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.beAbstra
tThe s
ienti�
 pro
ess 
an be thought of as having two distin
t stages, dis
overy and 
on-�rmation by repli
ation. The se
ond 
orresponds to many standard statisti
al pro
edures butthe �rst is mu
h more diÆ
ult to formalize.This survey looks at the various steps in the model building pro
ess in the dis
overy stage:
on
eption and study design, 
onstru
tion, sele
tion, diagnosti
s, un
ertainty, and interpre-tation. Some limitations of present pra
ti
es are suggested and a number of outstandingproblems des
ribed.Parti
ularly important problems arise in the 
omparison and sele
tion of models involvingdi�erent fun
tions. These in
lude how to allow for the un
ertainty arising from �tting severaldistin
t models to a data set and how to measure the relative 
omplexity of models otherthan simply by 
ounting the number of unknown parameters. Both are 
losely related to thedis
overy pro
ess in s
ien
e.Keywords: Diagnosti
s, embedding, me
hanisti
 model, model sele
tion, model un
er-tainty, pro�le likelihood.1 Introdu
tionSin
e its �rst development, the �eld of statisti
s has played important roles in many areas ofso
iety. Its beginnings 
an be found in astronomi
al predi
tion, so
ial statisti
s, and epidemiology.Solid foundations were established through work in agronomy and geneti
s. Re
ently, a majorimpetus has 
ome from 
lini
al medi
ine. None of this should be surprising. We live in a so
ietyof un
ertainty and statisti
s spe
ializes in the study of un
ertainty.Modern statisti
s is primarily an invention of the twentieth 
entury. Classi
al statisti
s devel-oped between the two world wars, the greatest name of that period being Fisher. The 1950s and1960s were a period of 
onsolidation. In 
ontrast, the last thirty years have seen a 
ontinuousrevolution of statisti
al pra
ti
e. Before that time, su
h important �elds as survival and dis
retedata analysis, to name but two, did not even exist. These re
ent developments have arisen from1



at least two major impetuses: the 
omputer revolution and the requirements of medi
ine and thepharma
euti
al industry.Statisti
ians like to believe that they are the experts in the study of un
ertainty. Some feelthreatened by re
ent developments, su
h as 
haos theory, neural networks, data mining, and so on,that treat un
ertainty in di�erent ways than does the 
lassi
al statisti
al approa
h. Statisti
s haspowerful means for handling small data sets and for drawing general 
on
lusions about the largerpopulations from whi
h these are supposed to 
ome. Statisti
ians are more at ease analyzing asample survey than a 
omplete 
ensus. However, they do not have a monopoly over the ways inwhi
h un
ertainty 
an be handled.Many statisti
ians have the unfortunate weakness of tending to believe that their favouritepro
edures are appli
able in almost any 
ir
umstan
es. The frequentist, Bayesian, and likelihoods
hools all make 
laims to superiority in drawing inferen
es. Ea
h has its strengths in spe
i�

ontexts; none 
an provide the �nal solution. The frequentist approa
h was designed for de
ision-making in a repetitive situation, su
h as industrial quality 
ontrol. The Bayesian approa
h empha-sizes in
orporation of individual subje
tive beliefs, appropriate for example in �nan
ial de
ision-making. The likelihood (Fisherian) approa
h 
on
entrates on obtaining the maximum informationfrom the presently available data without taking into a

ount how it will be used, a primary goalof the empiri
al stage of s
ienti�
 resear
h.In a similar way, many statisti
ians have their favourite statisti
al te
hnique or model, oftenbe
ause they sa
ri�
ed an enormous amount of time and e�ort on it for their do
toral dissertation.Then, throughout their 
areer, they attempt to apply it in all possible 
ir
umstan
es. My parti
ularweaknesses are likelihood inferen
e and prin
iples of modelling.Here I shall look at some aspe
ts of inferen
e spe
i�
ally related to modelling that I did not
over in Lindsey (1999). I 
an only dis
uss one small area, delimited by the likelihood approa
h ands
ienti�
 appli
ations, making no 
laim that these ideas are more generally appli
able. For example,I ignore 
ompletely de
ision-making problems, des
riptive statisti
s, industrial appli
ations, andso on.Although s
ien
e is only 
on
erned with repeatable phenomena, I shall not 
on
entrate on thisaspe
t of the statisti
al endeavour, the veri�
ation of models. Rather, I shall look at the dis
overyand development of appropriate models up to the stage when it be
omes feasible to entertain thepossibility of repeatability. Then, the s
ienti�
 
ommunity takes over.S
ienti�
 dis
overy 
an arise in at least two distin
t ways: new theoreti
al developments maypoint to something that then has to be empiri
ally 
he
ked or new empiri
al data may 
ontradi
texisting theory pointing to a modi�
ation or a new theory. The �rst poses a relatively simplestatisti
al problem. The se
ond is mu
h more diÆ
ult: how 
an we assess that the given empiri
aldata support a new theory derived from them better than the old, thus indi
ating that s
ienti�
repli
ation will be ne
essary for 
on�rmation? 2



