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1. Introduction

Pharmacokinetics (PK) is the study of the
course of absorption, distribution,
metabolism, and elimination of some
substance in a living body.

Pharmaceutical companies use PK models for
assessing tolerability, bioavailability,
bioequivalence, and compliance.

Plasma drug levels often show a stronger
relationship to clinical response (efficacious or
toxic) than does dose level.

Therefore, it can act as an important
surrogate endpoint.

PK is a valuable component in the
determination of optimal (safe and effective)
doses and dosing schedules.
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In a2 Phase I study, a small number of healthy
volunteers may be given a dose of a new drug.

Most often, a cross-over design is used, with
individuals receiving different doses in various
orders.

After administration of a given dose, blood
samples are taken at frequent intervals to
determine the profile of the concentration of
the drug in the plasma.

In later phase studies, concentrations of the
drug are measured at infrequent intervals on
a large number of patients.

The former are data-rich studies whereas the
latter are called population PK.



The process is often represented as passage
through a series of ‘compartments’ in the
body.

Usually absorption of a drug is more rapid
than elimination.

Generally, the body transforms the drug into
another form called the metabolite.

If the metabolite is active, it may be
necessary to model it along with the parent
drug.

There may be large inter-individual variability
in all aspects of the passage of these
substances through the body.
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2. Compartment models

Suppose that some sort of individual elements
(atoms, molecules, ...) can move among a
number of different states or compartments.

In pharmacokinetics, the compartments are
organs or tissues of the body.

The dynamics of the system can be described
by the rates or intensities with which the
elements move among the compartments.

These rates will depend on a number of
factors, especially the numbers of elements in
the two compartments between which moves
are made.

One way to describe such a process that
moves from state to state (the
compartments) is as a Markov chain.
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Let w(¢t) be the vector of marginal
probabilities of being in the various states at
time ¢t and

A be a matrix of conditional transition
intensities such that

T=eA

where T is the transition matrix of
conditional probabilities of changing among
states in unit time.

Then,

7' (t) =x ' (0)ert



This involves the following assumptions:

the process remains in each state ¢ a strictly
positive length of time

the sojourn times in each state have
independent exponential distributions,

each with a different mean time in the state
w; or intensity of leaving the state k; = 1/u;.



In certain stochastic systems, we cannot
observe changes for individual elements but
only in aggregation.

For example, in a chemical reaction, we
cannot observe the changes of state of the
participating atoms but only the total
concentration of each reactant and product.

In the growth of a biological organism, we
cannot observe the addition of individual
proteins, or even of cells, but only the
increase in weight or length.

In other words, records of change in such a
system are averages of the stochastic
changes of the components involved.



Thus, one way to construct a mechanistic
model for a process of material moving
through a system is

to divide that system into compartments;

to assume that the rate of flow of the
substance between these obeys first-order
kinetics.

The rate of transfer to a receiving or sink
compartment is proportional to the
concentration in the supply or source
compartment.

Then, the differential equations are linear.
These are called the mass balance equations.
Thus, the rates can be described

mathematically by one or more differential
equations.



In the simple case, there are no inputs to the
system after ¢t = 0 when the process begins.

The system of linear differential equations will
have the form

dp ' (t) T
— = HA
v po (1)
p(t) is a column vector of length P, the
number of compartments.

A is a P x P transfer matrix containing rate
constants of movement between states in the
system.

In direct analogy to the solution of one such
equation, the general solution is

nt(t) = nT(0)ert

If there are inputs to the system over time,
the function describing these, say b(t), must
be included:

BT =T (At + [ "b(w)eAl-W gy
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Suppose that a substance is ingested at one
point in time (not continuously over the
study period).

Drug
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The corresponding differential equations are

dugt(t) = —kapo(t)
d“;ft) = kapo(t) — kepr (£)

uo 1S the mean amount at the absorption site
(often the stomach),

u1 i1s the mean of the concentration that
interests us, usually measured in the blood,
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kq 1S the absorption rate at that site,
ke the elimination rate at that site.

