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1. Constru
ting event history models

Event histories involve the times between

events.

These may be re
urrent events su
h as

migraine, �ts, or infe
tions, or they may

involve moves between distin
t states, su
h

as 
at
hing a disease, being hospitalized,

re
overing, or dying.

A subje
t is said to 
hange state and the

event is 
alled a transition between the states.

Sometimes we are mainly interested in the

states, and sometimes in the transition

events:

being ill versus 
at
hing an illness.
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Several spe
ial 
ases are parti
ularly

important.

� Mortality: two states of whi
h the se
ond

is absorbing (
lassi
al survival analysis).

� Competing risks: transition from one

state to any one of several others.

� Re
urrent events (the �rst example

mentioned above).

� Alternan
e between two states.

� Disability: transition through a series of

irreversible states (the se
ond example

mentioned, if death must be the �nal

result).
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Several of these may need to be 
ombined to

des
ribe the 
omplete history of subje
ts.

Model 
onstru
tion depends greatly on how

the series of states for individuals is de�ned.

Generally, there is no unique stru
ture.

Where they are possible, 
ertain assumptions

will fa
ilitate model building.

A model is progressive if all states, ex
ept the

�rst, have only one transition into them.

Then, the 
urrent state de�nes what states

were previously o

upied and in what order,

but not when the 
hanges o

urred.
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A transition probability is Markovian if it only

depends on the present state and not on the

previous history of the individual.

However, it may depend on time.

An extension is to allow it to depend on the

time sin
e the last event, a spe
ial 
ase being

the semi-Markov model.

Generally, it useful to 
larify ideas by


onstru
ting a diagram for the states and

possible transitions between them.
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Recurrent events
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5



A multi-state model must never have several

transition routes from one state to another.

Instead several di�erent states must be

de�ned.

For example, suppose that subje
ts in the

state of having a given disease may re
over

either by natural body defenses or by medi
al

treatment.

Then, these must be de�ned either as two

di�erent re
overy states, as in the alternative

out
omes model, or they must not be

distinguished at all.
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For re
urrent events, it is espe
ially

important to establish a zero time point.

If this is birth, then the time to the �rst

event will generally be quite distin
t from

subsequent repetitions of the event.

Often, it is 
onvenient to start the pro
ess

from the time of the �rst event.

If this is unknown, the possible models that


an be �tted may be limited.

For example, a birth pro
ess is usually

unreasonable be
ause the a
tual number of

previous events is unknown.
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2. Counting pro
esses

The 
umulated number, N

t

, of events up to

time, t, in a point pro
ess is known as a


ounting pro
ess.

Let the intensity of transition from state j to

state k be !

jk

(tjF

t�

), de�ned by

!

jk

(tjF

t�

)dt = Pr(the event in (t; t+ dt)jF

t�

)

= Pr(dN

t

= 1jF

t�

)

where F

t�

is the 
omplete history up to, but

not in
luding, t.

If

E[M

t

℄ < 1

E[M

t+k

�M

t

jF

t�

℄ = 0

8t;0 < k <1, then, M

t

is 
alled a martingale.

For a 
ounting pro
ess,

M

t

= N

t

�

Z

t

0

!

jk

(tjF

t�

)dt

ful�ls this 
ondition.
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3. Likelihood fun
tion

The kernel of the log likelihood fun
tion for

observation over the interval (0; T ℄ is

log[L(�)℄ =

Z

T

0

log[!

jk

(tjF

t�

;�)℄dN

t

�

Z

T

0

!

jk

(tjF

t�

;�)I(t)dt

where I(t) is an indi
ator fun
tion.

In any empiri
al situation, even a


ontinuous-time pro
ess will only be observed

at dis
rete time intervals, on
e an hour, on
e

a day, on
e a week.

Suppose that these are suÆ
iently small so

that at most one event is observed to o

ur

in any interval.

(There will be a �nite non-zero theoreti
al

probability of more than one, unless the event

is absorbing or a transition to another state.)
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With R intervals of observation, not all

ne
essarily the same size, this equation

be
omes, by numeri
al approximation,

log[L(�)℄

:

=

R

X

t=1

log[!

jk

(tjF

t�

;�)℄�N

t

�

R

X

t=1

!

jk

(tjF

t�

;�)I(t)�

t

where �

t

is the width of the tth observation

interval and �N

t

is the 
hange in the 
ount

during that interval, with possible values zero

and one.

This is the kernel of the log likelihood for the

Poisson distribution of �N

t

, with mean

!(tjF

t�

;�)�

t

.