2 Model 
on
eption2.1 Understanding the s
ienti�
 questionIn spite of the pretensions of some statisti
ians (and names of journals), statisti
s is not a s
ien
e;it has no subje
t matter in nature or so
iety that it spe
ializes in studying. It is rather a 
olle
tionof methods for treating empiri
al data involving un
ertainty. It forms an important part of theepistemology of some areas of s
ien
e, parti
ularly those involving living beings, where variability
an be large. Thus, it is 
lose to mathemati
s (whi
h is even further from s
ien
e), not only inusing the latter dis
ipline but also in that it thrives on abstra
tion from spe
i�
 problems. Butit is also far from mathemati
s, and 
loser to s
ien
e, in that it pro
eeds from the spe
i�
 to thegeneral and that it ne
essarily involves empiri
al appli
ations.Consider, for example, a s
ientist who 
omes to a statisti
ian wishing to �t the Mi
ha�elis-Menten equation to some assay data. This model gives the initial velo
ity of an enzyme-
atalysedrea
tion as a fun
tion of substrate 
on
entration, x:�(x) = VmaxxKm + x (1)where �(x) is the mean initial velo
ity, Vmax is the maximum velo
ity (in pra
ti
e, divided by a
alibration 
onstant), and Km is the Mi
ha�elis 
onstant. Be
ause this equation has the logisti
form, many statisti
ians will immediately suggest the more general and `mu
h better' model forsu
h assays, �(x) = �0 + �11 + e�0+�1 log(x) (2)(I resist dis
ussing the nonparametri
ians who point out that their splines, lo
al polynomialsmoothing, . . . are superior.) Indeed, this equation 
an be rewritten�(x) = Vmaxx�1 +KmV0Km + x�1with �0 = Vmax, �1 = V0 � Vmax, �0 = ��1 log(Km), and the 
on
entration power-transformedby �1. Admittedly, this latter equation 
an yield a measure of goodness of �t of Equation (1), inone parti
ular dire
tion, but at the loss of the me
hanisti
 model that interests the s
ientist. Howmany statisti
ians will then 
he
k if �1 = ��0 and �1 = 1 in Equation (2) are reasonable so thatthe original model is re
overed?Most statisti
ians have no s
ienti�
 training, their ba
kground being primarily mathemati
al.(When they get together with medi
al do
tors, most of whom also have no s
ienti�
 training, theresults 
an be 
lose to tragi
.) In the statisti
al literature, we often �nd statements su
h as `weshall analyze a real data set' (as if most statisti
al data are not real) 
hosen to show that a favouritemodel is useful, without out any s
ienti�
 
ontext being provided about the data or any s
ienti�
theory behind the model, or `s
ienti�
 interest 
entres on . . . ' to defend that favourite model insome abstra
t 
ontext where no spe
i�
 s
ienti�
 problem has even been stated.3



When fa
ed with a s
ienti�
 problem, statisti
ians 
annot 
onstru
t suitable models in isolation,without detailed intera
tion with the s
ientists. On the other hand, many s
ientists have insuÆ
ientmathemati
al knowledge to translate their theories into equations sus
eptible to 
onfrontation withempiri
al data, and to 
ombat the statisti
ian's uns
ienti�
 mathemati
al distortions of their theo-ries. Thus, the �rst element of any statisti
al pro
ess within s
ien
e must be the 
lose 
ooperationand intera
tion among the a
tors involved.2.2 Systemati
 and random aspe
tsThe responsibility of the s
ientists is to provide the theory; that of the statisti
ian is to trans-late it into a mathemati
al/statisti
al form, most often being a prime 
ontributor of probabilis-ti
/sto
hasti
 elements to handle the variability.By `model', I mean some fun
tion that allows one to 
al
ulate the probability of any possiblerelevant data set, perhaps after �xing the values of some unknown parameters. For example, thepartial likelihood for Cox proportional hazards does not 
orrespond to a model in this sense. Sta-tisti
al models 
an generally be de
omposed into two distin
t parts. Some probability distributionis used to des
ribe the random variability. Then, parameters within that distribution fun
tionare allowed to vary in systemati
 ways with 
ovariates relating to subgroups of the population,time, spa
e, and so on. The systemati
 part tells how the random part 
hanges shape when these
ovariates 
hange.The most familiar parameter that is allowed to vary systemati
ally is the mean or other lo
ationparameter. Usually, the s
ientist/statisti
ian intera
tion pro
ess is not too diÆ
ult for 
on
eptu-alizing 
hanges in this parameter. It may simply involve solving some set of di�erential equations,for example.S
ientists (and most statisti
ians!) have mu
h more diÆ
ulty in 
on
eptualizing the form of thevariability about this mean equation, and even more problem in allowing that variability to 
hangewith 
ovariates (abandoning the 
onstant varian
e hypothesis). When only measurement error isinvolved, as often is the 
ase in 
hemistry for example, then a 
lassi
al normal model is usuallyreasonable. But this is rarely appropriate when living beings are studied. Then, how 
an thes
ientist, or the statisti
ian, judge a priori whether, say, a gamma, a Weibull, or a skewed stabledistribution is most suitable? So mu
h emphasis has been pla
ed on the linear normal model andnonparametri
 pro
edures that we have a