T hen,

A — —ka  ka
0 —ke

We can set the initial condition to
1(0) = (d,0) T, where a dose of size d is the
input to the first compartment.

When solving the above differential
equations, we shall be interested in the
second element of u(t), the amount in the
second compartment.

For given, fixed values of the parameters, this
can be calculated numerically using the
equation involving matrix exponentiation.
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Suppose that ko, = 0.4, k. = 0.05, and d = 1.

The curves of total concentration in the
system and of concentration in the second
compartment are
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In fact, in this example, numerical
exponentiation of the transfer matrix is not
necessary.

The differential equations can be solved
analytically.

The resulting function of time for the
compartment of interest is

dka ket —kqt
pi(t) = e et —e
i )
a nonlinear function in the parameters k, and

ke.
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This commonly used function is called the
open, first-order, one-compartment model.

It describes how the average number of
molecules in the compartment of interest
changes over time.

However, the total dose  may not be
absorbed into the blood.

Then, the function becomes
dkq ket a—kat
u(t) = et —e
Vha— ) )
where the additional nonlinear parameter V is

a proportionality constant, called the
apparent volume of distribution.
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3. Stochastic variability

However, a second level of stochastic
variability is usually also present in PK
measurements, resulting from random
external influences to the system:

changes in food supply, stress, and so on, to
the biological organism.

Thus, changes at the level of the individual
components can only be modelled as a mean
function, with variation about it arising from
the second level.

The probability distribution of elements in a
compartment over time is used as a nonlinear
regression curve.
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Stochastic variability about the mean will
involve:

1. skew, with a few large values;

2. nonconstant dispersion;

3. dependence among observations on the
same individual.

Traditionally, these are handled by a log
normal distribution with random effects for
the nonlinear parameters.
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Skewed distributions

Empirically, the gamma distribution generally
fits better than the log normal (criterion:
AIC).

A useful possibility is the generalised gamma
distribution

)\¢¢t PtA—L o — by (yt/ pue)

uP T ()

When A = 1, this vields a gamma distribution,
when ¢ = 1, a Weibull distribution, and when
A — o0, a log normal distribution.

FQyts s D1, A) =
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Nonconstant dispersion

Usually, the dispersion (variance) is assumed
to be a function of the mean:

o(t) = o?pu(t)"

where k is often set to 2.

This implies that the unknown parameters
(kq, ke, V above) are estimated
simultaneously in this equation and in the
mean equation.

A preferable approach is to allow ¢(t) to be a
separate function with its own parameters.

The dispersion parameter of the gamma
distribution is a function of the coefficient of
variation.

This parameter is of more interest to
pharmacokineticists than the variance.
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Dependence

Random effects only allow static differences
among subjects.

They are necessary if inadequate covariates
are available to describe differences in the
parameters (kq, ke, V above) among
individuals.

However, dynamic variation from the
regression curve is usually also present.

At a given time point, suppose that the
observed concentration for individual ¢ is y;.

The deviation from the overall curve, or a
residual, will be y;z — .

The concentration for that individual at the
next observation point can be predicted by

Yitd+1 = M1+ P2 (Y — pt)
where 0 < p < 1 is an unknown parameter and
At is the time between the two observations.
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4. Conclusions

PK claims to provide mechanistic models
explaining the flow of a substance through
the body.

However, the compartment models are
applied as a black box without close
examination of the underlying stochastic
assumptions.

Differential equations are solved and applied
deterministically, with randomness reduced to
‘measurement error’ and static individual
differences.
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Modelling questions:

1. What compartments are required (which
Markov chain model)?

2. Which distribution adequately describes
random external influences?

3. What rate constants vary among
individuals (covariates or ‘frailty’)?

4. In what way is the process influenced by
unknown internal and external factors
over time~
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