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ABSTRACT

This paper presents statistical methodology to analyse longitudinal binary responses

for which a sudden change in the response occurs in time. Cumulative probability plots,

transition matrices, and change-point models and more advanced techniques such as

generalized auto-regression models and hidden Markov chains are presented and applied

on a study on the activity of Rhipicephalus appendiculatus, the major vector of Theileria parva,

a fatal disease in cattle. This study presents individual measurements on female

R. appendiculatus, which are terminating their diapause (resting status) and become active.

Comprehending activity patterns is very important to better understand the ecology of

R. appendiculatus. The model indicates that activity and non-activity act in an absorbing

way. The change-point model estimates that the sudden change in activity happens on

December 10. The reaction of ticks on acceleration and changes in rainfall and

temperature indicates that ticks can sense climatic changes. The study revealed the

underlying not visually observable states during diapause development of the adult tick

of R. appendiculatus. These states could be related to phases during the dynamic event of

diapause development and post-diapause activity in R. appendiculatus.

Keywords: behaviour, ecology, diapause, generalized auto-regression models, hidden

Markov chains, Rhipicephalus appendiculatus, ticks.
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1. INTRODUCTION

In ecology, an organism often remains in a resting phase for a certain period to

synchronise its life cycle with fitting climatic conditions. The diapausing behaviour of

Rhipicephalus appendiculatus vector of Theileria parva, the causative agent of the bovine

disease East Coast fever is an example. This tick goes in diapause, to survive dry periods

in southern Africa. R. appendiculatus uses the shortening daylenghts at the beginning of the

dry season (in April-May) as an indication to enter diapause (Madder et al., 2002). At a

certain point in time, the organism becomes active again in order to continue its life

cycle. In southern Africa, this occurs often suddenly at the end of the dry season and the

beginning of the rainy season in November-December (Speybroeck et al., 2002). By not

taking into account this sudden change of activity in time in an analysis of the activity

patterns, the influence of other explanatory variables, which are measured, might be

misinterpreted.

In Zambia, numbers of R. appendiculatus adults on the hosts increase after the onset of

the rains (MacLeod, 1970; Pegram et al., 1986; Pegram and Banda, 1990; Berkvens et al.,

1995; Berkvens et al., 1998, Speybroeck et al., 2002), probably to ensure that the most

vulnerable stages of the lifecycle, namely eggs and larvae, are exposed to favourable

conditions. The main factor responsible for becoming active again is thought to be day

length where a long photoperiod terminates the state of diapause and induces host

seeking in the wet months (Short et al., 1989b; Pegram and Banda, 1990). Berkvens et al.

(1995) reported that in eastern Zambia the diapause of R. appendiculatus was terminated

after the onset of the rains, apparently not after a long day signal, but due to weakening

photoperiodic maintenance of the diapause because of an increased age of the ticks. This

could also be demonstrated in laboratory conditions (Madder et al., 2002).
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Understanding activity patterns of adult ticks at the beginning of the rainy season is

important for epidemiological reasons.

The aim of this paper is to study tick activity under quasi-natural conditions during

the 1986-87 rainy seasons. The interest lies in presenting and applying methodology for

detecting a sudden change in the behaviour of an organism and in the investigation of

the remaining importance of explanatory variables after having accounted for the change

in behaviour and for the dependency of measurements on the same subject in time.

First we present explorative techniques like cumulative probability plots, transition

matrices, and change-point models. The benchmark is a change-point model, which does

not use covariates but simply tries to locate the most likely point at which behaviour

changes.

Lindsey (2001) fitted a change point model for Poisson distributed responses and

indicated that hidden Markov chains could have been used to detect the change point.

We then present and apply more advanced techniques such as generalized auto-

regression models and hidden Markov chains.

Guttorp (1995) and MacDonald and Zuchini (1997) provide mathematical

background on the topic of hidden Markov chains. The theory and applications of

generalised auto-regression models have been thoroughly discussed by Lindsey (1999).

The term ‘generalised’ is used in this context to indicate the possibility of choosing

distributions other than the Gaussian one to model the response.

2. DESIGN OF THE T ICK ACTIVITY STUDY

The aim of the trial at hand was to investigate activity patterns of female

R. appendiculatus  ticks from October, just before the start of the rainy season until the end

of March at the end of the rainy season.
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The experiment was carried out in eastern Zambia. On the 11 th of July 1986, newly

moulted adults of four local R. appendiculatus strains were released into circular gauze

columns of 5cm diameter and 1m tall. The bottom end of each column was glued to an

open cylinder, which was secured in the soil to a depth of about 10 cm. This allowed

ticks access to the soil. The top of the column was tied to a metal wire frame. The

columns were placed under a cover. Coloured numbered tags used by beekeepers to

identify queens were applied to the ticks, allowing individual identification. The following

stocks of ticks originating from eastern Zambia were used in this trial (Berkvens et al.,

1995):

• R. appendiculatus (Michembo), collected at Michembo (altitude 1040 m).

