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Abstract

Growth curve models assuming a normal distribution are often used in repeated measurements ap-
plications because of the wide availability of software. In many standard situations, a polynomial in
time is �tted to describe the mean pro�les under di�erent treatments. The dependence among responses
from the same individuals is generally handled by a random e�ects model, although an auto-regressive
structure can often be more appropriate. We consider both, in the context of missing observations. We
present diagnostics for two major problems: (1) the forms of the mixing distribution in random e�ects
models, and their inuence on inferences about treatment e�ects, and (2) the randomness of missing
observations. To demonstrate the utility of our techniques, we reanalyze data on percentage protein
content in milk, often erroneously analyzed as illustrating a dropout phenomenon. c© 2000 Elsevier
Science B.V. All rights reserved.
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1. Introduction

The original growth curve model for repeated measurements over time, introduced
by Elston and Grizzle (1962), and generalized by Pottho� and Roy (1964), has come
to be widely used when the responses can be assumed to be approximately normally
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distributed. It was later popularized by Laird and Ware (1982). This model uses
polynomials in time to describe mean pro�les, with random coe�cients to generate
a correlation structure among the repeated observations on each individual. However,
as Elston (1964) pointed out, such a covariance matrix depends crucially on the time
origin used, making the model di�cult to interpret and often unsuitable. For further
discussion of the problems with such random coe�cients models, see Lindsey (1993,
pp. 85–97).
A more appropriate approach to modelling the dependence of responses over time

is to introduce some form of auto-regressive structure, leaving any random e�ects
to handle inter-individual heterogeneity. Such models have been discussed by many
authors; for a survey, see Lindsey (1993, Chapter 4). One of the most exible
techniques for �tting such models, combining random e�ects and auto-regression, is
the Kalman �lter. This allows observations to be unequally spaced in time and can,
thus, handle randomly missing values; see, for example, Jones and Ackerson (1990),
Jones and Boadi-Boateng (1991), and Jones (1993). We shall use Jones’ software
in the analyses to follow.
One major drawback of this linear growth curve model is that the mean response

is generally taken to vary as a polynomial over time. In most situations, this will be
biologically unreasonable, some nonlinear function adapted to the speci�c
situation being more appropriate. Few authors have attempted to accommodate this
situation with both random e�ects and auto-regressive components; see, however,
Heitjan (1991a, b) and Lambert (1996). We shall not consider diagnostics to detect
this type of problem, although mis-speci�cation in this part of the model will inu-
ence conclusions about the suitability of other components of a model.
Many aspects of a repeated measurements model need to be checked when ana-

lyzing such data. We can only cover a few here. We shall be particularly interested
in the appropriateness of the random e�ects distribution(s) in describing the hetero-
geneity found in the data, including ways in which speci�cation of the time vari-
able inuences this. We shall also look at what information may be available about
whether or not missing values can be assumed to be random, without making any
attempt to model them. For the �rst problem, we shall look at what a �xed e�ects
model can tell us about random e�ects. For the second, we shall consider the results
of di�erent approaches to �tting the auto-regression of the model, as well as looking
at logistic regression. We shall study these in the context of residual analysis, and
individual pro�les.

2. The milk data

To illustrate our procedures, we shall use data that have been discussed several
times in the statistical literature (Verbyla and Cullis, 1990; Diggle, 1990; Diggle and
Kenward, 1994; Diggle et al., 1994; Little, 1995). They concern an experiment on the
e�ect of three di�erent feeding strategies on the protein content of milk produced by
cows over time. The percent protein level was measured on 79 cows weekly during
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19 consecutive weeks. The cows were randomly divided into three diet groups kept
in separate paddocks: the �rst 25 cows were assigned to a barley diet, the next 27
to a mixed barley and lupins diet, and the last 27 cows to a lupins diet.
In a number of the analyses, the data were erroneously taken as if all of the cows

entered the experiment at the same time, with missing values at the end of a series
indicating that the cow dropped out before the experiment terminated. However,
the cows actually entered when they calved and the experiment was ended at the
same time for all, so that the ‘missing values’ appear at the beginning (Cullis in
discussion of Diggle and Kenward, 1994; Diggle et al., 1994, pp. 5, 100). This is
exactly equivalent to the design of a standard survival study with staggered entry and
Type I censoring. The only di�erence might be that cows may have been randomized
at the beginning of the experiment instead of at ‘entry’, that is at calving. Because
the special diets were apparently not started then, treatment could not a�ect the time
to calving.
Thus, ‘missing values’ at the end of the shorter series, due to cows starting late,

