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Abstract 

The dynamic generalized linear model for non-normal data is extended for use in repeated 
measurements, when series of observations are available for more than one individual. Exam- 
ples are given for count and duration data. 
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1. Introduction 

1.1. Motivation 

Generalized linear regression models are widely used for univariate data analysis. 
However, nothing equivalent is available for multivariate situations, such as repeated 
measurements. Such data are frequently encountered in the longitudinal context, 

especially in the form of count data. Below, we consider an example of monthly counts 
of deaths from a given disease. When the evolution of such counts is to be compared 

for different subpopulations, we are in a repeated measurements situation. But, such 
models are also useful to study profiles of counts on individual people, for example, 
the number of infections or of epilepsy attacks in given periods of time. 

A second area of application is to longitudinal studies of positive-valued data. If the 

response values are fairly close to zero, one may expect their distribution to be skewed. 
The common solution is to take logarithms, i.e. to use a log normal distribution. 
However, in many situations, some other survival-type distribution, such as the 
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gamma or inverse Gaussian, may be more appropriate. Below, we look at an example 
of the evolution of plasma citrate concentrations. 

Lindsey (1993, Chs. 6 and 8) provides a comprehensive discussion of various 
modelling approaches to such non-normal longitudinal data and includes a compre- 
hensive bibliography which the reader may wish to consult. 

One of the most useful approaches to such longitudinal data, similar in some ways 
both to autoregression and to random effects, and in fact able to encompass both, is to 
have the coefficients of the regression equations evolve over time according to 
a Markov process. This is called a dynamic generalized linear model and is usually 
estimated by a procedure called the Kalman filter. It was originally proposed as the 
dynamic linear model for single series of normal data, but has more recently been used 
for repeated measures (Jones and Ackerson, 1990; Jones and Boadi-Boateng, 1991; 
Schlain et al., 1992; Wilson, 1988). Although it has been extended to other distribu- 
tions, as the dynamic generalized linear model, for single time series, notably by West 
et al. (1985), Kitagawa (1987), Fahrmeir (1989, 1992), Harvey (1989) and Harvey and 
Fernandes (1989), few applications of such models to repeated measurements have 
been proposed. That is the object of the present paper. For  a somewhat different 
approach, see the recent paper by Singh and Roberts (1992). 

1.2. The dynamic generalized linear model 

Suppose some given quantity Y is measured repeatedly at equally spaced times 
(t = 0, 1, 2 . . . .  ) on several units (i = 1, 2 . . . . .  n) together with a vector of covariates x. 
We assume that the observations across units are independent. Then the linear 
regression model, now called the observation or measurement equation, is 

g(ul,) = )'it + pTxl, 

where Pit denotes the mean of Y/t, g(" ) is some link function, Pit a possibly random 
vector of regression coefficients, 2it the random 'base' mean. (2/t,P;t) T is called the state 

vector. 

That approach would be equivalent to generalized linear models if it were not for 
the dependence between observations on the same unit. Instead of directly modelling 
that dependence (by imposing some covariance structure for example) we propose 
a first-order Markov chain model for the state vector 

called the state transition equation where Tit is the first-order Markovian state 
transition matrix, assumed to be known for all t. 

Notice that this structure allows for heterogeneity across units, an important 
feature in repeated measurements modelling. 
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As an illustration consider the dynamic generalized linear model for an auto- 
regression of order M, It has measurement and state transition equation 

,q(pi,) = [1, 0 . . . . .  0] (  ~t'i't- 1 ) 
\ P i , t -  1 ' 

\ i l l , t - M + 2  "'" 1 \ f l i ,  t - M + l /  

Another simple D G L M  is the random effects model. The equations are 

g(Pikt) = Pk d- 2it, 

E [ ) . . ]  = 0, 

where ktlk, denotes the mean of the kth measure on the ith unit. Simple models, such as 
these, can be combined in any desired way. 

West et al. (1985), West and Harrison (1989), Harvey (1989) and Harvey and 
Fernandes (1989) use the canonical link for all response distributions, so that the 
distribution of the random coefficients can be conjugate. Kitagawa (1987) approxim- 
ates the probability by a piecewise linear function, a form of numerical integration. 