umulated little experien
e as to whi
h distributions arereally s
ienti�
ally most appropriate in di�erent 
ir
umstan
es.2.3 Study designFor many people not using statisti
s frequently, this dis
ipline simply involves supplying a 
ookbookof equations so that one knows when to use a Student-t test instead of a Chi-squared test, perhapslogisti
 regression instead of ordinary linear regression. To them, study design is not part of4
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Figure 1: Sample size 
al
ulations for a Poisson distribution with mean, � = 2. Here, Æ = 1 is thes
ienti�
ally-interesting di�eren
e and a = 0:2 is the plausibility required.statisti
s; it is `preparing a resear
h proje
t' ! Nevertheless, in industry and s
ien
e, statisti
s inthe twentieth 
entury has earned its position as a valued partner primarily for its 
ontributions ofrandomization and blinding to avoid biases and of optimal treatment allo
ation and sample size
al
ulations to redu
e 
osts. The 
ontribution of statisti
al analysis, in
luding modelling, has beenrather minor. This must 
hange if statisti
s is to survive as a distin
t and viable dis
ipline in thenext 
entury.Let us 
onsider brie
y the pro
edure for sample size 
al
ulation. To 
arry out any su
h 
al-
ulation, we must, paradoxi
ally, a
tually `know' the parameter values that we wish to estimate.Thus, it is only feasible in very simple 
ases. Consider a study to estimate the mean, �, of aPoisson distribution. After the study is performed, the maximum likelihood estimate will makethe data most probable under the assumed model fun
tion. Suppose that we are only interested inmodels that make the data at least a proportion, 0 < a < 1, of this maximum probability, wherewe 
an arbitrarily 
hoose this value. For this given level of plausibility, the pre
ision level of theparameter, we wish to obtain an interval of size Æ around the estimated mean. This is illustratedin Figure 1 when we believe that � = 2 and 
hoose a = 0:2 and Æ = 1.The width of the likelihood 
urve in this Figure 
an only vary as a fun
tion of the estimatedmean and of the sample size. However, we have �xed the mean so that we 
an 
al
ulate therequired sample size. In this example, N = 25. Of 
ourse, if our guess at the mean is too small,our sample will be too large be
ause the likelihood 
urve will be narrower, and inversely if the5



guess is too large.This simple example illustrates the main prin
iples involved in any exa
t sample size 
al
ulation.The three values, N , Æ, and a, are intimately linked; we only have two `degrees of freedom' to 
hoosethem. However, in more 
omplex 
ases, approximations often need to be used.3 Model building3.1 GeneralityPerhaps be
ause of its 
lose relationship with mathemati
s, statisti
s strives to produ
e generalpro
edures that are appli
able in a wide variety of situations. This has 
ertain advantages but it
an also have the unfortunate 
onsequen
e that the te
hniques may not be very good in any spe
i�

ir
umstan
es. Thus, in a 
ertain sense, modern statisti
s often shows fundamental ignoran
e ofs
ienti�
 prin
iples, attempting to impose its `generally appli
able' methods in all situations insteadof trying to understand ea
h spe
i�
 s
ienti�
 problem and to develop spe
i�
 pro
edures for it.The 
lassi
al linear model is the ar
hetypi
al 
ase of generality: it is widely believed that mostproblems 
an be transformed in some way so that least-squares multiple regression 
an provide asolution (at least if one's favourite te
hnique is not appli
able). If the relationship is nonlinear,a polynomial 
an be used. After all, it 
an be interpreted as a Taylor series expansion of somenonlinear fun
tion. But what how does that bring us 
loser to understanding what that unknownfun
tion a
tually might be?3.2 Des
ription versus explanationMu
h of both 
lassi
al and modern statisti
s is purely des
riptive. It tries to des
ribe empiri
alobservations in some appropriate way without out any attempt at understanding the underlyingphenomenon, the data generating me
hanism.In some areas, su
h as spatial statisti
s, little more seems possible at present. There, noalternative to des
riptive te
hniques, su
h as nonparametri
s, appears reasonable. In simple fa
-torial experiments, with two or three levels of ea
h fa
tor, 
lassi
al linear models may be suitable,although one may often question whether the normal distribution adequately approximates thevariability. They provide a te
hnologi
al answer to what happens to the response when thosefa
tors are modi�ed, without indi
ating why.In 
ontrast, the goal of s
ien
e is to understand a phenomenon as 
ompletely and generally aspossible. This 
an only be a

omplished by developing a me
hanisti
 model, su
h as the Mi
ha�elis-Menten equation referred to above, to approximate the data generating pro
ess suÆ
iently well.However, by de�nition, as s
ientists always emphasize, any su
h model is never true or 
orre
t; nomatter how appropriate, it is still an approximation to reality.Nevertheless, mu
h of modern statisti
s prefers empiri
al models to me
hanisti
 ones, the ex-6



treme example being nonparametri
 statisti
s. Those areas of statisti
s that have es
aped fromthis rule (for example, 
ommuni
ations theory, statisti
al me
hani
s, population and mole
ular ge-neti
s, pharma
okineti
s, 
omputer s
ien
e, pri
ing methods in �nan
ial mathemati
s) have almostex
lusively been developed by non-statisti
ians.3.3 Minimal assumptionsMu
h of modern statisti
s seems obsessed with avoiding making unne
essary or unfounded as-sumptions. This is an appropriate position when one is only interested in rea
hing a de
ision indiÆ
ult 
ir
umstan
es without really attempting to understand the phenomenon involved. Anyassumptions that might lead to a wrong de
ision must be avoided. The pro
edure adopted mustbe robust to any remaining false assumptions.In s
ienti�
 resear
h, this is essentially a dead-end approa
h. The only way that knowledge
an be advan
ed is by making assumptions and seeing how they 
orrespond empiri
ally to reality.A nonparametri
 test of a di�eren
e between two treatments 
an reliably tell us whether or notsu
h a di�eren
e exists under the 
onditions in whi
h the experiment was 
arried out|so that anappropriate de
ision 
an be made. But, it 
an never tell us anything about why there was su
h adi�eren
e.One espe
ially perni
ious e�e
t of this relu
tan
e to make assumptions is that little knowledgehas a