are ignorable; with this design, it is impossible that ‘there is a strong dependence of
the dropout probability on the most recently observed measurement’ (Diggle et al.,
1994, p. 215), although some spurious correlation might be detectable. On the other
hand, the response value at any time point can depend on the previous history of
the cow, including time of calving (that is, a factor variable indicating the cohort)
and time since calving.
There are also a total of 11 missing values within the series for eight cows (three

are from one cow, with two values missing in consecutive time periods); we shall
look closely at these. Thus, there are a total of 1337 observations available on the
79 cows.
For these data, two time origins are possible: the beginning of the experiment

(that is, chronological time) and the moment when a cow begins producing milk
after calving (biological time). Separate models are considered for these two align-
ing methods, as a common model is not possible due to collinearity. Dependence
of protein level on the �rst would indicate the action of external factors common
to all cows, including changes in feeding in each paddock over time. We know
that the trial was terminated when feed availability declined in the paddocks in
which the cows were grazing (Cullis, in discussion of Diggle et al., 1994). In con-
trast, dependence on biological time would correspond to internal factors speci�c to
a given cow.
An additional factor is that the �rst three weeks after calving constitute a settling

in period. Some authors have ignored this part of the data, either by excluding it or
by simply leaving it as an integral part of the whole series. We shall directly model
this aspect of each series.
In order to carry out a reasonable analysis of these data, we would also need to

know a number of other things that are not available. These include why two fewer
cows were assigned to the �rst group (problems with calving?), the diet of cows
before the experiment began, the treatment of cows not entering at the beginning
(that is, all cohorts but the �rst) while they waited, and the reasons why the 11
missing responses were not recorded.
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3. Models

In the simplest cases, the growth model takes the N×T matrix of response values,
Y (where N is the number of individuals, and T is the number of time points), to
have mean

E[Y ] = XBZ ;

where X is the N×C inter-subject design matrix (describing the C diets and cohorts
in our example) for the N individuals, while B is a C×P location parameter matrix
(where P is the number of time-varying covariates) and Z is a P × T matrix of
covariates changing with the responses on a unit, most often simply a P − 1 degree
polynomial over the T points in time. This is assumed to describe the mean of a
multivariate normal distribution with variance-covariance matrix, �. One important
question with which we shall be concerned is how to check for appropriate structuring
of this matrix.
Classical �rst-order auto-regression, or AR(1), based on a multivariate normal

distribution, has a covariance matrix

�= �2




1 � : : : �T−2 �T−1

� 1 : : : �T−3 �T−2

...
...

. . .
...

...

�T−2 �T−3 : : : 1 �

�T−1 �T−2 : : : � 1




for T time periods, where �2 is the variance and � the auto-correlation.
Often, time-varying covariates, say z, will be available (as will time-constant co-

variates, but the presence of these does not inuence the following discussion so that
they will be omitted for simplicity of notation). The regression equation describing
how the mean depends on such explanatory variables can be developed in two dif-
ferent ways (Lindsey, 1993, pp. 99–112). We may start with a simple model for the
conditional mean, �t|t−1:

�t|t−1 = �yt−1 +
t∑
i=0

�izit ; (1)

where t indexes equally spaced points in time, and i the individual. The resulting
marginal mean of the multivariate normal distribution, �t , is relatively complex:

�t =
t∑
k=0

�t−k
t∑
i=0

�izik : (2)

This can be called a state dependence model and can be �tted with Eq. (1) by
any standard regression software if the �rst response is ignored, except conditioning
on it as a �xed value. (We shall use GLIM4; Francis et al., 1993.) Hence, this
is sometimes known, in the time series literature, as constructing a ‘conditional’
likelihood.
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A second approach is to consider a simple marginal model, still with the same
multivariate covariance matrix, such that

�t =
t∑
i=0

�izit : (3)

Here, however, the conditional mean is given by

�t|t−1 = �

(
yt−1 −

t−1∑
i=0

�izi; t−1

)
+

t∑
i=0

�izit : (4)

