson
regression (or log-linear model)

log(pij) = Bo + B1xi;

where p;; is the mean for the ith individual in the jth group and x;; is an indicator variable, zero
when j = 1 and one when j = 2. Because this model uses logarithms, we are looking at the ratio of
the means instead of their difference. Here, the asymptotic Student t-value for ; = 0 is 36-40,
quite different from the previous one. Such a result is not surprising, being a result of overdisper-
sion, that is, heterogeneity among individuals within each disease group.

Still a third approach would be to take logarithms before calculating the means and standard
deviation, thus, in fact, fitting a log-normal model. In the Poisson model, we looked at the
difference in log mean, whereas here we have the difference in mean logs. This procedure gives
a Student t-value of 1-88, yielding a still different conclusion.

Let us now use our direct likelihood approach and consider the AICs of these models, as well as
some other members of the generalized linear model family. None of the continuous distributions
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Table II. Comparison of various distributional assumptions for the T, cell count data of Table I, comparing
models with no difference in the distribution of cell counts between the two diseases to those having
a difference

Model AIC Difference Estimate/SE
No difference  Difference in — 2log(L)
Normal 608-8 606-4 44 2-11
Log-normal 590-1 5886 35 1-88
Gamma 591-3 5880 53 2-14
Inverse Gaussian 5900 5882 3-8 1-82
Poisson 116520 10294-0 1360-0 36-40
Negative binomial 589-2 5860 52 2:36

in this family is really reasonable a priori, but all may be more justifiable than the normal
distribution, given the skweness of the data.

These models are presented in Table I1. We see, as might be expected with such large counts,
that the Poisson model fits very poorly. The other specifically count model, that allows for
overdispersion, the negative binomial (not a generalized linear model, but closely associated with
them), fits best, while the gamma is second.

The negative binomial distribution can be derived from the Poisson when the mean parameter
of the latter is not identical for all members of the population. If this parameter is given a gamma
distribution and then integrated out, a negative binomial distribution results; see, for example,
Lindsey (reference 12, p. 235). This distribution thus provides one way of modelling heterogeneity
in a population.

The choice of the negative binomial, and the clear rejection of the Poisson, indicates that
the rate of T, cells is not randomly distributed among individuals within a disease group,
which would correspond to the Poisson model. Thus, either the rate varies among indi-
viduals, over time for each given individual, or among blood measurements on each individual.
All are reasonable biological explanations, and the truth is probably closer to a combination of
all three factors. To distinguish among them, we would require repeated measurements on the
individuals.

Because all of the models in a given column (either difference or no difference) in Table II,
except the Poisson, have the same number of parameters, we are in fact comparing log-likeli-
hoods. Thus, for example, with difference between diseases, the negative bionomial makes the
data 2-72 (= exp[(588-:0 — 586-0)/2]) times more probable than the gamma distribution while the
gamma makes the data 1-35 (= exp([588:6 — 588-0/2]) times more probable than the log-normal
distribution, all models taken at their respective maximum likelihood estimates. In a similar way,
comparing across columns, with the negative binomial distribution, a model with disease
difference makes the data 13-46 (= exp[(589-2 — 586:0 + 2)/2]) times more probable than one
without difference, but the former model has an advantage of one parameter which is penalized
by the AIC. These are exact small sample interpretations that require no large sample asymptotic
justification.

Traditionally, a frequentist has little means of judging which of these model distributions best
fits the data. For example, study of residual plots helps little here because none of the models,
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Q-Q Plot -- Normal Residuals

Ordered residual

Ordered normal

Figure 1. Q-Q plot of deviance residuals for the model using the log-normal distribution with a difference in mean log cell
count between the two diseases

except the Poisson, show obvious discrepancies. All of the Q—-Q plots are very similar, as
illustrated by that for the log-normal distribution in Figure 1.

Let us now look at the difference between the two diseases. From the AIC, a difference is
indicated for all distributions. This is not the case if we apply a significance test at the 5 per cent
level or a 95 per cent confidence interval, either based on the log-likelihood ratio (the difference in
minus two log-likelihood in the second last column of Table II) or the standard error (for
example, the Wald test using the ratio of the estimate to the standard error in the last column of
the table). On the other hand, if we had chosen the BIC, the factor would be 3:67 (= log(40))
instead of 2, thus here giving results almost identical with a test fixed at 5 per cent.

For non-normal data, tests and confidence intervals based on the likelihood function are more
trustworthy than those based on the standard error. Because of the skewness of the distributions,
the intervals will not be symmetric. Notice that, in Table II, the log-likelihood and (squared)
estimate divided by standard error values for the gamma and inverse Gaussian distributions are
considerably different, the likelihood-based tests being more significant. In the table, all values of
the — 2log (L) larger than 3-84 indicate that a zero difference between groups will not be included
in an asymptotic 95 per cent likelihood-based confidence interval.