umulated about what distributions are suitable in various 
ir
umstan
es. For example, forsurvival data in medi
ine, little is known about the appli
ability of the many available distributionsin various 
ontexts be
ause of the wide use of the semi-parametri
 proportional hazards model.(In additional, resear
h workers are now having to fa
e the fa
t that the strong assumption ofproportionality is itself rarely supported by the data so that 
on
lusions about treatment di�eren
esmay often have been wrong.) Although masses of survival data have been 
olle
ted over the lastde
ades, we have learned virtually nothing about the me
hanisms of survival of people with variousdiseases. This 
ontrasts with the advan
es made in engineering appli
ations using more me
hanisti
models based, among others, on the Weibull and inverse Gaussian distributions.On the other hand, in dis
iplines where 
omplex models are widely used, su
h as in pharma-
okineti
s, strong, unveri�ed, assumptions about distributions are often made. Almost everyonein this �eld �rmly believes that drug 
on
entrations in the body have a log normal distribution.Unfortunately, this has only re
ently been 
he
ked empiri
ally, still in only a few 
ases, and it veryoften proves to be wrong.3.4 Key 
on
eptsThe fundamental 
on
epts of model-building, su
h as rates (of 
ow) with their di�erential equa-tions, intensities (of events), latent variables, state spa
es, transition probabilities, and so on, arenot en
ountered in basi
 statisti
s 
ourses. In fa
t, model-building itself is only rarely studied in7



these 
ourses.Understanding the asymptoti
 properties of some t-test or developing a new s
ore test is 
on-sidered far more important than studying the wide range of ways in whi
h observations may vary.Until very re
ently, most of the multivariate distributions available related to tests for multivariatedata; they were not models to be �tted to data.If the strength of statisti
s is in its handling of variability, then statisti
ians should do moreto promote their prime tool for des
ribing variability: the variety of probability distributions andsto
hasti
 pro
esses available for �tting to data (not those used for the distributional theory offrequentist statisti
s or the prior distributions of Bayesians).4 Model sele
tion4.1 Known model fun
tionClassi
al statisti
s, whether frequentist or Bayesian, is almost ex
lusively 
on
erned with situationsin whi
h the model fun
tion is known and the only un
ertainty is about the values of the parametersin that fun
tion. Thus, one simpli�es a model by testing if a parameter might be zero and examinesthe un
ertainty about a (non-zero) parameter by �nding 
on�den
e or 
redibility intervals for it.In fa
t, if the parameter is zero, the model fun
tion has 
hanged. For the frequentist s
hool atleast, the important thing is that the (
onditional) distribution has not 
hanged its fun
tionalform. That is what its tests and intervals are based on.In 
ertain spe
ial situations, parameter estimation 
an be separated from examining goodnessof �t of the model fun
tion. In the linear exponential family, minimal suÆ
ient statisti
s, say t,exist for the parameters and f(yjt) 
an be used to examine goodness of �t. Unfortunately, mostme
hanisti
 models do not �t into this framework so that su
h a separation is not possible. Thedistribution is not in the exponential family and/or the model is nonlinear so that the minimalsuÆ
ient statisti
 is usually y.4.2 Sele
tion 
riteriaModel sele
tion 
riteria, su
h as the AIC (Akaike, 1973) and the BIC (S
hwarz, 1978), havebeen developed, but these have a fundamentally di�erent basis than the 
lassi
al Bayesian andfrequentist pro
edures (Burnham and Anderson, 1998; Lindsey, 1999). These 
riteria 
an provideresults that dire
tly 
ontradi
t the 
lassi
al Bayesian and frequentist ones in many situations.Model sele
tion 
riteria are fundamentally likelihood based. They do not require a probabilisti
interpretation of the 
on
lusions being drawn. The likelihood fun
tion provides a measure of how
lose a given model is to the data. However, a more 
omplex model has more 
han
e of being 
loseto the data so that this must be taken into a

ount. Then, the (� log) likelihood is penalized bysome fun
tion of the number of estimated parameters.8
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Figure 2: Three 
riteria for a plausibility interval about the mean of a Poisson distribution.Any model sele
tion 
riterion, even 
lassi
al step-wise regression using Student t or Chi-squaredtests, 
an be interpreted as the 
onstru
tion of plausibility intervals about parameters. A parameteris eliminated if the point at whi
h it disappears from the model, often zero or one, is in
luded inthe interval. For three su
h standard 
riteria, this is illustrated in Figure 2 for data relating to thesame Poisson mean problem as in Figure 1, where we found N = 25.In the notation used above (Figure 1), the 
lassi
al Chi-squared 
riterion sets a = exp(��21=2),the standard AIC has a = 1=e, and the BIC has a = 1=pN . The di�eren
e between the 
lassi
alpro
edures, whether Bayesian or frequentist, and proper model sele
tion 
riteria lies in how thelevel 
hanges for regions involving more than one parameter. For 
lassi
al pro
edures, the 
hangearises from the di�eren
e in distribution as the degrees of freedom (say p, the number of estimatedparameters) 
hange: for example, a = exp(��2p=2). In 
ontrast, for proper model sele
tion 
riteria,the level is given by ap. This ensures that we avoid the 
ontradi
tions in Bayesian and frequentistinferen
e that 
an arise when di�erent numbers of parameters are estimated. Model sele
tion
riteria yield inferen
es that remain 
ompatible when the numbers of parameters di�er (Lindsey,1999).Although the level for the standard AIC with one estimated parameter seems very high in Figure2, this qui
kly 
hanges as the number of parameters in
reases. For more than seven parameters,the level, exp(�p), given by the standard AIC is lower than that, exp(��2p=2), for a Chi-squaredregion at the 95% level. This is s
ienti�
ally reasonable as more 
omplex models are more highlypenalized. Note, however, that the plausibility level for the AIC need not be �xed at a = 1=e for9