• R. appendiculatus (Genda), collected at Genda (altitude 1150 m).

• R. appendiculatus (Nkolowondo), collected at Nkolowondo (altitude 1080 m).

• R. appendiculatus (Lundazi), collected at Lundazi (altitude 1250 m).

There are differences among these stocks. Ticks from Michembo have only recently

appeared in eastern Zambia and are still settling, whereas ticks from the Genda and

Nkolowondo locations have been around for a long time. On the other hand, Lundazi is

located closer to the Equator and has a longer rainy season and a smaller difference in

day length.

Data were collected on the following numbers of females: 7 from Michembo, 8 from

Genda, 9 from Nkolowondo, and 9 from Lundazi.

Each tick was observed daily around 10 in the morning between October 1, 1986 and

March 31, 1987. They were recorded as either absent from the column, present but

inactive, or present and active. A tick was considered to be active when it reacted to the

presence of the recorder by actually moving in the column, usually upwards. When ticks

were unobserved for more than 7 consecutive days, they were considered dead.
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Besides the tick’s origin (four localities), several other explanatory variables are

measured on a daily basis. Ambient temperature (average temperature in °C) and relative

humidity (in %) were recorded daily at the study site. The rainfall (in mm), minimum and

maximum temperature of the day (in °C) were recorded, and day length (expressed as

potential hours of sunshine in hours) was calculated according to a formula of Duffett-

Smith (1985) based on List (1951). List (1951) defines daylength as the interval between

sunrise and sunset. According to List (1951), sunrise and sunset occur when the upper

edge of the solar disk appears to be exactly on the horizon, i.e. on average when the

centre of the sun is 50' (' = degree minutes) below the horizon. Thus, daylength is

calculated as the interval between these two events, i.e. between (i) centre of sun is 50'

below the horizon in the morning and (ii) centre of sun is 50' below the horizon in the

evening.

Some of these variables were also used to construct additional explanatory variables

such as the average daily vapour pressure deficits (in mmHg), some change-point

indicators, and various cumulative and lagged variables. The daily average vapour

pressure deficits (vpd) was calculated according to Rosenberg et al. (1983) as a nonlinear

function of temperature and humidity. Vapour pressure deficit is the difference between

the Saturation Vapour Pressure (the pressure that water vapour molecules would exert if

the air were saturated with vapour at a given temperature) and the actual vapour

pressure.

Two indicators were also created: a rain and a day length change-point variable

respectively indicating by zeroes the period before and by ones the period after the

highest rainfall peak (which occurred on December 11 or day 69) and the longest day

(which occurred on December 21 or day 79).

Lagged variables are also used in order to take into account dependence on previous

observed values. Lagged variables of the response up to three previous values were
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constructed, whereas for explanatory meteorological variables, only lagged variables up

to two previous values were created. From a biological point of view, it is sensible to

consider such lagged variables because the short term history of each particular

individual most probably influences its current and further behaviour.

Only the inactive and active responses collected are considered in this paper. Few

observations (mainly at the end of an individual’s observation series) were actually

collected in the absent or unobserved category. Towards the end of the study, an

individual observed in this category could be hiding or dead. Thus, when a tick was

unobserved, the observation was considered to be missing (at random).

It can also be remarked that we treated the columns with the ticks as identical.

However, ticks from each of the four R. appendiculatus strains were released into four

columns, one column for each strain. This design confounds “column” effects with the

effects of strain. Although we do not think that this confounding distracts from this

paper, a randomized complete block design where every strain is placed in every column

or, because it is difficult for strains to cohabitate, a design with more than one column

for each strain would have been more appropriate.

3. VISUALIZATION

The probability of a tick being observed inactive is represented by the height of the

continuous line in Figure 1 a. The probability of a tick being inactive is very high at the

start of the study. The probability of inactivity decreases at some point in time and

remains lower until the end. The vertical dotted and dashed-dotted lines respectively

represent the maximum rainfall peak (day 69) and the longest day (day 82). The other

graphs in Figure 1 show recorded day lengths, rainfall, relative humidity, vapour pressure

deficit, and temperature. These are all related: a change in their patterns occurs around

the maximum rainfall peak day.
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[Insert Figure 1].

333...111...   TTTrrraaannnsssiiitttiiiooonnn   MMMaaatttrrriiiccceeesss

For a first-order two-state Markov chain the transition matrix is calculated to be

0|0 1|0

0|1 1|1

π π
π π

 
 
 

 = 0.94 0.06
0.35 0.65

 
 
 

with for example 10|π  the conditional probability of no event following an event.