Conditional on the �ltration, it is the

likelihood for a Poisson pro
ess.
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4. Examples of intensity fun
tions

Important simpli�
ations o

ur when the

intensity depends only on the 
omplete

history through N

t

: !

jk

(tjN

t

). Spe
ial 
ases

in
lude:

� the ordinary homogeneous Poisson

pro
ess, with

!(tjN

t

) = !

where the intensity is always the same

(the only 
ounting pro
ess with stationary

independent in
rements);

� the nonhomogeneous Poisson pro
ess,

with

!(tjN

t

) = !(t)

where the intensity is a fun
tion of time;
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� the pure birth or Yule pro
ess, with

!(tjN

t

) = N

t

!

where the intensity is proportional to the

number of previous events;

� the nonhomogeneous birth pro
ess, with

!(tjN

t

) = N

t

!(t)

where the intensity, proportional to the

number of previous events, is also a

fun
tion of time;

� the renewal pro
ess, with

!(tjN

t

) = !(t� t

N

t

)

where the intensity depends on the time

sin
e the last re
urrent event, starting

afresh after ea
h event;
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� the semi-Markov or Markov renewal

pro
ess, with

!

jk

(tjN

t

) = !

jk

(t� t

N

t

)

where the form of the intensity fun
tion

depends on the time sin
e the last event,

with the pro
ess 
hanging state at ea
h

event.

Those pro
esses with an intensity depending

on time are non-stationary.

This dependen
e may be on the elapsed time,

either total or sin
e the previous event, or on

the number of previous events, or both.

In more 
omplex 
ases, it may also depend on

other time-varying 
ovariates.
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5. Intensity and probability transition

matri
es

The intensity transition matrix, say 
(t), is a

matrix with elements, !

jk

(t), the transition

intensity from state j to state k, o� diagonal

and �

P

j

!

jk

(t) on diagonal.

Thus, rows sum to zero.

The probability transition matrix, say T(t), is

a matrix with elements, �

jk

(t), the transition

probability from state j to state k, in
luding

�

jj

(t).

Thus, rows sum to unity.
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6. Transition probabilities

The transition probabilities 
an be found

from the transition intensities.

They are de�ned as

�

jk

(t�; t) = Pr(Y

t

= kjY

t�

= j;F

t�

)

the probability of being in state k at time t

given the previous history up until that time,

in
luding the previous state(s), the

immediately pre
eding one being j.

These satisfy

�

jk

(t

1

; t

3

) =

X

l

�

jl

(t

1

; t

2

)�

lk

(t

2

; t

3

)

for t

1

� t

2

� t

3

.
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They 
an be obtained from the set of

di�erential equations,

dT(t�; t)

dt

= T(t�; t)
(t)

where T(t�; t) is the matrix of transition

probabilities, �

jk

(t�; t), to and from all

possible states.

These are the forward re
urren
e equations.

They 
an only easily be solved for

homogeneous Markov pro
esses where none

of the transition intensities either vary with

time or depend on time-varying 
ovariates.
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Then, matrix exponentiation 
an be used,

de�ned by

e

At

= I+

At

1!

+

(At)

2

2!

+ � � �

However, a preferable way to 
al
ulate the

exponential is by spe
tral de
omposition.

If V is a 
olumn matrix of the eigenve
tors of

A and D is a diagonal matrix 
ontaining the


orresponding eigenvalues, then

A = VDV

�1

and

e

At

= Ve

Dt

V

�1
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If the eigenvalues of T are all distin
t, the

solution will be of the form

�

jk

(t

1

; t

2

) =

X

l

�

jkl

e

�E

l

(t

1

�t

2

)

where E

l

are the eigenvalues.

In su
h 
ases,

�

jk

(t

1

; t

2

) = �

jk

(0; t

2

� t

1

)

The boundary 
onditions are �

jj

(t; t) = 1 and

�

jk

(t; t) = 0 for j 6= k.

Otherwise, polynomials will also be involved.
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If there are inputs to the system, the set of

linear di�erential equations for a stri
tly

progressive model will be

d�(t)

dt

= 
�(t) + b(t)

where �(t) is the ve
tor of probabilities and

b(t) de�nes the inputs.

The general solution is then

�(t) = �(0)e


t

+

Z

t

0

e


(t�u)

b(u)du

where integration is 
omponent-wise.
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Example

Suppose that an individual 
an move in either

dire
tion between healthy (1) and si
k (2)

states and 
an die (state 3) while in either

other state i, with intensities, !

i

.

The intensity matrix is


 =

0

B

�

�!

1

� !

12

!

12

!

1

!

21

�!

2

� !