This can be called the serial correlation model. It involves a nonlinear regression
that requires special software for estimation. (We shall use the CARMA software of
Jones, 1993, that works in continuous time so that observations could be unequally
spaced, with varying times among individuals. SAS Proc Mixed could also have
been used.) As can be seen from the formula, it is modelling dependence of the
response on the residuals, that are thus assumed to be auto-correlated. Here, the �rst
observation is generally used, with the assumption that it has the appropriate (sta-
tionary) marginal distribution, that is, normal with the mean just given and variance,
�2=(1− �2). Thus, this is sometimes called the complete likelihood approach.
Although the second model, with auto-correlated residuals, is widely used in time

series analysis, it may be argued (Lindsey, 1992, pp. 119–132; Hendry, 1995) that
the existence of auto-correlation among the residuals indicates inappropriate con-
ditioning on explanatory variables. Thus, where possible, the �rst model, with the
simpler conditional regression and uncorrelated residuals, will usually be preferable
because it indicates adequate allowance for the previous history of the subjects. If the
second model �ts better, this is an indication that some pertinent explanatory vari-
ables are missing or incorrectly used in the model. The obvious extension, unifying
both models, is to use

�t|t−1 = �yt−1 +
t−1∑
i=0

izi; t−1 +
t∑
i=0

�izit (5)

as Hendry suggests, instead of imposing the constraint that i = ��i. Again, this
model is linear and can be �tted with standard regression software.
If there are no time-varying covariates (zit), the three models collapse to be the

same (except perhaps for the way in which the �rst observation is handled). In the
case of our growth curve model, the only time-varying covariates are the terms in
time itself, in form of a polynomial. Then, it is easy to show that, again, all three
models collapse to be identical: zit = ti so that the i is the coe�cient of (t − 1)i
and �i that of ti and these parameters are not separately identi�able. In other words,
in this particular case, the i and �i coe�cients of Eq. (5) become indistinguish-
able, as do �i and ��i in Eq. (4), both resulting in Eq. (1). In the same way, the
�i coe�cient of ti in Eq. (3) is not distinguishable from the coe�cient of ti in
Eq. (2), the latter being a function of � and �. We shall use this equivalence among
the models, and the �tting procedures, to provide extra exibility in modelling, in-
cluding the study of missing values.
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The second aspect of modelling the covariance matrix concerns inter-subject het-
erogeneity. This is usually handled by introducing random coe�cients, which, in the
most general case, can be written as

E[Y |�] = XBZ + �V ;
where � is the random e�ect

� ∼ MVN(0; I ⊗ �)
and Z and V are polynomials in time. In the complete model, this will be combined
with the dependence structure of auto-regression discussed above. In what follows,
we shall be especially concerned with the commonly used assumption of normality of
the random parameters. The multivariate normal mixing distribution for � attempts
to describe how a coe�cient in the model varies among individuals included in the
study. In this sense, the need for random coe�cients is an admission that important
explanatory variables are missing for the question at hand: incomplete information is
available about di�erences among individuals upon which one could condition using
covariates. Thus, introducing the random coe�cients is a mathematical technique for
inducing a multivariate normal distribution with some speci�c covariance matrix to
allow for the unexplained variation.
As in Lindsey and Jones (1997) for Poisson repeated measurements, we shall

look at �xed e�ects models as a diagnostic tool. Such models can be thought of
as non-parametric estimations of the mixing distribution whose form can then be
studied. As well, �xed e�ects are often informative in their own right, allowing easy
detection of individuals a�ected in extreme ways by the treatments, something that
is often important, for example in drug testing. By studying the individuals detected
in this way, one may be able to isolate what variables are missing in the modelling
process. Because we shall be using exact small sample direct likelihood methods
for inference, asymptotic questions of consistency are irrelevant (although they are
for other inference methods such as standard errors).
The inference criterion that we shall use for comparing the models under consid-

eration will be their ability to predict the observed data, that is how probable they
make the data. In other words, models will be compared directly through their min-
imized −log likelihood. When the numbers of parameters in models di�er, they will
be penalized by adding the number of estimated parameters, a form of the Akaike
information criterion (AIC, see Akaike, 1973; Lindsey and Jones, 1998). Smaller val-
ues indicate more preferable models. This criterion allows direct comparisons among
models, that are not required to be nested.

