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1. Introdu
tion

Pharma
okineti
s (PK) is the study of the


ourse of absorption, distribution,

metabolism, and elimination of some

substan
e in a living body.

Pharma
euti
al 
ompanies use PK models for

assessing tolerability, bioavailability,

bioequivalen
e, and 
omplian
e.

Plasma drug levels often show a stronger

relationship to 
lini
al response (eÆ
a
ious or

toxi
) than does dose level.

Therefore, it 
an a
t as an important

surrogate endpoint.

PK is a valuable 
omponent in the

determination of optimal (safe and e�e
tive)

doses and dosing s
hedules.
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In a Phase I study, a small number of healthy

volunteers may be given a dose of a new drug.

Most often, a 
ross-over design is used, with

individuals re
eiving di�erent doses in various

orders.

After administration of a given dose, blood

samples are taken at frequent intervals to

determine the pro�le of the 
on
entration of

the drug in the plasma.

In later phase studies, 
on
entrations of the

drug are measured at infrequent intervals on

a large number of patients.

The former are data-ri
h studies whereas the

latter are 
alled population PK.
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The pro
ess is often represented as passage

through a series of `
ompartments' in the

body.

Usually absorption of a drug is more rapid

than elimination.

Generally, the body transforms the drug into

another form 
alled the metabolite.

If the metabolite is a
tive, it may be

ne
essary to model it along with the parent

drug.

There may be large inter-individual variability

in all aspe
ts of the passage of these

substan
es through the body.
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2. Compartment models

Suppose that some sort of individual elements

(atoms, mole
ules, : : :) 
an move among a

number of di�erent states or 
ompartments.

In pharma
okineti
s, the 
ompartments are

organs or tissues of the body.

The dynami
s of the system 
an be des
ribed

by the rates or intensities with whi
h the

elements move among the 
ompartments.

These rates will depend on a number of

fa
tors, espe
ially the numbers of elements in

the two 
ompartments between whi
h moves

are made.

One way to des
ribe su
h a pro
ess that

moves from state to state (the


ompartments) is as a Markov 
hain.
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Let �(t) be the ve
tor of marginal

probabilities of being in the various states at

time t and

A be a matrix of 
onditional transition

intensities su
h that

T= e

A

where T is the transition matrix of


onditional probabilities of 
hanging among

states in unit time.

Then,

�

T

(t) = �

T

(0)e

At
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This involves the following assumptions:

the pro
ess remains in ea
h state i a stri
tly

positive length of time

the sojourn times in ea
h state have

independent exponential distributions,

ea
h with a di�erent mean time in the state

�

i

or intensity of leaving the state k

i

= 1=�

i

.
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In 
ertain sto
hasti
 systems, we 
annot

observe 
hanges for individual elements but

only in aggregation.

For example, in a 
hemi
al rea
tion, we


annot observe the 
hanges of state of the

parti
ipating atoms but only the total


on
entration of ea
h rea
tant and produ
t.

In the growth of a biologi
al organism, we


annot observe the addition of individual

proteins, or even of 
ells, but only the

in
rease in weight or length.

In other words, re
ords of 
hange in su
h a

system are averages of the sto
hasti



hanges of the 
omponents involved.
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Thus, one way to 
onstru
t a me
hanisti


model for a pro
ess of material moving

through a system is

to divide that system into 
ompartments;

to assume that the rate of 
ow of the

substan
e between these obeys �rst-order

kineti
s.

The rate of transfer to a re
eiving or sink


ompartment is proportional to the


on
entration in the supply or sour
e


ompartment.

Then, the di�erential equations are linear.

These are 
alled the mass balan
e equations.

Thus, the rates 
an be des
ribed

mathemati
ally by one or more di�erential

equations.
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In the simple 
ase, there are no inputs to the

system after t = 0 when the pro
ess begins.

The system of linear di�erential equations will

have the form

d�

T

(t)

dt

= �

T

(t)A

�(t) is a 
olumn ve
tor of length P , the

number of 
ompartments.

A is a P � P transfer matrix 
ontaining rate


onstants of movement between states in the

system.

In dire
t analogy to the solution of one su
h

equation, the general solution is

�

T

(t) = �

T

(0)e

At

If there are inputs to the system over time,

the fun
tion des
ribing these, say b(t), must

be in
luded:

�

T

(t) = �

T

(0)e

At

+

Z

t

0

b(u)e

A(t�u)

du
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Suppose that a substan
e is ingested at one

point in time (not 
ontinuously over the

study period).

Drug

dose
Stomach

ka Volume of distribution

(V)

ke

The 
orresponding di�erential equations are

d�

0

(t)

dt

= �k

a

�

0

(t)

d�

1

(t)

dt

= k

a

�

0

(t)� k

e

�

1

(t)

�

0

is the mean amount at the absorption site

(often the stoma
h),

�

1

is the mean of the 
on
entration that

interests us, usually measured in the blood,
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k

a

is the absorption rate at that site,

k

e

the elimination rate at that site.