one parameter but 
an be 
hosen so as to obtain any desired pre
ision level, as suggested abovefor sample size 
al
ulations.On the other hand, noti
e that the plausibility level of the BIC involves N so that the samplesize is �xed with the plausibility level, in 
ontrast to the other two. We have lost a `degree offreedom' in 
al
ulating sample size. This is generally an undesirable 
hara
teristi
.It is also important to emphasize that regions de�ned by one �xed value of a are only a
rude summary of the 
omplete likelihood surfa
e. A set of them for various values of a is moreinformative in summarizing the shape of the likelihood fun
tion. But, those for a �xed a do provideus with a means of 
omparing regions arising from likelihood surfa
es of di�erent dimension,something that is impossible without su
h a 
riterion of 
alibration4.3 Can 
omplexity be measured?On
e a model has more than one parameter, things rapidly be
ome more 
omplex. Let me 
ontinuewith my Poisson example. Above, I had a sample (N = 25) whose mean I suspe
t may be about�1 = 2. I now take a se
ond sample of 25 under 
onditions where I think the mean is about�2 = 3, for a total sample size of N = 50. I am interested in the ratio of means, say � = �1=�2.As a 
omplementary parameter, I shall simply take �1. Re
all that we have 
hosen to makeinferen
es using a = 0:2. The likelihood surfa
e for these two parameters is plotted as 
ontours inFigure 3. The outer 
ontour, a2 = 0:04, is the appropriate one for a joint likelihood region at thisplausibility level. (The se
ond one from the outside is a = 0:2.) But then how do we pro
eed toprodu
e informative graphi
s when we have more than two parameters?In 
onstru
ting a theory, s
ientists are interested in obtaining the simplest possible explanationfor the phenomenon under study. They start with the simplest reasonable model and introdu
e noadditional parameters or variables unless they are absolutely ne
essary. This 
ontrasts with theapproa
h of many statisti
ians. For example, in multiple regression or generalized linear modelproblems, one often starts with the most 
omplex (saturated) model and tries to simplify it. As iswell known, starting from the simple and from the 
omplex will often not produ
e the same �nalresult (unless all subsets regression is used). However, here the basi
 di�eren
e in philosophy ofmodel building is more important than the di�eren
e in results in spe
i�
 
ases.Classi
ally, statisti
s measures the 
omplexity of models, in relation to the available information,in terms of the degrees of freedom. This is 
losely related to the model sele
tion penalties. In both
ases, one may question the adequa
y of su
h measures of 
omplexity simply in terms of thenumbers of estimated parameters. For example, is a linear model less 
omplex than a nonlinearone with the same number of parameters? Are the gamma and Weibull distributions twi
e as
omplex as the exponential distribution be
ause they have twi
e as many parameters?This question is of dire
t relevan
e to s
ienti�
 dis
overy. Suppose that the data indi
ate thatsome new model fun
tion is appropriate and that this new model has as many unknown parametersas the old one. Is the better �t, both to the 
urrent data and in future repli
ation of the study,10
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Figure 3: Contours (0.04, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9) of normed likelihood for the meanand the ratio of two Poisson means. The diagonal line shows the pro�le likelihood for the ratio ofmeans.simply due to the greater 
omplexity of the new fun
tion?Information theory has been mu
h 
on
erned with measures of 
omplexity. Unfortunately,exa
t values, su
h as Kolmogorov 
omplexity, are not 
omputable. Many approximations, su
has those developed by minimum des
ription length (Rissanen, 1983, 1987), use approximations,most of whi
h result in some familiar model sele
tion 
riterion or a modi�
ation of one. In that
ontext, my a is the pre
ision of the parameter spa
e, for example 1=pN yielding the BIC. Thelatter represents the magnitude of the estimation error in a parameter.However, we have seen that a has a likelihood interpretation in terms of pre
ision as well. Itis the proportion of the maximum probability of the observed data (their likelihood) that we areprepared to a

ept for a model in the retained set. In this sense, it is not something inherently�xed. However, it evidently should not be less than 1=pN . For the standard AIC, this only meansthat 1=e is too small for sample sizes of seven or less!Unfortunately, these measures from information theory do not solve our problem. They 
al-
ulate the minimum number of bits required to transmit the (dis
rete) data given the statisti
almodel fun
tion and its parameter values. These are measured respe
tively by the negative loglikelihood fun
tion and the number of bits required to transmit the parameter values themselves(at a given level of pre
ision), the penalty. They do not take into a

ount the 
ost of transmittingthe de�nition of the statisti
al model fun
tion itself. This must vary with the 
omplexity of that11