The conditional (transition) probability of no activity given that there was also no

activity the previous day 00|π  is 0.94, much higher than when there was activity the

previous day (0.35). The marginal probability of being active regardless of the activity

pattern of the previous day is 0.14. The transition matrix for a second-order two-state

Markov chain is

0|00 00

010|01

0 | 0 0

0|

0.95 0.05
0.75 0.25
0.48 0.52
0.28 0.72

π π
ππ

π π

π π

1|

1|

1 1|1

11 1|11

   
   
   =   
        

The probability of activity is increasing respectively if there was no activity during the

last two days, there was activity only two days ago, there was activity only on the previous

day, and there was activity during both previous days.

333...222...   CCChhhaaannngggeee---pppoooiiinnnttt   MMMooodddeeelllsss

A change-point is an indicator variable, zero before a certain point in time and then

one. The point in time can then be estimated by including it in the model. Hence, fitting

such a model to binomial response data will allow a change in the average response at

some unknown point in time. Figure 2a shows the corresponding negative normed

likelihood for the binomial response. For our data, December 7 (day 69), was estimated

as the optimal change-point. Figure 2b shows the fit of this model. Once the tick is

active, a cyclic pattern of activity is visible. It is possible to estimate a change-point for
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every group separately. The 95% Confidence Intervals based on the assumption the –2

times the log-likelihood is distributed as chi-square with 1 degree of freedom. The

estimates with the 95% Confidence Intervals are: ……………….

A change point could also be combined with a model, but this is not performed in

this paper. Indeed, from this point on, we preferred to consider only change-point

variables, which could biologically be interpreted such as the longest day or the start of

the rainy season. It is important to distinguish between change-point variables, which are

observed and change-point models, which are estimated.

[Insert Figure 2].

4. STATISTICAL BACKGROUND

Activity status on 33 ticks was collected daily over a period of six months resulting in

5249 observations. This provides enough degrees of freedom to be able to model

complex environmental factors influencing the behaviour of the ticks.

One of the purposes of this article is to propose useful new techniques to analyse

activity data where a sudden change of the behaviour of an organism occurs. The data

are such that the behaviour of an individual can be related to the behaviour of that

individual at other time points. Three different types of dependencies among

observations on a subject in time were considered: state dependence, serial dependence,

and spells (hidden Markov models). These all allow the subject’s history to be taken into

account by the model but in different ways. State dependence adjusts the model by

taking the actual previous observation into consideration. In serial dependence, the

difference between the model prediction at the previous time point and the actual

previous observation is used to take the individuals history into account in the model.

Finally, hidden Markov chains allow the undergoing biological process to switch over

time among several hidden states (or behaviours), called spells.
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444...111...   GGGeeennneeerrraaallliiizzzeeeddd   AAAuuutttooo---rrreeegggrrreeessssssiiiooonnn   MMMooodddeeelllsss

For observations collected at equally spaced times, a Markov process of order M, can

be written as

0
1

M

t h t h
h

yµ α ρ −
=

= + ∑ (1)

with tµ the location parameter of the distribution, 0α the intercept, hρ the Markov

process parameter (constrained between 0 and 1) that quantifies the dependence strength

on the previous response, and hty −  the hth previous response with respect to time t

(Lindsey, 1999). Equation (1) can be generalised further by using an appropriate link

function )( tg µ  to describe the location of the distribution (Lindsey, 1999). Models with

this type of dependence can be referred to as state dependence models. First, second,

and third order state dependence models are considered in this paper.

On the other hand, models where the location of the distribution does not depend

directly on the previous response but on the difference between the previous response

and its predictor

( )0
1

M

t h t h t h
h

yµ α ρ µ− −
=

= + −∑

can be referred to as serial dependence models (Lambert, 1996).

It is also important to assess whether the observations collected are following a

stationary or non-stationary process. The biological process may not yet have reached

equilibrium and is therefore still evolving suggesting that a non-stationary dependence

process should be considered. The dependence structure will then have two parameters,

measuring the dependence strength on just the previous residual but capturing a

recursively fading dependence on all previously collected observations. When the first

parameter (ϕ ) tends to zero the dependence structures indicates that a stationary
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Markov process, with parameter ( ρ ) measuring the dependence strength on the previous

residual, is more suitable.

Note that the above types of dependencies (state and serial) can be incorporated into

a same model yielding a state and serial dependence model.  The latter model is used in

this paper.

Finally, the change in behavior of the ticks will only be introduced in the model by the

longest day or the start of the rainy season change-point variables.

444...222...   HHHiiiddddddeeennn   MMMaaarrrkkkooovvv   CCChhhaaaiiinnnsss

Dependence among each subject’s observations will now be induced differently for

the case where the responses are generated in one of several different unknown states.