21

!

2

0 0 0

1

C

A

However, the absorbing death state 3 
an be

deleted without a�e
ting the solution,

yielding the intensity matrix




�

=

 

�!

1

� !

12

!

12

!

21

�!

2

� !

21

!

(1)

where !

ij

is the rate of transfer between

states i and j and !

i

is the rate of output of

state i from the system.
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�

has eigenvalues, E

i

= �[!

1

+ !

2

+ !

12

+

!

21

�

q

(!

1

� !

2

+ !

12

� !

21

)

2

+4!

12

!

21

�

=2.

The entries of the matrix, exp(


�

t), are




�

11

=

(E

1

+ !

2

+ !

21

)e

E

1

t

� (E

2

+ !

2

+ !

21

)e

E

2

t

E

1

� E

2




�

22

=

(E

1

+ !

2

+ !

21

)e

E

2

t

� (E

2

+ !

2

+ !

21

)e

E

1

t

E

1

� E

2




�

12

=

!

12

(e

E

1

t

� e

E

2

t

)

E

1

� E

2




�

21

=

(E

1

+ !

2

+ !

21

)(E

2

+ !

2

+ !

21

)(e

E

2

t

� e

E

1

t

)

!

12

(E

1

� E

2

)

Results su
h as these 
an be obtained from

symboli
 algebra 
omputer programs or from

standard texts on 
ompartment models.

(A model in whi
h the rows of the intensity

matrix do not sum to zero, as for the two

states here, is 
alled defe
tive be
ause there

is a net 
ow out of those two states.)
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7. Epidemi
s: the SIR model

Suppose that a non-fatal infe
tious disease


onfers immunity upon re
overy.

We 
an then divide a given population into

three distin
t 
ategories:

1. sus
eptibles (S) who 
an 
at
h the

disease;

2. infe
tives (I) who have the disease and

are 
ontagious so that they 
an transmit

it;

3. re
overed (R), who have had the disease

and are now immune.
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The stages 
an then be des
ribed by a


ompartment model

Closed SIR model

Susceptible
k2 Infective

k3 Recovered

Open SIR model

k1 Susceptible
k2 Infective

k3 Recovered

This is 
alled the (
losed) SIR model.
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Let us assume that

� the intensity (!

12

) of exit from the

sus
eptible 
ategory and entry to the

infe
tive 
ategory is proportional to the

present numbers of infe
tives and

sus
eptibles;

� the intensity (!

23

) of exit from the

infe
tive 
ategory and entry to the

re
overed 
ategory is proportional to the

present number of infe
tives;

� ea
h 
ategory of people is uniformly

mixed so that every pair of individuals has

the same probability of meeting; and

� the population is of 
onstant size.
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Then, the model 
an be de�ned by the

di�erential equations

dS(t)

dt

= �!

12

S(t)I(t)

dI(t)

dt

= !

23

S(t)I(t) � !

23

I(t)

dR(t)

dt

= !

23

I(t)

with initial 
onditions, S(0) = S

0

> 0,

I(0) = I

0

> 0, and R(0) = 0.

If S

0

< !

23

=!

12

, the infe
tion eventually dies

out and no epidemi
 o

urs.
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If the population is not 
losed so that

sus
eptibles are born or 
an immigrate at the


onstant intensity !

01

, the stages are now

given by the 
ompartment model in the

bottom panel.

The �rst equation be
omes

dS(t)

dt

= !

01

� !

12

S(t)I(t)

This is an open SIR model.

The system will rea
h an endemi
 level or

equilibrium at S

1

= !

23

=!

12

and

I

1

= !

01

=!

23

, obtained by setting the above

equations equal to zero.
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However, with sto
hasti
 variability, there will

be damped os
illations around the equilibrium

starting after ea
h disturban
e.

If the deviations from the equilibrium values

are small, the appropriate fun
tions 
an be

derived.

Generally, information is only available on

infe
tives.

The resulting fun
tion will be

I(t) = I

1

h

1 + �e

�t=(2�)


os(�t)

i

where � =

!

23

!

12

!

01

and � =

q

!

12

�

�

1

4�

2

.

The maximum magnitude of the os
illations

from the equilibrium value is given by � and

the period by 2�=�.
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If the sto
hasti
 disturban
es o

ur

frequently enough, damping will not have had

time to take e�e
t, so that

I(t) = I

1

[

1 + � 
os(�t)

℄

From this fun
tion, we 
an no longer obtain

estimates of all three intensities be
ause they

now only relate to two parameters, I

1

and �.

In both 
ases, os
illations are symmetri


about I

1

.
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