fun
tion. The person who develops a more appropriate (likelihood-based!) measure of 
omplexitythan the number of estimated parameters will be
ome famous.4.4 Comparing fun
tionsMu
h of statisti
s 
an be seen as a model sele
tion problem: Should my regression model bemodi�ed to in
lude this 
ovariate in it? Is a model with a mean of 3.4 more appropriate than onewith a mean of 4.3? What set of parameter values (that is, subset of models) should I sele
t asappropriate for these data?For a given model fun
tion, ea
h di�erent parameter value de�nes a distin
t model. Thus,
onstru
ting a 
on�den
e or 
redibility interval for a parameter 
an be interpreted as sele
ting theset of models having parameter values in that interval. Classi
al statisti
s, whether Bayesian orfrequentist, is good at studying parameter values for a given �xed model fun
tion.Any model fun
tion with given, �xed parameter values allows one to 
al
ulate the probabilityof the observed data: the likelihood fun
tion. Classi
al statisti
s 
an easily 
ompare su
h modelswhen the parameter values are varied. The problem is 
onsidered to be mu
h more diÆ
ult whenone wants to 
ompare, say, gamma, log normal, and Weibull distributions. And yet, for �xedparameter values in ea
h, the probabilities of the data 
an still be 
al
ulated, and 
ompared.One 
lassi
al solution is to embed the models of interest in a more global one. For example, theabove three distributions 
an be embedded in the generalized gamma distribution. The problemthen redu
es to one of studying a new parameter, with spe
i�
 dis
rete values 
orresponding toea
h of the model fun
tions of interest. In 
ontrast, likelihood-based model sele
tion 
riteria allowdire
t 
omparison of di�erent model fun
tions without the need for su
h embedding. (This, of
ourse, is not meant to imply that embedding is not useful.)5 Model diagnosti
s5.1 Questioning the model and the dataS
ientists are wary of models that des
ribe their data too well. They know that some part ofthe data will 
ertainly be found to be wrong. The s
ientists that I have met argue vehementlyagainst letting the data speak for themselves (just as they spontaneously argue against allowingpersonal opinions to enter into a

ount, without knowing that Bayesian statisti
s even exists). Amajor dis
repan
y between model and data may indi
ate a s
ienti�
 breakthrough so that great
are must be taken.On the other hand, models for whi
h it is worth 
olle
ting empiri
al data, and the theoriesbehind them, are generally supported by a wide variety of sour
es. Unless the experiment is a
ru
ial test of the theory, the data set arising from it will generally not be suÆ
ient 
ause for amodel to be 
ompletely reje
ted. No s
ienti�
 model, or theory, will be abandoned unless a better12



one is available to repla
e it: model 
omparison, not testing. Models and their theories must betestable, not in terms of null hypotheses, but as 
ompared to 
ompeting models and their theories.This is exa
tly what likelihoods are about.Mu
h of modern statisti
s has atta
ked this problem of 
onfronting data and models fromthe other end. Instead of using rigorous models with strong assumptions to determine whi
hobservations may be wrong and whi
h theory is supported, it has 
on
entrated on developinggeneral pro
edures with supposedly weak assumptions that are `robust' to data errors and generalmethods for dete
ting `outliers'.Most model diagnosti
s, parti
ularly those based on residuals, were developed spe
i�
ally forlinear normal models. Often, they are based on the mean of the observations, not taking intoa

ount the 
hanging form of the distribution around the mean, for example as 
ovariates 
hange.Their adaptation to other 
ontexts, even to generalized linear models, is rather ad ho
 and oftennot very informative. In many realisti
 models, the information for 
he
king the model 
annot beseparated from that for estimating the parameters, as mentioned in Se
tion 4.1. It has been myexperien
e that standard diagnosti
s 
an often indi
ate no problem with a given model and yeta rigorous model sele
tion pro
edure would reje
t it in favour of some other mu
h better �ttingmodel.5.2 Amending the modelIf the data have been properly 
leaned and 
he
ked and if 
areful model sele
tion has been 
arriedout, inspe
tion of model diagnosti
s should almost never reveal anything unexpe
ted. Outliersthat are erroneous values should have been dete
ted by the 
leaning pro
ess, although s
ientistsknow that this is never infallible. All reasonable alternative models should have been 
onsideredin the sele
tion pro
ess and the ones best �tting the data retained. The remaining possibility, ifdiagnosti
s dete
t an anomaly, is that the data are indi
ating some unforeseen modi�
ation to themodel, or some 
ompletely new model that was not previously under 
onsideration. This is thesubstan
e of s
ienti�
 dis
overy; it does not happen often in one's lifetime!Non-erroneous outliers 
an only be de�ned in terms of a given model. If they prove importantwith respe
t to that model, it must be modi�ed to a

ommodate them. This may involve intro-du
ing missing 
ovariates, developing a more appropriate nonlinear model, using a more `robust'distribution with heavier tails, and so on.6 Model un
ertainty6.1 The role of prior knowledgeIf a model sele
tion pro
edure has been used, this implies that several, even a large number of,models have been �tted to the data. Some have argued that this model un
ertainty should be13



taken into a

ount in drawing 
on
lusions from a study. Should these 
on
lusions be penalizedby the number of models tried, in a similar way to the model sele
tion penalty for the numberof parameters estimated? On the other hand, one might argue that model sele
tion has redu
edun
ertainty by eliminating 
learly una

eptable models.The answer to these questions will depend, among other things, on how the various models
ame to be tried for the given data set. If an exhaustive list of possibilities (known 
ompetingtheories) was 
ompiled before data 
olle
tion and only those tried, the situation will not be thesame as if the best model found was suggested by the data set itself (a possible s
ienti�
 dis
overy).If an exhaustive list of possible models 
ould be pre-established, then we are in a 
ase of at leastpartial 
on�rmation of previous results, the repeatability of s
ien
e, not dis
overy. If the 
hosenmodel was suggested by the data, then only new data from future independent studies by thes
ienti�
 