The estimated difference in log mean for our best fitting model, the negative binomial, is
— 0-455 with standard error, 0-193, indicating lower counts for non-Hodgkin’s disease patients.
The ratio of mean counts is then estimated to be exp(— 0-455) = 0-634, with an approximate 85
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per cent likelihood-based confidence interval of (0-48, 0-84), corresponding to the penalty of two
in the AIC. This compares, for example, to an (85 per cent) interval of (0-50, 0-90) obtained from
the mean of the ratio of counts assuming a log-normal distribution.

Altman (reference 21, p. 199) also provides the counts of Ty cells/mm? in blood samples from
the same 40 patients. Using the same procedures as above, we obtain similar results, with however
the log-normal about tied with the negative binomial (difference in AIC of 0-2). The gamma and
inverse Gaussian distributions have AICs about two larger. Because of its biological interpreta-
tion, discussed above, and the consistency for the two types of counts, we would choose the
negative binomial. With these counts, the difference between the two types of diseases is much
larger.

For two much more complex examples of this model selection procedure involving cross-over
trials, the reader is referred to Lindsey and Jones.??

4. DISCUSSION

We have here presented a small sample likelihood interpretation of model selection criteria such
as the AIC, and extensions to it. In medical statistics, exact small sample methods are extremely
important. As anyone who is accustomed to calculating sample sizes knows, in cases where the
calculation is not made and an inordinately large sample used, small clinically irrelevant
differences will be detected, while patients are needlessly placed at risk and money wasted. Thus,
asymptotic large sample criteria, as usually are used to justify the AIC, are irrelevant in such
a context; for the further discussion, see Burnham et al.}® and Lindsey.?°

In the study of treatment effects or group differences, choice of relevant covariates is usually
considered to be an essential part of modelling strategy, at least in exploratory situations.
This is one of the simpler and best known model selection problems, generally handled by
significance testing to remove non-significant explanatory variables. However, as we have seen
here, once we abandon the nesting constraints of frequentist testing, more general model
selection, such as among members of the generalized linear model family, is conceptually the
same. In such situations, selection of an appropriate model, as described above, should enhance
the chances of drawing the correct conclusions about the treatment effect or group difference of
interest.

As can be seen from the case of the negative binomial distribution, our methods are in no way
restricted to the family of generalized linear models. We have concentrated on them because of
their importance and because of the ready availability of software to fit them.

One should here remember that a classical test for treatment difference performed after model
selection, whether of covariates or of the distributional assumptions, will not provide the correct
significance level because the uncertainty in the model selection process has not been taken into
account.”® At least in simple cases, it is known that model selection to eliminate unnecessary
covariates narrows the confidence intervals of the remaining ones.?*

In the design of clinical trials, the list of pertinent covariates which need to be allowed for in
testing for a treatment difference should be specified in the protocol. Preliminary checking
whether they are necessary is a model selection problem, preferably performed at the early phases
of the study of a medication. In the same way, a protocol should specify that a given class of
distributions, such as those in the generalized linear model family, will be considered and the
appropriate one selected before reaching a confirmatory trial where the final test concerning
treatment difference is to be made.

Statist. Med., 17, 59—68 (1998) © 1998 John Wiley & Sons, Ltd.



GENERALIZED LINEAR MODELS APPLIED TO MEDICAL DATA 67

Generally, such an exploratory process will be performed in phase I and II trials, so that the
appropriate model, including distributional assumptions and relevant covariates, should be
reasonably well known by phase II1. By then, exploratory work should be fairly complete and an
appropriate, completely specified, model available, both distribution and covariates; only the
final, crucial, confirmatory test of treatment difference should be left. This is the theory, that is,
unfortunately, often far from reality. Early trials are usually too small to provide reliable answers,
while subsequent trials may even be carried out by a different research group. Nevertheless, only if
this procedure is followed will the phase I1I test of treatment difference have the actual calculated
significance level. Of course, secondary analyses of phase III results may also subsequently use
exploratory model selection techniques as described here.

In more general contexts than pre-registration development of medicines by the pharmaceut-
ical industry, analysts of confirmatory studies must exercise extreme caution when making
conclusions about effects based on exploratory modelling. Model selection criteria such as the
AIC are more appropriate than significance tests.

GLIM4 macros for calculating the AIC for generalized linear models are available in Lin-
dsey.?> Similar procedures can easily be developed for any software package with a generalized
linear model option, basing them on the equations given above in Section 2.
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