4. Preliminary analysis

These data have already been analyzed several times in the literature, so that
preliminary analysis using a series of plots, especially individual pro�les, need not be
presented here. That for biological time origin was presented by Verbyla and Cullis
(1990), Diggle (1990, p. 159), and Diggle et al. (1994, p. 54). We now proceed
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Table 1
AICs for a number of models �tted to the milk data using continuous AR

Biological Chronological Parameters

Intercept 423.41 2
Linear 418.4 419.2 3
Quadratic 385.4 420.1 4
Cubic 363.6 378.0 5
+ Treatment 310.1 326.0 7
+ AR(1) 12.7 23.6 8
+ Measurement error −15:0 −11:6 9
+ Random intercept −14:0 −10:6 10

in �tting what were called complete likelihood models above, using continuous AR
(Jones, 1993).
However, we �rst look at the calving time as a response variable in order to check

randomness of cohorts among treatments. An unequal repartition of the calving times
might have resulted if randomization occurred at the beginning of the trial and not
at calving. The frequencies of the six di�erent calving times can be cross-classi�ed
by treatment; the resulting contingency table has a deviance for independence of
1.64 with eight degrees of freedom indicating no di�erence in calving times with
treatment.
We can now apply the continuous AR models (using CARMA) to the full data set.

Note that, with Kalman �ltering in continuous time, when an observation is missing
within a series, conditioning occurs upon the most recent observed response, but with
an appropriately lower auto-correlation. The AICs for a hierarchically nested series
of models for the evolution of protein content in the milk are shown in Table 1.
We see here that auto-regression and measurement error are required but not a ran-

dom intercept. The biological time origin, located when each cow begins producing
milk, provides a superior �t. More complex auto-regressive and random coe�cient
structures were also tried; the only improvement found was with an AR(3) for the
biological time, reducing the AIC from −15:0 to −20:8. There is no evidence of an
interaction between treatments and time; in other words, the mean pro�les are paral-
lel. When treatment is removed from the AR(1) models (without random intercept),
the AICs rise, respectively, to −9:2 (biological) and −7:6 (chronological). Adding
a cohort e�ect, distinguishing calving times by a factor variable, does not improve
either model. Let us look in more detail at some results for the best model with
biological time. All of the following graphs are standard output from CARMA. The
mean pro�les for the three treatments are plotted in Fig. 1.
We see that the barley diet yields the highest protein content, followed by the

mixed and then the lupin diets. The estimates (standard errors) of the di�erences of
the latter two with the �rst are, respectively, −0:101 (0.051) and −0:212 (0.051).
The individual pro�les for nine selected cows (numbers 12 and 74 have missing

values) are shown in Fig. 2.
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Fig. 1. Mean pro�les for the three treatments.

The shorter ones are cows starting later, but aligned to the left because the time
origin is biological. Notice the irregularities, as compared to the mean pro�les in
Fig. 1, due to the auto-regressive e�ect that takes into account the magnitude of the
previous response. The recursive residuals for the same nine cows are presented in
Fig. 3.
Except for one somewhat extreme negative residual at the �rst time point for cow

73, there appear to be no major anomalies. In principle, one would generally be
satis�ed with this �nal model. However, we shall now go on to consider some more
non-standard diagnostics.

5. Diagnostics

In complex models, such as those for repeated measurements or where dispersion
parameters (such as the variance) depend on the covariates, standard linear regression
diagnostics such as residual analysis are often of limited use in detecting problems
with a model. (For other examples, see Lindsey and Jones, 1997.) The best approach
seems to be to try �tting a wider range of models in order to check the assumptions
being made.

5.1. Conditional AR models

We now turn to the ‘conditional’ likelihood model. To do this, we must eliminate
the �rst response of each cow and the response following any missing value in the
middle of a sequence (except to condition on them) because we do not have the
preceding value for these. We lose a total of 89 observations, the same ones with
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Fig. 2. Individual pro�les (solid lines) over biological time or nine selected cows, with the three rows
corresponding, respectively, to cows receiving protein, mixed, and lupins. Twice the standard deviations

are indicated by broken lines.
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Fig. 3. Recursive residuals for the nine selected cows, with the three rows corresponding, respectively,
to cows receiving protein, mixed, and lupins.
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Table 2
AICs for the model with a cubic polynomial in time, treatment e�ect, and an AR(1) (eight
parameters) �tted by various methods