Now, the dependence is induced conditional on the subject’s previous hidden state

history rather than its previous observed history. All possible changes of state over time

must be taken into account. Each subject’s possible “path” through the states

corresponds to a product of conditional probabilities. Because the dependence is

conditional on each subject’s previous state history, it is calculated by multiplying the

probability of a particular subject being in each state at each given time point by a

transition probability. This ensures that summing all these products of conditional

probabilities together produces the joint probability over time and all possible states for a

particular subject. The sample probability is then obtained by multiplying these sums of

products of conditional probabilities together over all individuals.

At the first time point, no previous information is available to estimate the probability

of being in a particular state. This is solved by using the stationary marginal transition

probabilities, which assumes that stationarity of the hidden process has been reached.

Then s(s–1) transition probabilities must be estimated along with the regression

parameters.
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Consider a simple case with two states and three time points. As above for ordinary

Markov chains, the transition probabilities are p1|1, p1|2, p2|1, and p2|2 and the marginal

probabilities are 1 | 2

2|1 1 |2

π

π π
δ

+
=  and 1 δ−  respectively for state 1 and state 2 (MacDonald &

Zucchini, 1997). The joint probability over time and all possible states for subject i  is

then

( )

( ){ ( ) ( ) ( )
( ) ( ) ( ) }

( ) ( ){ ( ) ( )

1 1

1 1 11 1|1 2 2 21 1|1 3 3 31 2|1 3 3 32

2|1 2 2 22 1|2 3 3 31 2|2 3 3 32

1 1 12 1|2 2 2 21 1|1 3 3 31 2|1

Pr , ,

Pr Pr Pr Pr

Pr Pr Pr Y S

Pr Pr Pr Pr

i im m

i i i i

i i i

i i i i

Y k Y k

Y k S Y k S Y k S Y k S

Y k S Y k S k

Y k S Y k S Y k S Y

δ π π π

π π π

δ π π π

= = =

 =  =   =  + =  

 + =  =  + =  

+ 1− =  + =   =  +

K

( )
( ) ( ) ( ) }

3 3 32

2|2 2 2 22 1|2 3 3 31 2|2 3 3 32Pr Pr Pri i i

k S

Y k S Y k S Y k Sπ π π

=  

 + =   =  + =  

where ( )jhjij S|kY =Pr  is the probability of the response being observed in category

k at time j for subject i given it is in state (S ) h at time j. This expression is not

computationally feasible but it can be rearranged in a recursive form over time

(MacDonald & Zucchini, 1997; Lindsey, 1999). The joint probability over time and all

possible states for subject i can then be written as

( ) ( )1 1Pr , ,
j

m
T T

i im m ijk
j

Y k Y k D
=1

= = = ∏d p JK (2)

where d is a row vector containing the marginal probabilities, p is the transition

matrix, 
jijkD is an s×s matrix containing on the diagonal the probabilities of the response

being observed in category k at time j for subject i given the various possible states, and J

is a row vector of ones. The likelihood is obtained by multiplying Equation (2) over all

subjects.

A hidden Markov chain can be illustrated for instance by considering ticks being

active or not (a binary time series). The tick can now be in one of two unobservable

states, a state where its metabolism is low and another state where it is high. There are no
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ways to measure this directly but a tick can behave differently (and shows a different

activity outcome) depending on which state it is in. Each of the two possible events

might be generated by one of the two Bernoulli distributions. The process switches from

the one to the other according to the state of the hidden Markov chain, in this way

generating dependence over time.

Two types of recursive probabilities can now be extracted from this model. These are

obtained from the intermediate values

1
1

Pr( )
s

ijr i j o or ij j jr
o

Y k Sζ ζ π, − ,
=

= = |∑

calculated while constructing the joint probability over time and all possible states for

subject i are required, where 1 1 1 1Pr( )i r r i rY k Sζ δ= = | is obtained for the first time point.

A filtered probability is the probability that a specific subject is in a particular hidden

state given this subject’s previous state history. Hence, the probability of subject i being

in state r at time j is 
1

ijr

s
ijoo

ijr

ζ

ζ
ξ

=

=
∑

, obtained by standardizing the ?ijr. The probabilities of

the response being observed in category k at time j for subject i can then be calculated by

1

Pr( )
s

ij ijo ij j jo
o

Y k Sϕ ξ
=

= = |∑  which are the recursive probabilities for subject i.

Finally, changes in behavior of the ticks are introduced in the model by the longest

day or the start of the rainy season change-point variables as well as by transitions

between the different states. Although, multiple state transitions may occur.

