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Abstract
In subjects undertaking an incremental exercise test to exhaustion, the onset
of metabolic acidosis can be detected by an increased rate of carbon dioxide
output (V̇CO2) relative to the rate of increase of oxygen uptake (V̇O2). To
locate the change-point (the gas exchange threshold) in such subjects, a two-
line regression model relating these two quantities has been used, where the
location of the change-point is unknown. We argue that statistical models where
the change-point is set on time (rather than V̇O2) are more appropriate. This is
because V̇O2 is not monotone in time. We use novel statistical methodology of
hidden Markov models to demonstrate the existence of the change-point. We
use time series models, to estimate the position of the change-point. In these
models distributions other than the multivariate normal are considered. For
some subjects, the variance of V̇CO2 increases with time because of increasing
ventilation and this is also modelled. The results are illustrated using gas
exchange data on three healthy subjects who performed a 20 W min−1 workrate
ramp test.

Keywords: gas exchange threshold, change-point, statistical modelling, hidden
Markov models

Introduction

Incremental work rate tests on a cycle ergometer are frequently used to assess the aerobic
fitness of subjects. The onset of an exercise-induced metabolic acidosis can be detected by
an increase in the rate of carbon dioxide output (V̇CO2) relative to the rate of increase in
oxygen uptake (V̇O2) (Beaver et al 1986, Sue et al 1988). The breath-by-breath values of
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carbon dioxide output (V̇CO2) are plotted against oxygen uptake (V̇O2) and related by a
two-segment linear regression. Thus, the point of increase in ratio is modelled by fitting two
regression lines with an unknown join point to the data. The V̇O2 value of the intersection
of the two regression lines is known as the gas exchange threshold (GET). There is extensive
physiological and statistical literature on this problem that is known as the change-point
problem. An overview can be found in Carlstein et al (1994) and Krisnaiah and Miao (1998).

Nonparametric approaches to the change-point problem have been proposed by Hall
and Titterington (1994) and Loader (1996). These do not require the mean function to be
specified a priori, i.e. do not require the regression to be linear. However they assume repeated
observations on an individual are independent. These approaches have been applied in the
physiological literature by Sherrill et al (1990) and Magalang and Grant (1995).

It would be more realistic if the change-point was set on time instead of V̇O2 because V̇O2

is not monotone in time. Setting the change-point on V̇O2 implies that for a number of breaths
(i.e. a period of time) around the onset of metabolic acidosis, the person is switching between
two metabolic states (i.e. aerobic to aerobic plus supplemental anaerobiosis metabolism),
(Koike et al 1990), which is not biologically reasonable. However, it is recognized, that the
time of occurrence of the change-point in a test, will in part depend on the size of the work
rate ramp (i.e. for a given subject it will occur after a shorter time period on a high work
rate ramp compared to a low one). But since individuals typically undergo repeat tests to
monitor their fitness, it is the difference in repeat estimates of the change-point under the
same test conditions which is important. An increase in the time of occurrence of the GET
would therefore be indicative of an increase in fitness. However, to make comparisons between
individuals or to norms, the time values can be converted to V̇O2 as described below. Kelly et al
(2001 and 2002) extended the classical model by addressing the situation where observations
are correlated and by using time series techniques. They introduced autoregressive moving
average (ARMA) models for this type of data. The distribution in the model was assumed
to be normal. Moreover, because standard time series software assumes the time points are
equally spaced, the analysis proceeded on a breath-by-breath basis.

We shall extend this work, firstly by setting the change-point on time and then by
considering different models for the response V̇CO2 as a function of V̇O2. We shall first
look at continuous-time hidden Markov chain models for these data. We shall again consider
time series models but the software we use does not require the time points to be equally
spaced. We also look at distributions other than the multivariate normal. We consider a
subclass of elliptically-contoured distributions which are a multivariate generalization of the
power-exponential family introduced by Gómez et al (1998) and discussed by Lindsey (1999).
They include the multivariate normal as a special case. They cover both thick- and thin-
tailed distributions and so can be useful in providing robustness against outliers. We shall
also consider the multivariate Student-t and the asymmetric multivariate Laplace, the latter
discussed in Kotz et al (2001). The choice is dictated by the fact that these are the only
known ones with covariance matrices. The covariance matrix can be structured for time series
dependence. For some subjects the variance changed with the location regression function;
this is also incorporated in these models. Different models will be compared using Akaike’s
information criterion (Akaike 1973).