Biological Chronological

Continuous AR (complete data) 12.7 23.6
Conditional AR (linear regression) 33.3 2.4
Continuous AR (incomplete data) 37.0 18.7

both time origins. Because these responses are �xed at their observed values, we shall
count them as additional parameters when penalizing the likelihood in the AIC. In
this way, the AICs will be comparable with those previously given for the continuous
AR models. Note that this is a rather heavy penalty because of the correlation among
the observations.
No software is available to �t measurement error in such conditional models, so

we begin from the model above without it, that is, a cubic polynomial in time, the
treatment e�ect, and an AR(1). The AICs for this model are shown in Table 2, �tted
as above (�rst line, from Table 1) and by linear regression (second line).
The only di�erence between these two models is that the �rst (continuous AR)

takes the �rst observation for each cow to have a stationary marginal distribution,
while the second (linear regression) assumes that it, and any one following a missing
value, have �xed values (counting them as additional parameters).
Surprisingly, we �nd that the model with chronological time origin now �ts better,

an improvement on either of the equivalent continuous AR models. We can also �t
the continuous AR model to the incomplete data. Here, the 89 eliminated responses
are not used at all, whereas, with linear regression, they were only used conditionally.
(They are still counted as estimated parameters in the penalty for the AIC.) As can
be seen in the last line of Table 2, this model �ts more poorly, especially with the
biological time origin.
These results indicate that, under our model, the eliminated responses may be dif-

ferent than the others, especially with the chronological time origin. The assumption
of a stationary distribution at the beginning of each series may not be satisfac-
tory or the 10 observations eliminated after the missing values may be special. With
a continuous AR, we can eliminate either the �rst value for each cow or the response
following an intermediate missing value separately. The AICs are given in Table 3.
We see that the �rst response of each cow, with the chronological time origin,

was �tting badly; the model improves when these are removed. This is not surprising
if a settling in period is required because this period occurs at various times with
respect to when the experiment began. We shall look further at this problem below.
Instead of removing the response following a missing value, we may rather remove

that preceding it, also shown in Table 3. We see that this provides a better model
than when the response following a missing value is removed, not much worse than
the model with the complete data. Thus, the responses immediately before a missing
value are suspect. We can investigate this further.
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Table 3
AICs for the model with a cubic polynomial in time, treatment e�ect, and an AR(1) (eight
parameters) �tted, using a continuous AR, with various observations removed

Biological Chronological

Complete data 12.7 23.6
First and after missing removed 37.0 18.7
First value removed 23.7 5.0
Value after missing removed 25.5 36.8
Value before missing removed 13.4 26.8

We may check the randomness of the responses missing in the middle of the series
by constructing a binary missingness indicator and performing logistic regression on
the immediately preceding response value (two are consecutive, so that only ten of
the 11 can be used). We �nd that a model with such dependence �ts better (AIC,
53.9) than without (AIC, 58.8). Missing values tend to follow high responses, with
a logistic regression coe�cient (standard error) of 2.996 (0.902). They are, thus, not
missing completely at random. Unfortunately, no information is available about why
such non-responses occurred so that appropriate models cannot be developed.
We can now check if a cohort e�ect is necessary in the conditional (linear regres-

sion) models. For biological time, the AIC is reduced from 33.3 to 32.3 and, for
chronological time, from 2.4 to −4:9 when those cows calving �rst are distinguished
from the others, there being no di�erence among the other cohorts. This di�ers from
the results for the continuous AR with the complete data above, where no cohort
e�ect was detected. We still do not have a model that �ts quite as well as the one
with measurement error in the previous section.

5.2. Individual heterogeneity

Let us now examine more closely the individual heterogeneity of the cows. The
following models will include a �xed e�ect for the cows; this is an individual
parameter for each animal. The inter-subject design matrix X from the above model
will now be of size N ×N . When we �t �xed e�ects models by the linear regression
method, we obtain the results shown in Table 4 (two of these �xed e�ects estimates
being aliased with the treatment e�ects).
Once the quadratic interactions between individual cows and time is introduced

into the model, the biological and chronological approaches become identical. The
presence of �ve distinct parameters involving time, including interactions, also allows
the model to take into account the �ve di�erent occasions on which cows were
entered into the study in the chronological setting. Note that these models contain
a very large number of parameters. But, at the same time, the likelihood is very
heavily penalized in the AIC: the penalty is 407 (=6 + 4 × 78 + 89) with 1248
observations (after elimination of 89), much more, for example, than a frequentist
likelihood ratio based Chi-squared test at 5%. Nevertheless, the AIC indicates that
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Table 4
AICs for a number of �xed e�ects models, with a cubic polynomial in time, treatment
e�ect, and an AR(1) �tted to the milk data using linear regression. The �rst column
indicates the interaction between individual cows and time included in the model