Now arises the problem of inference. Denote by ~it the history of the responses for 
unit i up to and including time t. The problem that we are now facing is the estimation 
of fllt given o~,. The Bayesian approach provides a satisfactory answer to this. If 

P()~i,,flitl '~it), Pr(yit I I~i t , f l i t , '~ i , t  - 1) and Pr(yi, l~i.t l) denote, respectively, the prior 
distribution of (.q..,fl.)T, the conditional distribution of (2it , f l i t)  T and the marginal 
distribution of (21t, fl.)T before observing Yit, then the posterior distribution of the state 
vector is (according to Bayes theorem) 

Pr(ylt [ 21t, o~i,t - 1 ) P( )Cit, flit I o~i,t - 1 ) 
p(&, ~,, I o % )  = 

Pr(Yi, ] o~i., 1) 

where 

p ( 2 . , f l i ,  l o ~ . , _ l )  . . . .  p ( ) . . , f l i ~ J ; t i . , _ l , f l i , , _ l )  
co co 

x p ( 2 i , , -  1,fli.,-- 1I ~-i,,- l) d21, dill,,- 1- 

Note that the last expression can be used to compute predictions for Y. given past 
observations o~.t- 1. 

To avoid intractability and time-consuming numerical calculations, one usually 
chooses the conjugate distribution for (2,, fl.)x. For instance one would take a gamma 
prior for )~, if Y, is a Poisson r.v., or a beta prior if Y, is a binomial r.v. We shall 
develop the Poisson example in the coming sections. 
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1.3. Trend and seasonality 

Very often data such as repeated counts show a trend pattern mixed with seasonal 

effects. An example of this is provided by the monthly numbers of deaths from 

bronchitis, emphysema and asthma in the UK (see next section). 

Thus it is important to have a simple tool for modelling such fundamental behav- 

iour. Basically this is performed by a judicious choice for the Markov transition 

matrix Ti, in the state transition equation. 

For clarity we shall consider two special cases: 

. Suppose yi, can be viewed as a piecewise linear process. Then a possible model for 

Yi, could be 

,I, is to be interpreted as the current intercept for yi, and Bil as the local ‘trend’ for yi,. 

Low values for the discount (see below) will allow for quick changes in both 2, and pig. 

. Now suppose that yi, only displays seasonal patterns. That hypothesis can be 

satisfied by first removing the trend (using the above procedure) or any systematic 

effect (modelled by including regressors in Z’i, for example). Suppose for simplicity that 

we have monthly data (p = 12, o = 274~). Then a possible DGLM is 

Xir = (130; 1,O; 1,O; 1,O; 120; 1) 

Tit = blockdiag(G,, . . . . G5, - l), G, = 
cos (wr) sin (wr) 

- sin(wr) > cos(wr) ’ 

Most often, such dynamic models are used in forecasting. However, here, they are 

particularly important as a unifying framework for many of the models of repeated 

measurements, as well as a means of calculating the likelihood function and estima- 

ting the parameters in difficult cases. Thus, two advantages of this approach, even in 

the case of a model based on the normal distribution, are that it can be extended to 

handle unequally spaced time intervals and missing observations and that it en- 

compasses many useful models as special cases. However, little work has been done on 

unequally spaced time intervals and missing observations for such models for non- 

normal data. 

The applications to discrete and positive-valued data in the subsequent sections will 

assume that the ‘base’ mean lit is random, but that the regression coefficients Bit are 

non-random and time-varying. 
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2. Discrete data 

We now apply the above models to count data. Consider the Poisson distribution 
for modelling Yi~. Quite naturally we adopt a log-link together with gamma conjugate 
distribution for/~i,, the mean of Yit. Hence 

_ ~  T T e ,,e ~,x,, 2~te~,X,~i, 
Pr(y.  ]2.,flit) = 

yit! 

D it it ~ t i t - I  e-Ait,/•it 
p(2.) = 

r(Ki,) 

Note that the marginal distribution of Y~, is the negative binomial, commonly used 
when dealing with overdispersed count data. 

Starting with some initial values, we have the prediction equations 

~'i, tlt -- 1 ~ ~ i K i , t  1 ,  

1 ~ 

I ) i . t l t -  1 Oi, t 1 

when ~i is a discount factor between zero and one and the updating equations 

K i t  ~ -  K i , t l t -  1 3i- Yit, 

l 1 
- + e s ~ x .  