Methods

Experimental design

Data from three healthy subjects during exercise are examined in detail. This is part of a
larger study described in Kelly et al (2001, 2002). Each subject exercised to exhaustion
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on an electromagnetically braked cycle ergometer (Excalibur, Lode BV, Groningen, the
Netherlands). The test began with 1 min of unloaded cycling, a 4 min warm-up at 20 watts (W)

and then a 20 W min−1 workrate ramp. Subjects wore a nose clip and mouthpiece connected to
a heated wire flow meter (SensorMedics, CA, USA). The flow signal was digitally integrated
to give tidal volume and respired gases were continuously analysed by rapidly responding
O2 (paramagnetic) and CO2 (infrared) analysers (response times 110 and 90 ms respectively)
(SensorMedics Vmax 229, SensorMedics, CA, USA). The analysers were calibrated and the
transients checked prior to each test using a calibration syringe, precision O2 and CO2 gas
mixes and a rapidly switching solenoid valve (SensorMedics, CA, USA). Expiratory flow and
fractional concentrations of expired O2 and CO2 were measured and digitally integrated on a
breath-by-breath basis to provide estimates of minute ventilation (V̇E), V̇O2 and V̇CO2.

During the initial part of an incremental exercise test, the changes in gas exchange
measured breath-by-breath at the mouth are non-linear with respect to the work rate ramp
as a result of both a non-linear lag in O2 uptake kinetics and a lag in CO2 output due to an
initial adjustment of CO2 stores in the body. Therefore data points prior to the completion
of the first minute of work rate ramp, and any points beyond where it was evident that CO2

stores were still filling, were excluded from the analysis (Beaver et al 1986). Furthermore
towards the end of an incremental exercise test, significant hyperventilation is manifest in an
attempt to compensate for the exercise-induced metabolic acidosis. Since this occurs beyond
the region of interest, data points above 75% of the maximum V̇O2 value for a given test were
excluded as they could potentially influence the determination of the GET. In no case was
there evidence of marked hyperventilation below this point. The data also contain occasional
breath values that are clearly artifactual; these typically result from swallowing, coughing or
premature ending of the breath for some other reason. Using the criteria of Lamarra et al
(1987), such breaths were deleted from the data before performing the analysis.

Statistical analysis

The V̇CO2 versus time profile is different for different subjects and thus is modelled differently
in each case. We consider hidden Markov models and time series models.

Hidden Markov models

We denote the V̇CO2 values at time t by yt and the corresponding V̇O2 values by xt . We
introduce a discrete random variable st in each time period, referred to as the state of the
system at time t, that takes values on the integers 0 and 1 and indicates the regime from which
a particular observation yt has been drawn. State 0 refers to aerobic metabolism and state 1 to
aerobic and anaerobic metabolism. State 1 is absorbing. Once the transition to some anaerobic
metabolism has taken place it cannot be reversed. We note that st is hidden. st is Markov
i.e. st depends only on the most previous value st−1, but this induces longer term dependence
in the observed sequence yt . Now, st = k indicates that the observation yt is drawn from a
density f (yt ; θk) where θk represents the unknown parameters in the model in regime k, k = 0
or 1. We consider the cases where f (yt ; θk) is given by the normal, the power-exponential and
the asymmetric Laplace distributions, all with location parameter given by αk + βkxt . Thus
the mean function for the two states is given by two adjoining lines. The power-exponential
and asymmetric Laplace distributions are described in the appendix. When the probability
of being in state 0 first reaches 0 at some time t i.e. P(st = 0) = 0 then this t estimates the
change-point. Maximum likelihood is used to estimate the parameters of the models, similar
to that described in MacDonald and Zucchini (1997), although they work in discrete time with
discrete distributions.
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Time series models

We consider autoregressive (AR) processes of order 1, AR(1). Letting Zt be a purely random
process with a mean of zero and constant variance then a process Wt is said to be AR(1) if
Wt = βWt−1 + Zt , where β is a constant. In the change-point model, the location function
is modelled as α1 + β1xt for t � τ and α2 + β2xt for t > τ where τ represents the unknown
change-point. The observations in a series are assumed (1) to be independent; (2) to follow
an AR(1) process or (3) to follow an AR(1) process with the variance an increasing function
of the location parameter. In other words the models are given by two adjoining lines:

yt = α1 + β1xt + ut for t � τ

and

yt = α2 + β2xt + ut for t > τ.