ommunity 
an 
on�rm the 
hoi
e.6.2 Inferen
es about individual parametersOn
e a reasonable model fun
tion has been sele
ted, one often wishes to make inferen
e individuallyabout one or more of the parameters. This is still a model sele
tion problem: sele
ting a subset ofmodels spe
i�ed by a given range of parameter values.A �rst 
riterion for pro
eeding is that we do not �nd any 
ontradi
tions with respe
t to ourmodel sele
tion pro
ess. For example, a plausibility interval of reasonable values for a parameterthat has remained in the model should not 
ontain the value indi
ating that it should be removedfrom the model.Ex
ept in very spe
ial 
ases of orthogonality of parameters, inferen
es about any one parametermust depend on the values of the others. If we look at di�erent �xed values of �1 in Figure 3, it is
lear that, for ea
h, our 
on
lusions about � will 
hange. How 
an this un
ertainty be taken intoa

ount? Statisti
ians have spent a lot of time working on this problem. The Bayesian solution,a marginal posterior distribution whi
h is an average over models with di�erent values of �1, isunintelligible in terms of likelihood. I believe that it is s
ienti�
ally meaningless: reasonable valuesof � are 
hanging depending on the value of �1 so that no average is interpretable. Frequentist so-lutions, su
h as 
onditional and modi�ed pro�le likelihood, are equally suspe
t as these 
orre
tions
an narrow the plausibility region in the fa
e of this un
ertainty!Let us instead 
onsider ways of summarizing this likelihood surfa
e in one dimension for theparameter that interests us. Be
ause the plausibility of our parameter of interest varies with �1,let us �rst take a series of 
uts through the surfa
e for various values of this latter parameter, assuperimposed in the left graph of Figure 4. The outline of this graph is the well-known normedpro�le likelihood, but this way of produ
ing it is more informative (at least when there are onlytwo parameters). It shows how the values of the parameter of interest be
ome less plausible as these
ond parameter moves away from its maximum likelihood estimate.Of 
ourse, the normed pro�le likelihood 
an also be obtained dire
tly. It is the line of highest14
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Figure 4: Inferen
es about the ratios of two Poisson means. Left graph: superimposed 
uts throughthe likelihood surfa
e of Figure 3 for a series of �xed values of the �rst mean. Right graph: normedpro�le likelihood with plausibility levels of 0.2 and 0:22 indi
ated.likelihood when viewed from the axis of the parameter of interest, as shown by the diagonal linein Figure 3. This is plotted in the right graph of Figure 4. With some misgivings, the frequentists
hool uses this as if it were an ordinary one-parameter likelihood instead of a summary of amultidimensional surfa
e.Our problem here is to de
ide what plausibility level we should use with su
h a summary likeli-hood 
urve. The values of 0.2 and 0:22 are shown, 
orresponding to the points where the diagonalline in Figure 3 
uts the se
ond and outermost 
ontours. The former would be the frequentist
hoi
e: treat the 
urve, at least approximately, as an ordinary one-parameter likelihood. Theproblem is that this assumes that, at ea
h point on the graph, �1 takes exa
tly its maximum likeli-hood estimate for the 
orresponding �xed value of �. However, our model 
learly has two estimatedparameters so that the model sele
tion 
riteria must be based on the latter, ap (here with p = 2);otherwise, we risk drawing in
ompatible inferen
es. The wider interval allows for the unknownnessin �1 at the proper level of un
ertainty; it is a maximum rather than an average. However, it isnot 
lear if this need be the narrowest interval possible for the given level of plausibility.6.3 A global modelIn looking more 
losely at model un
ertainty, let us 
onsider �rst the simplest 
ase where all ofthe models examined are based on the same distributional assumption. The order in whi
h they15



were �tted should be unimportant as only the total set of models examined should play a role inany measure of un
ertainty. For example, we might be in a standard linear multiple regressionsituation where the distributional assumptions are not in question. A global model will exist that
ontains all 
ovariates tried (in
luding transformations, intera
tions, and so on). Noti
e that thenumber of models examined may be mu
h larger than the number of parameters in this globalmodel, as for example with all subsets regression. The 
hosen model 
ontains a subset of these
ovariates.Now suppose that a number of di�erent distributions were also 
onsidered, in a simple 
ase, saythe generalized linear models based on the log normal, gamma, and inverse Gaussian distributions.As suggested above, in some 
ases, su
h 
omparisons 
an be 
ondu
ted by embedding all possi-bilities within a more 
omplex distribution with extra parameters. Suppose however that we arenot interested in intermediate distributions, but only exa
tly those spe
i�ed, be
ause they 
orre-spond to distin
t s
ienti�
 theories. (Re
all my example of the treatment of the Mi
ha�elis-Mentenequation in Se
tion 2.1). Then, we 
an set up a global likelihood fun
tion 
ontaining indi
atorfun
tions as to whi
h distribution is a
tually used:L(�; �) = I(� = 1)fLN(�LN ) + I(� = 2)fG(�G) + I(� = 3)fIG(�IG) (3)The indi
ator fun
tion, taking values zero or one, 
ontains an unknown parameter, �, with dis
retevalues 1 
orresponding to the log normal, 2 to the gamma, and 3 to the inverse Gaussian distri-bution. Ex
ept for the dis
reteness of �, this likelihood fun
tion di�ers little from those arisingfrom embedding. But how many parameters does it 
ontain? �LN , �G, and �IG all have the samedimension, but only one of the three a
tually appears in the likelihood fun
tion, depending on thevalue of �. Thus, we are again in a situation where all models 
an be nested in a global model.We have a legitimate likelihood fun
tion that allows us to 
al
ulate the probability of the observeddata for all possible parameter values.6.4 De�ning the problem (if there is one)Plotting pro�le likelihoods for the parameters of most interest in a model is one simple way ofproviding us with indi
ations of the un
ertainty about the 
oeÆ
ients in this model fun
tion,given that it is the only model fun
tion under 
onsideration. The height of the 
urve de�ning aplausibility (
on�den
e or 
redibility) region will depend on the number of estimated parametersin that model (determined by the AIC, �2, or other 
riterion). The more estimated parameters,the lower this height and the larger the region. In what way should this height be lowered evenfurther to a