Biological Chronological Parameters

None 33.3 2.4 8
Intercept 13.6 −43.5 84
+ Linear −39.7 −82.3 162
+ Quadratic −128.9 240
+ Cubic −138.8 318

these models �t very much better than those in Table 1. Perhaps the presence of
measurement error in the earlier continuous AR models may have occurred because
non-normal mixing distributions were not being detected. We shall look at this in
more detail below, but �rst let us consider one further improvement to the model.
The one variable that we have not yet used is the settling in period. If we allow

the intercept and the linear component of time to be di�erent during this period, the
AIC is reduced from −138:8 to −147:0 for chronological time origin and to −161:2
for biological time origin. The linear component of the slope of the pro�le is less
negative during these three weeks.

5.3. Distribution of the �xed e�ects

We can now study more closely the �xed e�ects estimates for these models.
Among other things, this will allow us to see how changing the time origin for all
cows, for example by standardizing to set zero time at the average observed time,
a�ects the model, as mentioned in the introduction. (Note that this standardization is
a separate issue from that of the appropriate time origin, biological or chronological,
for individual cows in this speci�c data set.) The estimates of these parameters (with
the conventional constraint of summation to zero) provide us with information about
the heterogeneity among the cows, and hence about possible mixing distributions for
a random e�ects model. One way to study the form of these distributions is to use
kernel density estimation. Consider our best model with the biological time origin
and settling in e�ect. The results, when time is standardized to be centred at its
average, for the four sets of �xed e�ects (corresponding to four random coe�cients)
are shown in Fig. 4.
Let us next look at the �ts of several distributions to these estimates, as summa-

rized in the top left panel of Table 5.
For the intercept and the coe�cient for linear time, the normal distribution �ts

best of those tried. For quadratic and cubic time, the logistic distribution (not to be
confused with binary logistic regression) yields a better �t. The densities for these
two distributions are also plotted in Fig. 4. We see that, except for the logistic dis-
tribution applied to the �xed e�ects interaction with the cubic in time, the estimated
curves do not follow the kernel density very well.
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Fig. 4. Density plots for the �xed e�ects with times centred to have zero mean, for the model with
the biological time origin. Solid: kernel density estimate; dashed: normal distribution; double-dashed:

logistic distribution.
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Table 5
AICs for �tting the normal, logistic, Cauchy, and stable distributions to the estimates of �xed e�ects
for centred and uncentred time for the models with the two time origins

Centred Uncentred
Normal Logistic Cauchy Stable Normal Logistic Cauchy Stable

Biological time origin

Intercept 17.3 19.4 36.1 19.3 93.8 96.2 112.4 95.8
Linear −101.1 −98.1 −80.2 −99.1 11.1 11.3 24.6 12.4
Quadratic −269.9 −273.8 −262.9 −274.0 −154.2 −155.5 −144.7 −155.1
Cubic −417.1 −421.2 −414.9 −420.6 −417.1 −421.2 −414.9 −420.6
Chronological time origin

Intercept 25.8 28.2 44.5 27.8 165.7 157.6 154.6 153.5
Linear −132.2 −130.4 −115.5 −130.2 56.4 49.0 47.4 46.5
Quadratic −254.2 −258.5 −251.7 −257.2 −138.5 −145.2 −143.3 −145.8
Cubic −425.0 −430.9 −426.6 −430.8 −425.0 −430.9 −426.6 −430.8

Hougaard (1986) has suggested the use of stable distributions in the context
of random e�ects for survival data. We can try them here, as also presented in
Table 5. (They are �tted by numerical inversion of the characteristic function; see
Lambert and Lindsey, 1999.) Thus, the four parameter �-stable distribution can be
used to check the relative goodness of �ts of the normal (�=2) and Cauchy (�=1)
distributions, where � is the parameter indexing the heaviness of the tails. For the
intercept and linear components, they point to the normal distribution, with �̂ = 2
(but are penalized by two extra parameters, hence the larger AIC). For the quadratic
and cubic components, they �t about as well as the logistic distribution, with �̂ about
1.6, but indicate that some skew is present.
Now, let us consider the �xed e�ects estimates when time is not standardized