The noise ut is assumed to be independent or follow an AR(1) process. As for the hidden
Markov models, different distributions (for ut ) will be considered: the multivariate Student-t,
the multivariate power-exponential, and the asymmetric Laplace distribution. These models
can all be fitted using the second author’s elliptic function in R (Ihaka and Gentleman
1996). We compute the log likelihood, log(L̂), which is the logarithm of the ‘probability’
or likelihood of the observed data, under the different models. We then compute Akaike’s
information criterion (AIC) (Akaike 1973) which is given by the formula −log(L̂) + p where
p is the number of unknown parameters in the model. We use AIC to select the best model.
In our examples, this amounts to choosing the model which minimizes the estimated negative
log likelihood, −log(L̂), with an extra penalty for the distribution functions containing an
unknown parameter, multivariate power-exponential, Student-t, and asymmetric Laplace and
models where the variance increases with the location parameter. The penalty is necessary
because typically the greater the number of parameters in the model the better the fit i.e. the
greater the estimated log likelihood.

Fitting is done for each subject separately because typically estimates of the change-point
need to be constructed on a per subject basis. Due to the discontinuity in the location function,
the maximum likelihood estimate (mle) of the change-point is found by taking a grid of values
for time and selecting the time point which maximizes the likelihood. At each step, we use
the estimate from the previous as an initial estimate, which speeds up convergence.

Finally the time change-point is converted to a V̇O2 value by interpolation. This is given
by the average of the five V̇O2 values corresponding to breaths at times adjacent to the time
change-point. Three values were also used but there was little difference in the results.

Results

We take breath-by-breath values of V̇CO2 and V̇O2 as our data.

Subject 1

The plot of V̇O2 versus time is shown in figure 1. It can be seen that V̇O2 is not monotone in
time as mentioned in the introduction.

The first question to address is whether or not a change-point exists. The two-state hidden
Markov chain model with a normal distribution gives a log likelihood of 244.2. Figure 2
shows the probability of being in state 0 for these data. There is a clear transition
between the two states going from probability 1 of being in state 0 to probability 0.
The change-point in time is approximately 253 and in terms of V̇O2 is 1.688 l min−1. Using
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Figure 1. A plot of VO2 in litres per min versus time for subject 1.
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Figure 2. Probability of state 0 versus time for the two-state hidden Markov chain model for
subject 1.

the power-exponential distribution gives a log likelihood of 249.3, and since it has only one
extra parameter over the normal, by AIC this is a significant improvement. The estimate of
the power parameter is κ̂ = 0.51, not far from the multivariate Laplace. The estimate of the
change-point is again approximately 253. The Student-t gave a log likelihood of 246.8 with the
associated degrees of freedom 5. The change-point in time is again about 253. The asymmetric
Laplace model gives a log likelihood of 245.6, not as good a fit as the others. The asymmetry
parameter κ̂ = 1.137 indicating some asymmetry. The estimate of the change-point in time is
249 and in terms of V̇O2 is again 1.688 l min−1.

We then consider the time series models. Firstly the two-line regression model, assuming
independent normal distributions, gives the mle of the change-point at time 236 (V̇O2 =
1.723 l min−1) corresponding to a log likelihood of 249.0. A local maximum occurs at
times 243–245 where the log likelihood is 248.7. Because the change-point is estimated, the
ratio of the residuals sums of squares from the one- and two-line models does not have an
F-distribution under the null hypothesis of no change in slope (Davies 1987). However, the log
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Figure 3. Residuals versus breath index from the two-line regression model of VCO2 versus VO2
with independent normal distributions for subject 1.

likelihood for a single line to these data is 187.6. Thus, using Akaike’s information criterion,
the change-point model is clearly an improvement.

The residuals from the two-segment regression model assuming independence were
examined and are shown in figure 3. Positive residuals tend to be followed by negative
ones, indicating autocorrelation. The Durbin–Watson statistic testing for serial correlation
is significant with a P-value of 0.0002. The multivariate normal distribution was then fitted
with continuous-time AR(1) correlation. This has a maximum at times 235–236 (V̇O2 =
1.723 l min−1) with a log likelihood of 281.6. There are local maxima at times 208–210 and
at times 243–245. The autoregressive parameter is estimated to be 0.81. Figure 4 shows the
correlogram of the recursive residuals from this model, indicating little correlation. We note
that this model provides a better fit than the hidden Markov model by AIC.