Uit  Ui, tlt -- 1 

Note that the choice for ~i does not affect the predicted mean for/~,. However the 
predicted variance is multiplied by ~ 1. For  example a small value for ~i enables the 
model to adapt itself quickly to changes of behaviour in the profiles, but makes it 
more sensible to outliers. Hence some kind of trade-off is required when choosing 
~i. Of course one might simply choose the MLE. Estimates for the regression 
parameters flit and possibly (i are obtained by minimizing the deviance - 2  

~ { log Pr(Yit I ~ i , t -  1 )} given by 

-- 2 ~ {log[F(yi, + Ki,tlt-1)3 --log[r(K~,t,,_ 1)] - Ki,  t l t - 1  log(t~i,t,, 1 )  

( ' ) )  
- (Ki,,l,- 1 + Yit)log U~.tl~-- 1 + 1 . 

Note that the corresponding expression for the deviance in Lindsey (1993, Eq. (6.13), p. 
207) is wrong and has to be corrected. Typically ~i and 2it are, respectively, used for 
modelling the variance and the mean of Y~t- Higher-order moments are not directly used. 

Consider, now, the reported numbers of UK deaths from bronchitis, emphysema, 
and asthma (Diggle, 1990, p. 238) each month from 1974 to 1979, distinguished by sex, 
presented in Table 1. We shall fit models with a linear time trend to see if the number 
of deaths is changing over the years. As well, we require a seasonal component, since 
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Table 1 
Monthly numbers of deaths from bronchitis, emphysema and asthma in the UK, 1974 1979 (Diggle, 1990, 
p. 238) 

Males 
2134 1863 1877 1877 1492 1249 1280 1131 1209 1492 
1621 1846 2103 2137 2153 1833 1403 1288 1186 1133 
1053 1347 1545 2066 2020 2750 2283 1479 1189 1160 
1113 970 999 1208 1467 2059 2240 1634 1722 1801 
1246 1162 1087 1013 959 1179 1229 1655 2019 2284 
1942 1423 1340 1187 1098 1004 970 1140 1110 1812 
2263 1820 1846 1531 1215 1075 1056 975 940 1081 
1294 1341 

Females 
901 689 827 677 522 406 441 393 387 582 
578 666 830 752 785 664 467 438 421 412 
343 440 531 771 767 1141 896 532 447 420 
376 330 357 445 546 764 862 660 663 643 
502 392 411 348 387 385 411 638 796 853 
737 546 530 446 431 362 387 430 425 679 
821 785 727 612 478 429 405 379 393 411 
487 574 

Table 2 
Deviances for various models for monthly deaths of Table 1 

Effect Separate sexes Different level Sexes together 

Deviance Par. Deviance Par. Deviance Par. 

Gamma-Poisson 
Trend 7510.16 6 7510.18 5 29237.84 3 
Seasonal 645.91 26 672.97 14 22400.61 13 
Both 639.72 28 671.86 15 22399.55 14 

Beta-negative Binomial 
Trend 280.30 8 281.36 6 479.81 4 
Seasonal 0.27 28 4.62 16 447.72 14 
Both 0.00 30 4.62 17 447.72 15 

the number of deaths varies regularly over the year. We use seasonal harmonics for 
the twelve-month period. Thus, three models will be fitted: (1) separately to the data 
for each sex, (2) with the same trend and seasonal, but a different level for each sex, 
and (3) with all components  the same for each sex. The resulting deviances for the 
gamma-Po i s son  (negative binomial) and beta-negative binomial (hypergeometric) 
are displayed in Table 2. We arbitrarily take a fixed discount of  0.7, although this 
could also have been estimated. 

Although there is no clear saturated model,  we take our most  complex model 
as a baseline, arbitrarily giving it zero deviance, so that it can easily be compared 
with the others. We immediately see that all of  the gamma-Po i s son  models are 
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Fig. 1. Monthly deaths from bronchitis, emphysema and asthma, from Table 1, with fitted negative 
binomial DGLM. 

unacceptable as compared to the beta-negative binomial ones. A trend is not neces- 
sary and the seasonal components can be the same for deaths of both sexes. However, 
the level must be different for the two sexes. This model has a deviance of only 4.62 
greater than the most complex one, but with 14 fewer parameters, The only further 
simplification is to reduce the number of harmonics. It is only possible to eliminate the 
two highest ones, with a further increase in deviance of 3.76. The fitted values of the 
final model are plotted in Fig. 1, along with the observed numbers of deaths. The fitted 
line follows the observed deaths fairly closely, with the exception of three high 
numbers of the male deaths and one of females. Male deaths are consistently higher 
than female, but with the same seasonal variation. There is no indication of a change 
in the number of deaths over the years. 