5. ANALYSES OF T ICK ACTIVITY

555...111...   MMMooodddeeelllllliiinnnggg   SSStttrrraaa ttteeegggyyy

Because the modelling process is exploratory, the inference criterion used for

comparing the models under consideration is their ability to fit the observed data, that is

how probable they make the data. In other words, models are compared directly through
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their minimized minus log likelihood. The models can be penalized by adding the

number of estimated parameters, a form of the Akaike information criterion (AIC, see

Akaike, 1973; Lindsey and Jones, 1998). Smaller values indicate more preferable models.

This criterion allows direct comparisons among models that are not nested.

AICs are only comparable if they are calculated by fitting models based on the same

(data and) number of observations. Hence, care must be taken when working with lagged

variables. As lag(1), lag(2), and lag(3) response variables (previous, second previous, and

third previous day activity status) are considered, all the exploratory methods and

analyses included in this paper are based on the tick dataset with all observations

recorded during the three first days removed. This allows all desired comparisons among

results.

An intercept or null model provides a reference point for comparison with further

fitted models. Models, each containing only one of the different explanatory variables,

are then fitted and sorted in ascending order of their AIC value. The explanatory variable

model with the lowest AIC is selected as the starting point for the model building

process. Additional explanatory variables are then added to this model according to their

AIC value and are only kept in the model if the AIC reduces. If the final model contains

change-point variables, interactions between change-point variables and the explanatory

variables present in the model are considered. This will provide additional information

on differences in behaviour before and after the change-point. The last modelling step is

then to check whether any explanatory variables are no longer significant and could

therefore be deleted from the model. This is carried out by removing each variable and

keeping it out of the model if the AIC decreases. The model must remain hierarchically

valid and a non-significant main effect will not be removed from the model if this

explanatory variable is still present in an interaction term.

For all models presented, a logit link was used.
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555...222...   SSStttaaatttiiissstttiiicccaaa lll   CCCooommmpppuuutttaaatttiiiooonnnsss

The analyses presented in this paper are performed using packages in R (Ihaka and

Gentleman, 1996). R is a fast S-Plus clone freely available (http://cran.r-project.org).

The generalised auto-regression models and the hidden Markov chains can be fitted

respectively using the gar and hidden functions provided by the package repeated which can

be downloaded from a web page (http://www.luc.ac.be/~jlindsey/rcode.html).

The functions to fit change point models, the code used to perform the analyses, and

the tick data set can be obtained on another web site (http://euridice.tue.nl/~plindsey/).

6. GENERALISED AUTO-REGRESSION MODELS

The logistic regression only containing the intercept has an AIC of 2146. This is

lowered to 1371.3 by adding a serial dependence. Adding state dependence on the

previous three days activity status improves the model by lowering the AIC to 1327.4

(six-parameter model). After the addition of all the significantly contributing variables a

seventeen-parameter state and serial dependence model with an AIC of 1290.1 was

obtained (Deviance: 1209.126, degrees of freedom: 5212; McCullagh and Nelder, 1992,

p.174)

logit( ) 2.754 previous day activity status 0.474 second previous day activity status
 0.310 third previous day activity status 0.001 cumulative rainfall
 longest day indicator 0.154 maxim

0.436

0.321

µ = + × + ×
+ × + ×
+ × − × um temperature

 0.091 change in maximum temperature 0.055 acceleration in maximum temperature
 0.022 change in rainfall 0.012 acceleration in rainfall 
 vapour pressure deficit 0.669 Lundazi lo0.0001

+ × − ×
+ × − ×
− × − × cation

 0.975 longest day indicator previous day observation
 0.140 longest day indicator vapour pressure deficit
− × ×
+ × ×

where µ is the expected (or average) probability of being active and the three italised

coefficients are not significantly different from zero. The dependence parameters for the

non-stationary process are 0.916 (ϕ ) and 0.702 (ρ ). The first parameter (ϕ ) clearly
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indicates that the biological process is still evolving over time and that the dependence

structure can therefore not be simplified to a first-order Markov process.

The maximum temperature (-0.154 × maximum temperature) is the most important

factor in the model obtained because the daily maximum temperature (which must be

between 19 and 38°C) multiplied by its coefficient has the largest impact on the

probability of the tick being active. An increase in maximum temperature corresponds to

a decrease in the probability of a tick being active. Indeed, even if a tick has been active

during the three previous consecutive days, this tick’s current probability of being active

will be below one half for (constant or increasing) maximum temperatures above 24.3°C.

The tick’s activity history (2.754 × previous day activity status, 0.474 × second

previous day activity status, 0.31 × third previous day activity status) is also important.

Once a tick becomes active it will have a greater probability of remaining active. The

change in amount of rainfall (0.022 × change in rainfall) respectively increases and

decreases the probability of a tick being active each time a rainy period starts and ends.

This factor will have the most impact on the probability of a tick being active when the

rainy season starts and hence can be interpreted as one of the signals indicating to the

tick to start becoming active.