Next, the multivariate power-exponential distribution was fitted to the data. The mle of
the change-point in time is τ̂ = 235–236 with V̇O2 = 1.723 l min−1, with a log likelihood of
283.4 and the estimate of the power parameter κ̂ = 40.4, strongly indicating non-normality
with short tails. The asymmetric multivariate Laplace model also estimates the change-point to
be at 235–236 with a log likelihood of 279.3. The asymmetry parameter is 0.00 with standard
error 0.077. Again the multivariate Student-t model has a maximum at time 235–236 with a
log likelihood of 280.8. The estimated degrees of freedom is 67.9, indicating a distribution
close to normal. A plot of the residuals for the Laplace model showed that the residuals
increase with the location parameter. Indeed, this pattern can also be seen in the fit of the
power-exponential and multivariate Student-t models. This indicates heteroscedasticity.

Therefore for each of the distributions considered above, the variance was modelled as a
linear function of the location parameter. This allows for heteroscedasticity and also permits
the variance function to change at the change-point. For the normal model, the maximum
is at time 209–210, corresponding V̇O2 = 1.461 l min−1, with a log likelihood 290.3, a
considerable improvement on the previous fit. For the power-exponential model, the mle is
209–210 and the power parameter approached κ̂ = ∞, indicating a short-tailed distribution.
However there is no improvement in the log likelihood compared to the normal by AIC. For
the multivariate Student-t model, the estimated degrees of freedom at the mle approached ∞,
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Figure 4. Correlogram of the residuals from the two-line regression model of VCO2 versus VO2
with normal distribution and AR(1) for subject 1.
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Figure 5. The data and estimated regression lines from the model with the power exponential
distribution, AR(1), and variance increasing with the location parameter for subject 1.

indicating a normal model. The fit given by the asymmetric multivariate Laplace model, is
a log likelihood of 288.0 at the change-point of 208–210 which is worse than the normal.
The asymmetry parameter is 0.00. Therefore the power exponential gives the best fit. The
estimated regression lines are shown in figure 5 for the power exponential with AR(1) and
variance a linear function of the location parameter. We see that the traditional approach of
taking the change-point on V̇O2 at the intersection of the two lines is not a good estimate of
the change-point because the two lines are almost parallel. The lines overlap because the plot
is in terms of V̇O2, which is not monotone in time, and not time itself; if the plot was in terms
of time, there would be no overlap.

Standard likelihood theory for finding confidence intervals does not apply here to the
change-point. The likelihood ratio statistic does not have a chi-squared distribution in the
simplest of models, i.e. that of estimating the change-point in an i.i.d. normal mean-shift setup
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Table 1. Results from hidden Markov models and time series models for subject 1.

Change-point Change-point
Distribution in time in V̇O2 −log(L̂) AIC

Hidden Markov models
Normal 253 1.688 −244.2 −238.2
Power exponential 253 1.688 −249.3 −242.3
Student-t 253 1.688 −246.8 −239.8
Asymmetric Laplace 249 1.688 −245.6 −238.6

Time series models
Normal independent 236 1.723 −249.0 −244.0
Normal+AR(1) 235–236 1.723 −281.6 −275.6
Power exponential+AR(1) 235–236 1.723 −283.4 −276.4
Student-t+AR(1) 235–236 1.723 −280.8 −273.8
Asymmetric Laplace+AR(1) 235–236 1.723 −279.3 −272.3
Normal+AR(1)+varfn 209–210 1.461 −290.2 −283.3
Power exp+AR(1)+varfn 209–210 1.461 −292.1 −284.1
Student-t+AR(1)+varfn 209–210 1.461 Same as normal+AR(1)+varfn
a.Laplace+AR(1)+varfn 208–210 1.461 −288.0 −280.0

AR(1) refers to an autoregressive process of order 1 and varfn refers to variance function an
increasing function of the mean was fitted.

(Hinkley 1970). The bootstrap method is also not readily available as i.i.d. residuals cannot
be formed due to the heteroscedastic and the time series nature of the models.

The results for subject 1 are summarized in table 1.

Subject 2

A similar analysis was carried out for a second subject. First, the two-state hidden Markov
chain model with a normal distribution was fitted to the data. As for subject 1, there is a clear
transition between the two states going from probability 1 of being in state 0 to probability 0.
The log likelihood under this model is 266.3, with time change-point approximately 325,
corresponding to V̇O2 = 2.082 l min−1. For the power-exponential model the log likelihood
and change-point were the same with estimated power parameter 0.966, close to 1.0, the value
for the normal. The results for the Student-t were also the same as the normal. With the
asymmetric Laplace distribution the model did not converge. V̇CO2 was then plotted versus
V̇O2 with the estimated regression lines from the normal model. The change-point is taken
to be at time 325. We saw again that taking the change-point on V̇O2 at the intersection of
the two lines was not a good estimate of the change-point because the two lines were almost
parallel. This result is also true for the other models fitted below.