3. Positive-valued data 

Dynamic generalized linear models can also be applied to duration data, or at least 
to longitudinal data having positive response values which might follow a gamma, 
inverse Gaussian, or log normal distribution, the most common appropriate members 
of the exponential family. Here, we consider the gamma distribution, whose conjugate 
is also a form of gamma,  allowing for frailty or heterogeneity across units. The 
procedure for estimating the parameters is essentially the same as that described 
above, except for the change in distributions, and need not be repeated here. 

We shall apply this model to measurements of plasma citrate concentration (~tmol/1) 
for ten subjects over fourteen successive hourly observation points between eight in 
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Table 3 
Plasma citrate concentrations (pmol/l) for 10 subjects at 14 successive times during the 
day (Andersen et al., 1981) 

93 109 114 121 101 109 112 107 97 l l7 
89 132 121 124 

116 116 111 135 107 115 114 106 92 98 
116 105 135 83 

125 166 180 137 142 114 119 121 95 105 
152 154 102 110 

144 157 161 173 158 138 148 147 133 124 
122 133 122 130 

105 134 128 119 136 126 125 125 103 91 
98 112 133 124 

109 121 100 83 87 110 109 100 93 80 
98 100 104 97 

89 109 107 95 101 96 88 83 85 91 
95 109 116 86 

116 138 138 128 102 116 122 100 123 107 
117 120 119 99 

151 165 156 149 136 142 121 128 130 126 
154 148 138 127 

137 155 145 139 150 141 125 109 118 109 
112 102 107 107 

Table 4 
Deviances for several dynamic generalized linear models for the plasma 
citrate data of Table 3 

Together Different intercept 

Deviance Par. Intercept Par. 

Null 1152.92 1 1079.68 10 
Trend 1149.57 2 1075.17 11 
Harmonics 1138.05 12 1053.87 21 
Both 1134.96 13 1049.96 22 

the morning and nine in the evening. The data, from Andersen et al. (1981), are 
reproduced in Table 3. Since interest centres on daily rhythms, this dynamic generaliz- 
ed linear model with harmonics may be appropriate. 

With short series, as in this example, fitting a different D G L M  to each series is not 
reasonable; there would be too many parameters. Instead we fit 'parallel' and identical 
series, with 12 harmonics for a half-day and a trend which might pick up a longer 
period. The resulting deviances are given in Table 4. The ten series are not identical, 
but have different levels, as already could be seen from Table 3. For example, subjects 
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Fig. 2+ Hourly plasma citrate concentrations, from Table 3, with fitted gamma DGLM. 

one and seven have consistently lower plasma citrate concentrations than the others. 
Since a trend does not appear, the model with only the harmonics is sufficient. In fact, 
this can be reduced from 12 to four harmonics with only a gain in deviance of 8.45. 
The observations are plotted, along with the fitted model, in Fig. 2, arbitrarily 
separated into two plots to make the presentation clearer. We see that the plasma 
citrate concentration is generally highest at about ten in the morning and lowest 
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about  four or five in the afternoon. There seems to be no relationship to the meal times 

of  eight in the morning,  noon,  and five in the afternoon. 

4. Discussion 

Procedures  for dynamic  generalized linear models are not  yet well developed, 

other  than in the normal  case. There they are very useful for fitting r andom effects 
and autoregression when the observat ion times are unequally spaced (Jones and 

Ackerson, 1990; Jones and Boadi-Boateng,  1991). Fo r  this reason, the method is 

coming to be extensively used for repeated measurements  data. In the more  general, 

non-normal ,  case, the intractability of  the integrals means that t ime-consuming 

numerical methods  must  be used (Kitagawa, 1987) or  approximat ion  made. Here, 
only the first two moments  of  the conjugate distribution were employed. Little is 
known about  how to apply such methods  to unequally spaced data. However,  the 

power  of  the procedure  makes it one of  the most  promising avenues of  research in 

repeated measures. 
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