Another one of the signals that could be indicating to the tick to start becoming active

is the longest day (0.321 × longest day indicator) but in the model obtained the

coefficient of the main effect is not significantly different from zero. Note that the AIC

rises from 1290.1 to 1296.1 when the rainy season indicator replaces the longest day

indicator. On the other hand after the longest day (December 21 or day 79), the effect of

the previous day activity status decreases ([2.754-0.975] × previous day activity status)

and the vapour pressure deficit ([0.14-0.0001] × vapour pressure deficit) proportionally

affects the probability of a tick being active (due to the two interaction terms with the

longest day indicator).
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The cumulative rainfall (0.001 × cumulative rainfall) can be interpreted as a non-linear

ageing effect, which slowly obliges the probability of the tick being active to increase

over time regardless of any other factors.

The acceleration in rainfall (-0.012 × acceleration in rainfall) is the fourth most

important factor, closely followed by the change and acceleration in maximum

temperature. The acceleration is obtained by the following formula:

[(today previous day) (previous day second previous day)] today 2 previous day second previous day− − − = − × +

The model also distinguishes ticks from the Lundazi location (-0.669 × Lundazi-

location), because the probability of these ticks being active remains lower throughout

the entire study. From Figure 3, Individual tick 25 is a typical tick from Lundazi. It is

only active for a very short period of time compared to ticks from other locations.

[Insert Figure 3].

The effect of these explanatory variables along with the ones of the state and serial

dependence can also be seen from Figure 3. The underlying population curve indicated

by the continuous line keeps slightly increasing (due to the cumulative rainfall) and

fluctuating over time (due to the meteorological explanatory variables). The effect of

adding a state and then a serial dependence can also be seen. These individual (or

recursive) curves are respectively represented by the dashed and dotted lines. As

expected by such dependencies, a tick’s probability of being active is pulled down or

pushed up according to its history and is therefore closer to its observed activity status

represented by the filled circles.

7. HIDDEN MARKOV CHAINS

The intercept model is identical to the one fitted for the generalised auto-regression

model with an AIC of 2146.8. The AIC is lowered to 1326.3 by introducing three hidden
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states. The final model resulting from this modelling process has an AIC of 1265.1 and

thirty-seven parameters (Deviance: 1598.329, degrees of freedom: 5232; McCullagh and

Nelder, 1992, p.174). It fits considerably better than the final generalised auto-regression

model but it is also much more complex. The regression equations for the three states

are

1

2

logit( ) 593.332 0.543 cumulative rainfall 1.246 rainfall 0.301 change in rainfall

 0.312 acceleration in humidity 44.658 Genda location
 31.278 Nkolowondo location

logit( ) 5.528 1.944 previous day

µ

µ

= − + × + × − ×
+ × + ×
+ ×

= + ×  activity status 0.877 second previous day activity status

 3.054 longest day indicator 3.004 rainy season indicator

 0.261 maximum temperature 0.409 change in maximum temperature
 0.294 acceleration 

+ ×
+ × + ×
− × + ×
− ×

3

in maximum temperature 0.029 rainfall

 0.026 change in rainfall 0.074 humidity 0.104 change in humidity

 0.068 acceleration in humidity 0.634 Lundazi location

logit( ) 6.793 1.668 previous day activitµ

− ×
+ × − × + ×
− × − ×

= + × y status 0.213 second previous day activity status

 0.522 third previous day activity status 0.230 maximum temperature

 0.012 rainfall 0.032 change in rainfall 0.021 acceleration in rainfall

 0.032 hu

+ ×
+ × − ×
+ × + × − ×
− × midity 0.021 change in humidity 0.392 Genda location

 1.040 Nkolowondo location
− × − ×

+ ×

where all explanatory variables are significant.

The hidden transition matrix is

0.980 0.020 0.000
0.022 0.970 0.008
0.000 0.013 0.987

 
 
 
 
 

and the stationary distribution is (0.409, 0.368, 0.224).

The transition matrix shows that a tick cannot change directly from behaviour

described by the first (or third) hidden state to the behaviour described by third (or first).

For such a change in behaviour to occur the tick must always go through the transitional

behaviour described by the second hidden state. The transition matrix shows that the

probability of remaining in a particular state is quite high and that the probability of

changing from a state to the next one and from this state back to the previous are almost

identical.
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The three states can be interpreted as follows. The first hidden state corresponds to a

behavior where the ticks are in diapause but takes into account an ageing effect. Indeed,

the probability of a tick being active (when following this type of behaviour) will only

tend to reach one half towards the end of the study once the cumulative rainfall (0.543 ×

cumulative rainfall) becomes large enough. Ticks from the Genda (44.658 × Genda-

location) and Nkolowondo (31.278 × Nkolowondo location) locations have a constant

higher probability of being active than ticks from the other two locations when following

this type of behaviour. This indicates that ticks from these two locations age faster and

will become active earlier if they remained throughout the study in this type of

behaviour.