The results for the time series models were as follows. The independent normal model
estimates the change-point to be between 319 and 320, corresponding V̇O2 = 2.068 l min−1,
with a log likelihood of 271.1. The AR(1) model, again with the normal distribution, gives
a maximum also at 319–320 with a log likelihood of 300.7. However the likelihood is far
from quadratic with several local maxima. The power exponential model with AR(1) gave
a change-point of 319–320 with a log likelihood of 302.5, not a great improvement over
the normal. The mle of the power parameter is 0.006 indicating a long-tailed distribution.
The Student-t with AR(1) also estimated the change-point to be at 319–320. The estimated
degrees of freedom are 43.6 and the fit is identical to the normal. This is in contradiction with
the power exponential model. A plot of the recursive residuals indexed by breath number
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Table 2. Results from hidden Markov models and time series models for subject 2.

Change-point Change-point
Distribution in time in V̇O2 −log(L̂) AIC

Hidden Markov models
Normal 325 2.082 −266.3 −260.3
Power exponential 325 2.082 Same as normal
Student-t 325 2.082 Same as normal
Asymmetric Laplace – – No convergence

Time series models
Normal independent 319–320 2.068 −271.1 −266.1
Normal+AR(1) 319–320 2.068 −300.7 −294.7
Power exponential+AR(1) 319–320 2.068 −302.5 −295.5
Student-t+AR(1) 319–320 2.068 Same as normal+AR(1)
Asymmetric Laplace+ AR(1) – – No convergence
Normal+AR(1)+varfn 296–297 2.071 −321.9 −314.9
Power exp+AR(1)+varfn 297 2.071 −323.7 −315.7
Student-t+AR(1)+varfn 296–297 2.071 Same as normal+AR(1)+varfn
a.Laplace+AR(1)+varfn – – No convergence

AR(1) refers to an autoregressive process of order 1 and varfn refers to variance function an
increasing function of the mean was fitted.

for the normal model showed that the variance increases with time. Therefore, the model
with the normal distribution was fitted, where the variance increases as a function of the
location parameter and the correlation structure is AR(1). The improvement in log likelihood
is considerable, now being 321.9, with the mle of the change-point occurring at time 296–297,
corresponding V̇O2 = 2.071 l min−1. For the same model with the power exponential the mle
of the change-point is 297 with a log likelihood of 323.7. This is a slight improvement over
the normal by AIC. The mle of the power parameter now tended to ∞ indicating a short-tailed
distribution. This model with the multivariate Student-t distribution gives estimated degrees
of freedom tending to ∞. Thus it is the same as the normal. Here we see, the Student-t and
power-exponential models give contradictory results on the nature of the distribution while
giving similar answers for the change-point. It is possible that the data cannot distinguish
between the shape of the tail of the distribution and an increasing variance with time. This
model with the asymmetric Laplace distribution did not converge indicating an inappropriate
model for these data.

The results for subject 2 are summarized in table 2.

Subject 3

In a third data set, the estimate of the change-point is about the same, 368 with corresponding
V̇O2 = 2.767 l min−1 for all Markov models. By AIC there was little difference between the
models, apart from the skew Laplace which had a slightly worse fit. The analogue of figure 5
for these data where the change-point is estimated to be 368 shows a jump at the change-point
rather than a smooth transition.

The normal independence model estimates the time change-point to be at 362,
corresponding V̇O2 = 2.847 l min−1 with a log likelihood of 268.5. When the AR(1) is
introduced, the change-point is again estimated to be at 361–362 and the log likelihood is
332.6. The Student-t gave a fit similar to the normal with estimated degrees of freedom
tending to ∞. The fit of the skew Laplace distribution was a little worse than these two.
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The estimated change-point was 361–362 with estimated log likelihood 330.3 and estimated
asymmetry parameter 0.0. When the model includes a variance function which increases with
the location parameter as described above, there is little improvement in the fit of either the
normal or the skew Laplace model. Thus the normal model with AR(1) correlation adequately
describes the data.