(that is, runs from one to 19). Note that this is simply a di�erent parametrization
of the same model, with exactly the same �t (although this would not be true if
a random e�ects model, with some given speci�c mixing distribution such as the
normal, were �tted). The AICs are presented in the top right panel of Table 5. The
kernel density estimates are plotted in Fig. 5, along with the �tted stable, normal,
logistic, and Cauchy distributions.
(The �xed e�ects for interaction with the cubic in time are identical in the two

parametrizations.) Here, the normal and logistic distributions �t about the same, but
it is evident from the graphs that neither does very well.
It is instructive to compare these results to those for the model with the chrono-

logical time origin (which �ts somewhat more poorly). The AICs are shown in the
bottom panel of Table 5. The distributions are quite di�erent, especially for uncentred
time, as can be seen when they are plotted in Fig. 6.
Although the logistic distribution and the stable family �t about equally well,

neither is capable of representing the kernel density curve very closely. In no case
with uncentred mean, is the normal distribution a serious competitor. Here, � of the
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Fig. 5. Density plots for the �xed e�ects with time not centred, for the model with the biological time
origin. Solid: kernel density estimate; short dashed: normal distribution; dot–dashed: logistic distribution;

dotted: Cauchy distribution; long dashed: stable distribution.
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Fig. 6. Density plots for the �xed e�ects with time not centred, for the model with chronological time
origin. Solid: kernel density estimate; short dashed: normal distribution; dot–dashed: logistic distribution;

dotted: Cauchy distribution; long dashed: stable distribution.
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Table 6
AICs for the full �xed e�ects model, with a cubic polynomial in
time, treatment e�ect, settling period, and an AR(1) (320 param-
eters) �tted to the milk data for several conditional distributional
assumptions, using linear regression

Biological Chronological

Normal −161.2 −147.0
Gamma −153.3 −139.0
Inverse Gauss −143.7 −129.5

stable family is estimated between 1.3 and 1.6, indicating a distribution in between
the normal and Cauchy, as can be seen from the graphs.
The need for thicker tailed distributions, such as the stable, may indicate that

the structural part of the model �ts most cows well, but that there are a few
extreme individuals not well accounted for by the model. Note that the need for
any non-normal mixing distribution of the random e�ects means that the induced
multivariate distribution is not multivariate normal, even if the conditional distribu-
tion of the responses is normal.
We have not succeeded in �nding an appropriate parametric mixing distribution

for these data. Although not really true for the distributions we have tried for these
data, the choice of the mixing distributions in a random e�ects model can depend
critically on the parametrization used (for example, time origin at the beginning or
centred). This is related to the warnings of Elston (1964) about the problem that the
random e�ects growth curve model is highly dependent on the coding of time used.

5.4. Other response distributions

As a �nal step, we can consider other conditional distributions than the nor-
mal. Results for the two other standard generalized linear models are presented in
Table 6.
Among these possibilities, the normal seems to be the appropriate choice. However,

another symmetric distribution, such as the logistic or some member of the stable
family might �t better (they do better when �xed e�ects are not included). Present
computing power does not allow us to try this with such a large number of �xed
e�ects parameters.
For the full �xed e�ects conditional normal model with the biological time ori-

gin, but standardized to be centred around its mean, the �nal parameter estimates
(standard errors) for treatment e�ects are −0:493 (0.098) and −0:341 (0.107) for
contrasts of mixed and lupin feed with the �rst treatment, barley. (These estimates
are confounded with the �xed e�ect for cows so that an AIC for removing them is
not available.) After allowing for heterogeneity in the time pro�le among the cows,
the ordering of the treatments has changed markedly as compared to the estimates
in the previous section. Note that, with heterogeneous (that is, non-parallel) pro�les,
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these estimates refer to means (intercepts) at the middle of the experiment; with
uncentred time, the di�erences in intercepts become, respectively 1.102 (0.4473) and
0.526 (0.546), referring to means at the beginning. Exactly, the same problem of
interpretation would occur if the equivalent random coe�cients for the time pro�le
were included, with time standardized in di�erent ways.