The second hidden state corresponds to a behaviour where the tick is waiting for

indications and once this has occurred, corresponds to an out-of-diapause behaviour.

The probability of a tick being active (when following this type of behaviour) will only be

greater than one half once the rainy season starts (3.004 × rainy season indicator) due to

the presence of the maximum temperature (-0.261 × maximum temperature)  in this part

of the model. If this indicator is not sufficient to trigger certain ticks out-of-diapause,

then this will most likely occur once the longest day of the year (3.054 × longest day

indicator) has been reached. After the longest day is reached (on December 21 or day

79), this hidden state describes the influences of external factors on a possible behaviour

followed by ticks out-of-diapause. Ticks from Lundazi (-0.634 × Lundazi location) have

a slightly lower probability of being active than ticks from one of the other three

locations when following this type of behaviour.

The third hidden state only describes an out-of-diapause behaviour, which is

influenced by external factors. The probability of a tick being active, when following this

type of behaviour, is slightly smaller and more dependent on meteorological factors than

the out-of-diapause (or later) behaviour described for the second hidden state.
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The differences in behaviour of colonizers (ticks from the Michembo location),

settled down ticks (from Genda and Nkolowondo locations), and ticks collected closer to

the Equator (Lundazi location) are also captured by this model and described by linear

shifts of the probability of being active. Hence, ticks just have a lower or higher

probability of being active from the start and the external factors triggering and

influencing activity have the same effect on all of them.

This model also points out three different subgroups present at all locations,

respectively characterizing “early”, “optimal”, and “late” reactors. An “optimal” reactor

would be a tick that starts in the first hidden state and therefore would just be ageing. It

then would go to the second state where it would be waiting for a signal indicating that it

is time to start being active. The next step would be to go to the third hidden state where

meteorological conditions would drive the amount of activity. Finally, it might go back to

the second and then to third hidden state indicating a last intense period of activity,

which would be less influenced by external factors. Such ticks would be the first three

individuals on Figure 4. An “early” reactor would be a tick that starts directly in the third

hidden state and therefore is already very active at the beginning of the study. Such a tick

does not need to age before being active nor wait for a signal indicating the beginning of

favourable conditions for being active. Hence, its behaviour is straight away influenced

by meteorological conditions. Such ticks would be the three middle individuals on Figure

4.

[Insert Figure 4].

A “late” reactor would be a tick that starts in the first hidden state and remains ageing

for quite a long time. It switches to the second hidden state after the signals indicating

the beginning of favourable conditions for being active have occurred. Because it has

waited too long for optimal conditions to be active, it must be very active during the

remaining time of the study. Thus, such ticks remain mostly in the second hidden state,
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although they can on an occasion briefly go to the third hidden state. Towards the very

end of the study, ageing might catch up with such ticks and switch them back to the

behaviour described by the first hidden state. Such ticks would be the last three

individuals on Figure 4.

The fit of this model can be assessed from Figure 5. Indeed, it can clearly be seen that

the underlying population curve indicated by the continuous line increases slightly and

fluctuates accordingly to the meteorological explanatory variables from the start of the

rainy season or from the longest day until the end of the study. The dashed and dotted

lines represent the individual (or recursive) curves. The dashed curve shows the effect of

adding state dependence. Finally, the probability of an individual being active given the

optimal path through the hidden states for its activity history is represented by the dotted

line.

[Insert Figure 5].

8. DISCUSSION

This article had two purposes: (1) propose useful new techniques to analyze activity

data where a sudden change of the behaviour of an organism occurs, (2) the application

on itself is important because new information on the behaviour of adult R. appendiculatus

could be assessed.

Hidden Markov chains are especially appropriate to study post-dormancy behaviour,

portrayed in this study by the activation of R. appendiculatus after behavioural diapause.

Behavioural diapause involves a temporary interruption in a hierarchical sequence of

behavioural patterns (Belozerov, 1982). In contrast, morphogenetic diapause comprises

all categories of diapause whereby a development process is temporarily suspended or

interrupted as for example the delay in oviposition of engorged Amblyomma variegatum

females (Pegram et al., 1988). Change point models probably suffice for analyzing
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morphogenetic diapause as the state is always observable but the unobservable levels that

occur in behavioural diapause can probably only be analyzed by using hidden states

through hidden Markov chain models. As pointed out by Hodek (1996), it is extremely

difficult to distinguish between dormancy levels. Hidden Markov chain models could be

useful in clarifying possible hidden states.

[Insert Figure 6].