Discussion

The v-slope method of Beaver et al (1986) for estimating the GET has found much prominence
in the physiology literature. They required that the change in slope from the lower line segment
to the upper be greater than 0.1, which is ad hoc. Using a more complex gas measurement
than considered here, smoothing of V̇CO2 based on changes in the fractional concentration
of end-tidal CO2, interpolation and a 9s moving-average filter were used to smooth the
breath-to-breath irregularities. They argued that filtering would not obscure the existence
of a change-point. However, it may change the estimate of its location and thus induce
bias. Moreover, for these ‘corrected’ data, the noise may still not be independent so that a
model where there is dependence between successive observations is more appropriate. For
comparison the Beaver estimates (unsmoothed data) for subjects 1, 2 and 3 were 1.515, 1.904
and 1.879 l min−1 respectively. The corresponding estimates from Kelly et al (2001 and 2002)
were 1.706, 2.353 and 2.168 l min−1. There is a discrepancy for subject 3 with the results here,
as a result of the breaths being treated as equally spaced (an increase between two breaths was
not as sharp as appeared), or in the Beaver case because the data were unsmoothed.

We have found that models which have an abrupt transition at the threshold fit our data
well. Our time series models fitted better than the hidden Markov models. However the
Markov models provide a strong indication of the existence of a change-point. The time series
models assume the change-point exists at the outset. By fixing the change-point on time,
we also avoid finding the intersection point of almost parallel lines and thus a change-point
perhaps outside the range of the data. We do note that the slope of the work rate ramp does
have an influence on the slope of the line above the change-point, i.e. the greater the work
rate ramp, the steeper the slope. This means that it could be argued that selecting a steeper
ramp would solve the problem of almost parallel lines. However this is not so simple in
practice—the ‘optimum’ ramp is not known until after the test.

Our findings are different to those of Lamarra et al (1987), who found breath-by-
breath noise from their models (which did not have a time series component) approximated
an uncorrelated Gaussian stochastic process, with a standard deviation that was largely
independent of metabolic rate. The relative rates of both pulmonary ventilation and blood
flow affect gas exchange. The uptake of O2 in the lungs is more dependent on pulmonary
blood flow than ventilation. In contrast, CO2 output is closely related to the level of pulmonary
ventilation (West 1969). Therefore ventilatory fluctuations between breaths would be expected
to result in greater breath-by-breath variability in the measured V̇CO2 than V̇O2. Indeed, we
found this to be the case and for two of our subjects, we found that the variability of the
residuals from a two-line model increased with time. The models we have developed allow
for this heteroscedasticity. For all three subjects, these residuals exhibited autocorrelation.
This has also been incorporated in our models. In conclusion, we argue that, by considering
more complex models than those traditionally used, the GET may be estimated with greater
accuracy. In addition, they are suited to simpler gas measurement systems and thus have more
widespread applicability than traditional methods.
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Appendix

Multivariate power-exponential distribution

The multivariate power-exponential distribution is given by

f (y; µ, �, κ) = n�(n/2)

πn/2
√|�|�(1 + n/2κ)21+n/2κ

exp{−[(y − µ)T �−1(y − µ)]κ/2}

where the mean and covariance matrix are

E(Y) = µ,

cov(Y) = 21/κ�((n + 2)/2κ)

n�(n/2κ)
× �.

This distribution includes the multivariate normal (κ = 1), the multivariate Laplace (κ = 0.5)

and the multivariate uniform (κ = ∞) distributions as special cases.

Asymmetric multivariate laplace distribution

The multivariate power-exponential distribution contains, as a special case, one possible
definition of a multivariate Laplace distribution. Kotz et al (2001) give another possibility:

f (y;�, κ) = 2eyT�−1κ

(2π)n/2|�|1/2

(
yT�−1y

2 + κT�−1κ

)(2−n)/4

K(2−n)/2
(√

(2 + κT�−1κ)yT�−1y
)

where Ku(·) is the modified Bessel function of the third kind and κ is the vector of skew
parameters, one for each observation. For κ = 0, this is a symmetric multivariate Laplace
distribution which is elliptically-contoured; otherwise, it is not a member of that family. Below,
we set all values of the vector κ to be identical so that only one new parameter is introduced;
this implies that the distribution has the same skew over all time points.

Here, the mean and covariance matrix are given by

E(Y) = κ

cov(Y) = � + κκT.

As with the Student-t and power-exponential distributions, zero correlation does not imply
independence.
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