5.5. Cohort e�ects

In fact, one simpler model, not considered above, does provide some improvement
in �t over the original cubic polynomial model with treatment e�ect, an AR(1), and
measurement error, although not as much as the �xed e�ects models. This model,
over chronological time, has treatment di�erences only for the �rst cohort (that is,
an interaction between treatment and cohort) with an interaction of this cohort with
linear time and no settling in e�ect. (This result is already fairly evident from Fig. 6
of Diggle et al., 1994.) The continuous AR(1) model, with measurement error (there
being no evidence for higher-order auto-regression or random e�ects), has an AIC
of −59:9 whereas the linear regression model (without �xed e�ects or measurement
error) has −27:3. The former �ts better than the model with only a �xed e�ect for
the intercept (AIC, −43:5) showing that we have accounted for individual di�erences
in average response level, but not for di�erences in the shapes of individual pro�les.
The mean pro�les for the �rst cohort, for the three diets, are similar to those in

Fig. 1, except that they start higher (above 4%) and �nish lower (at about 3%). The
treatment e�ects (standard errors) are estimated to be −0:174 (0.064) and −0:351
(0.064) for mixed and lupins with respect to barley, considerably larger than those
obtained above when all cohorts were grouped together (without �xed e�ects, thus
not taking into account di�erences in shape of the pro�les). On the other hand, the
mean pro�le for all other cohorts, with all diets, is closest to that for the mixed diet
of the �rst cohort. The individual pro�les for this model, for the same nine cows as
in Fig. 2, are shown in Fig. 7.
This model is somewhat better than the equivalent one with individual time.

Apparently, external factors over time may be most important; for some reason,
the cows in the paddock calving at the beginning of the experiment were the only
ones to bene�t from the di�erences in diet. (Were cows introduced into their paddock
at the beginning of the experiment or at calving?) However, such a conclusion must
be interpreted cautiously because of the great variability among individual pro�les
not allowed for in this model.

6. Discussion

The standard diagnostic techniques, such as residual plots, that we presented at the
beginning of our analysis, showed us no basic anomalies with the models that we de-
veloped there. (We also tried variograms, but they proved to be of little use, perhaps
because they are inappropriate when random slopes are present.) And yet, further
study, especially by �tting �xed e�ects models, demonstrate that these models �t the
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Fig. 7. Individual pro�les (solid lines) over chronological time, with cohort e�ect, for nine selected
cows, with the three rows corresponding, respectively, to cows receiving protein, mixed, and lupins.

Twice the standard deviations are indicated by broken lines.
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data very poorly. There is so much variability among the individual pro�les of the
cows that no valid inferences appear to be possible about di�erences in diet.
If software was available to �t random e�ects models with a variety of mixing

distributions, such an indirect procedure of �tting a distribution to the corresponding
estimated �xed e�ects would not be necessary. One could just �t models, much more
parsimoniously, with various mixing distributions and compare the AICs. Unfortu-
nately, computers will have to be considerably more powerful before this can become
a routine interactive task, as was �tting all of the above models. However, even when
this becomes possible, care will still have to be taken about the parametrization of the
regression part of the model in so far as it a�ects these distributions. As we have seen,
if the response pro�les over time cannot be assumed to be parallel for all individuals,
because either random coe�cients or interactions of time with �xed e�ects are in-
cluded, the interpretation of any treatment e�ects is extremely di�cult. Such models
imply that individual response di�erences among treatments are varying over time.
Random e�ects models are now widely used because they can easily be �tted

in many software packages. However, as mentioned above, the need for random
coe�cients can point to a failure in the data collection, and subsequent modelling,
processes. If random e�ects, especially random coe�cients, are required, either infor-
mation is lacking about the reasons for heterogeneity among individuals or other as-
pects of the model are poorly speci�ed. Subtle and seemingly unimportant changes in
the model structure can vastly change the form of the mixing distributions
required to represent the random e�ects and can make interpretation of treatment dif-
ferences impossible. In this particular case, the improvements brought to the model
by the intercept, linear, quadratic, and cubic �xed e�ects implies that an impor-
tant time-varying covariate (di�erent for each individual) may be missing. This was
not detected by simply �tting normal random e�ect models. Thus, such �xed e�ects
models can be useful to assess the reliability and �t of normal random e�ect models.
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