R. appendiculatus adults can be in three (non observable) different states as visually

shown in Figure 6 a. These states could be related to phases (internal to the tick) during

the dynamic event of diapause development and post-diapause activity in

R. appendiculatus. The first hidden state could be defined as a non-responsive dormant

phase. Ticks in this state progressively terminate diapause as their age increases (Madder

et al., 2002). This results in a slowly increasing trend of activity. The second hidden state

is a responsive dormant phase. In this state, the tick waits for a signal and once the signal

occurs, it becomes active and remains active independent of climatic factors. For the data

at hand, the signal was estimated to occur at the strong peak of rain at the start of the

rainy season. The third hidden state is a non-dormant phase in which ticks react to

microclimatic conditions. Ticks could be classified in three groups depending on the way

they change or stay in the three states as shown in Figure 6 b. A first group of ticks starts

in the first state and is thus not reacting on climatic conditions. These ticks then move to

a second state just before the signal to become active occurs and when the ticks get the

indication, they become active. Hereafter the ticks move quickly to a third state, where

they will active in function of climatic conditions. We can call this group optimal,

because it takes optimal advantage of the full rainy season. A second group of ticks

remains in the first state for a long time (Figure 6 c) and is thus becoming older. By the

end of the study these ticks have to become active because they are so old that if they

would stay in state 1 they would die. They thus move to state two, and as the signal has
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already occurred much earlier they stay active independent of climatic conditions. This

group is called a late group as the tick becomes active too late and does not optimally use

the full rainy season. An early group of ticks stays in the third state throughout the study

and reacts on climatic conditions from the beginning, too early to optimally use the rainy

season.

 It can be remarked that eastern Zambia is a transition zone, where uni- and bi-voltine

populations are observed (Berkvens et al., 1998). This is reflected in flexibility in the

behaviour of ticks.

The model shows that activity and non-activity act in an absorbing way meaning that

once a tick becomes active it shows a tendency to remain active. The auto-regression

models further indicate that activity suddenly changes around the longest day, also

indicated by the change-point model. The reaction of ticks on acceleration in rainfall and

temperature indicates that ticks might sense climatic changes.
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FIGURES



Figure 1: a) Plot of the cumulative probabilities over time for the observed responses.

The height of the continuous line represents the overall probability curve of being

inactive. On the other hand, the height above this continuous line represents the overall

probability curve of being active. The vertical dotted and dash-dotted lines respectively

represent the rainiest and the longest days. b) Plot of the day length (in hours) over time.

c) Plot of the rainfall (in mm) over time. d) Plot of the relative humidity (in percentage)

over time. e) Plot of the vapour pressure deficit (in mm Hg) over time. f) Plot of the

average temperature (in °C) over time.



Figure 2: a) Negative log normed likelihoods for the change-point model with a

change in activity occurring respectively on each corresponding day. b) Fit of the change-

point model for the data (solid line) overlaid by the daily average probability of tick

activity (dotted line).



Figure 3: Plots of the activity status (filled points where 0 and 1 respectively indicates

inactive and active) for some ticks selected from the different locations. The height of

the solid line indicates the underlying population probability curve of being active for the

generalized auto-regression model. The dashed and dotted lines represent individual (or

recursive) curves obtained for this model. The height of the dashed curve represents a

tick’s probability of being active taking only the state dependence into account, whereas

the dotted curve is obtained by taking also the serial dependence into account.



Figure 4: Plots of the probability of being in one of the three hidden states hidden

states over time for some ticks selected from the different locations and classified

according to reactor type.



Figure 5: Plots of the activity status (points where 0 and 1 respectively indicates

inactive and active) for some ticks selected from the different locations. The height of

the solid line indicates the underlying population probability curve of being active for the

hidden Markov chain model. The dashed and dotted lines represent individual (recursive)

curves obtained for this model. The height of the dashed curve represents a tick’s

probability of being active taking only state dependence into account, whereas the dotted

curve is obtained by taking also a tick’s optimal path through the hidden states into

account.



(a)

(b)

Figure 6 a: Activity patterns (probability of being active in time) for the different

states in which R. appendiculatus ticks can be when terminating their diapause, and the

rainfall (in mm) in time (below). Top: State 1, Slowly increasing activity independent of

climatic conditions. Middle: State 2: No activity until ticks get an indication, thereafter

ticks remain active independent of climate. State 3: Activity is a function of climate.

b: Three groups of ticks depending how the ticks change from one state to another.

Left (Optimal Group): Ticks start in State 1, change to State 2 before the rainy season

starts , followed by a change to State 3, in which climatic conditions influence the activity

patterns. Middle (Early Group): Ticks start and remain in State 3 in which climatic

conditions influence the activity pattern. Right (Late Group) Ticks start and remain in

State 1 in which climatic conditions do not influence the activity patterns but ticks slowly

increase activity because of getting older and at the end of the study the ticks switch to

State 2 where tick are active independent of climatic conditions.
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