Then,

A =

 

�k

a

k

a

0 �k

e

!

We 
an set the initial 
ondition to

�(0) = (d;0)

T

, where a dose of size d is the

input to the �rst 
ompartment.

When solving the above di�erential

equations, we shall be interested in the

se
ond element of �(t), the amount in the

se
ond 
ompartment.

For given, �xed values of the parameters, this


an be 
al
ulated numeri
ally using the

equation involving matrix exponentiation.
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Suppose that k

a

= 0:4, k

e

= 0:05, and d = 1.

The 
urves of total 
on
entration in the

system and of 
on
entration in the se
ond


ompartment are
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In fa
t, in this example, numeri
al

exponentiation of the transfer matrix is not

ne
essary.

The di�erential equations 
an be solved

analyti
ally.

The resulting fun
tion of time for the


ompartment of interest is

�

1

(t) =

dk

a

(k

a

� k

e

)

�

e

�k

e

t

� e

�k

a

t

�

a nonlinear fun
tion in the parameters k

a

and

k

e

.
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This 
ommonly used fun
tion is 
alled the

open, �rst-order, one-
ompartment model.

It des
ribes how the average number of

mole
ules in the 
ompartment of interest


hanges over time.

However, the total dose x may not be

absorbed into the blood.

Then, the fun
tion be
omes

�(t) =

dk

a

V (k

a

� k

e

)

�

e

�k

e

t

� e

�k

a

t

�

where the additional nonlinear parameter V is

a proportionality 
onstant, 
alled the

apparent volume of distribution.
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3. Sto
hasti
 variability

However, a se
ond level of sto
hasti


variability is usually also present in PK

measurements, resulting from random

external in
uen
es to the system:


hanges in food supply, stress, and so on, to

the biologi
al organism.

Thus, 
hanges at the level of the individual


omponents 
an only be modelled as a mean

fun
tion, with variation about it arising from

the se
ond level.

The probability distribution of elements in a


ompartment over time is used as a nonlinear

regression 
urve.

16



0
2

4
6

8
10

12

0 1 2 3 4 5

H
ours

Concentration (microg/ml)

1
7



Sto
hasti
 variability about the mean will

involve:

1. skew, with a few large values;

2. non
onstant dispersion;

3. dependen
e among observations on the

same individual.

Traditionally, these are handled by a log

normal distribution with random e�e
ts for

the nonlinear parameters.
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Skewed distributions

Empiri
ally, the gamma distribution generally

�ts better than the log normal (
riterion:

AIC).

A useful possibility is the generalised gamma

distribution

f(y

t

;�

t

; �

t

; �) =

��

�

t

t

y

�

t

��1

t

e

��

t

(y

t

=�

t

)

�

�

�

t

�

t

�(�

t

)

When � = 1, this yields a gamma distribution,

when �

t

= 1, a Weibull distribution, and when

�!1, a log normal distribution.
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Non
onstant dispersion

Usually, the dispersion (varian
e) is assumed

to be a fun
tion of the mean:

�(t) = �

2

�(t)

�

where � is often set to 2.

This implies that the unknown parameters

(k

a

, k

e

, V above) are estimated

simultaneously in this equation and in the

mean equation.

A preferable approa
h is to allow �(t) to be a

separate fun
tion with its own parameters.

The dispersion parameter of the gamma

distribution is a fun
tion of the 
oeÆ
ient of

variation.

This parameter is of more interest to

pharma
okineti
ists than the varian
e.
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Dependen
e

Random e�e
ts only allow stati
 di�eren
es

among subje
ts.

They are ne
essary if inadequate 
ovariates

are available to des
ribe di�eren
es in the

parameters (k

a

, k

e

, V above) among

individuals.

However, dynami
 variation from the

regression 
urve is usually also present.

At a given time point, suppose that the

observed 
on
entration for individual i is y

it

.

The deviation from the overall 
urve, or a

residual, will be y

it

� �

t

.

The 
on
entration for that individual at the

next observation point 
an be predi
ted by

ŷ

i;t+1

= �

t+1

+ �

�t

(y

it

� �

t

)

where 0 < � < 1 is an unknown parameter and

�t is the time between the two observations.
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4. Con
lusions

PK 
laims to provide me
hanisti
 models

explaining the 
ow of a substan
e through

the body.

However, the 
ompartment models are

applied as a bla
k box without 
lose

examination of the underlying sto
hasti


assumptions.

Di�erential equations are solved and applied

deterministi
ally, with randomness redu
ed to

`measurement error' and stati
 individual

di�eren
es.
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Modelling questions:

1. What 
ompartments are required (whi
h

Markov 
hain model)?

2. Whi
h distribution adequately des
ribes

random external in
uen
es?

3. What rate 
onstants vary among

individuals (
ovariates or `frailty')?

4. In what way is the pro
ess in
uen
ed by

unknown internal and external fa
tors

over time?
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