ount for the un
ertainty arising from the number of other models tried?Care must be taken here. If we lower the height de�ning the region of a

eptable parametervalues at this stage, after model sele
tion has been 
ompleted, the enlarged region for a parametermay in
lude zero values so that the previous 
on
lusions from model sele
tion are altered and asimpler model fun
tion indi
ated. Hen
e, for su
h a 
orre
tion to work without 
ontradi
tions,16



that is, provide 
ompatible inferen
es, the 
omplete set of models to be tried must be known inadvan
e.Numeri
al pro
edures, whether Newton-Raphson, simulated annealing, or other, to obtain op-timal parameter values are a model sele
tion pro
ess: they automati
ally examine many models to�nd an optimal one. We may ask if, from a likelihood point of view, su
h maximization pro
eduresdi�er fundamentally from all subsets regression or the pro
edures ne
essary to �nd the optimalmodel in a global fun
tion su
h Equation (3). Certainly, from a frequentist viewpoint, they do.Nevertheless, whether to penalize for the number of models examined, and if so how, stillremains as a fundamental statisti
al problem.7 Model interpretation7.1 ParametersIn a 
ertain sense, parameters are arbitrary, only serving to spe
ify some given model fun
tion.They 
an generally be transformed without fundamentally 
hanging the meaning of the model.This is re
e
ted in the invarian
e of inferen
es from the likelihood fun
tion to reparametrization ofa model. For example, in a regression model, the essential thing is how the probability of the variouspossible responses 
hanges with the 
ovariates: the 
hanging shape of the (
onditional) probabilitydistribution about the regression 
urve. I like to remind my students that, for 
ontinuous responsevariables, the probability of an observation lying exa
tly on the regression line is theoreti
ally zero,in spite of the fa
t that it is 
onfusingly 
alled the `expe
ted value' !However, in a me
hanisti
 model, ea
h parameter often has a spe
i�
 meaning. For example, itshould make sense that any parameter, and not just the mean (or those referring to it), 
an varywith 
ovariates in an interpretable way. Of 
ourse, for many, this will be found empiri
ally not tobe the 
ase.7.2 ExtrapolationTo a very large extent, advan
ement of s
ien
e is based on the 
onstru
tion of new theories,supported by models, that produ
e veri�able predi
tions outside the range of those produ
ed byexisting theories. Their su

ess often hinges on being able to predi
t what will be observed in 
asesoutside the data available to 
onstru
t the theory. In other words, s
ien
e depends, fundamentally,on the produ
tion of theories that are su

essful at extrapolation.This 
ontrasts with the way in whi
h statisti
ians usually pro
eed. A regression model is�tted to data, but only 
onsidered useful for predi
tions within the range of those observed data.Extrapolation is 
onsidered to be dangerous and foolish. An important ex
eption is, of 
ourse, thework in time series predi
tion, but unfortunately mu
h of this is not based on me
hanisti
 s
ienti�
models. 17



8 Con
lusionsS
ien
e involves� developing theories and a

umulating knowledge to understand, not just to des
ribe, natureand so
iety;� doing this without any view as to how they will be used;� setting up simple models based on some spe
i�
 theory;� 
learly stating assumptions;� 
onfronting the models with empiri
al data, with an outlook to dis
overing new models;� but being wary of those data;� extrapolating outside the observed data;� the 
ommunity of s
ientists 
he
king repeatability of the results;� only abandoning a model if a better one is available.Many of these prin
iples are in dire
t 
ontradi
tion with mu
h of 
urrent statisti
al tea
hing andpra
ti
e. Thus, it is an unfortunate fa
t of life that mu
h of modern statisti
s is anti-s
ienti�
.Most statisti
ians have been trained in mathemati
s departments out of 
onta
t with s
ien
e. Inthe meantime, top-level s
ientists have had to work out their own new statisti
al te
hniques fortheir spe
i�
 problems, o

asionally adapting what they 
an from the statisti
al literature.Nevertheless, statisti
s has 
ome to play an important role in 
ertain areas of resear
h anddevelopment. Often, as in 
lini
al trials, this is primarily due to its promotion of basi
 designprin
iples su
h as randomization, blinding, and so on. Mu
h remains to be done.A few of the unsolved statisti
al problems raised above in
lude� What probability distribution is most appropriate to des
ribe ea
h spe
i�
 s
ienti�
 phenom-ena?� What is the best way to represent likelihood regions in more than two dimensions?� How 
an the plausibility level of a normed pro�le likelihood for one parameter, in the presen
eof several others, best be 
alibrated?� How 
an the 
omplexity of a model fun
tion better be measured other than simply by thenumber of unknown parameters?� What diagnosti
s should be used outside the linear normal model, espe
ially when the min-imal suÆ
ient statisti
 for the parameters involves the 
omplete data?18



� Should we a

ount for model un
ertainty arising from examining several models and, if so,how?After thirty years of 
onstant revolution in statisti
s, we may well ask if we are headed in the rightdire
tion.A
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