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1. Constructing event history models

Event histories involve the times between
events.

These may be recurrent events such as
migraine, fits, or infections, or they may
involve moves between distinct states, such
as catching a disease, being hospitalized,
recovering, or dying.

A subject is said to change state and the
event is called a transition between the states.

Sometimes we are mainly interested in the
states, and sometimes in the transition

events:

being ill versus catching an illness.



Several special cases are particularly
important.

e Mortality: two states of which the second
is absorbing (classical survival analysis).

e Competing risks: transition from one
state to any one of several others.

e Recurrent events (the first example
mentioned above).

e Alternance between two states.

e Disability: transition through a series of
irreversible states (the second example
mentioned, if death must be the final
result).



Several of these may need to be combined to
describe the complete history of subjects.

Model construction depends greatly on how
the series of states for individuals is defined.

Generally, there is no unique structure.

Where they are possible, certain assumptions
will facilitate model building.

A model is progressive if all states, except the
first, have only one transition into them.

Then, the current state defines what states
were previously occupied and in what order,
but not when the changes occurred.



A transition probability is Markovian if it only
depends on the present state and not on the
previous history of the individual.

However, it may depend on time.

An extension is to allow it to depend on the
time since the last event, a special case being
the semi-Markov model.

Generally, it useful to clarify ideas by
constructing a diagram for the states and
possible transitions between them.
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A multi-state model must never have several
transition routes from one state to another.

Instead several different states must be
defined.

For example, suppose that subjects in the
state of having a given disease may recover
either by natural body defenses or by medical
treatment.

Then, these must be defined either as two
different recovery states, as in the alternative
outcomes model, or they must not be
distinguished at all.



For recurrent events, it is especially
important to establish a zero time point.

If this is birth, then the time to the first
event will generally be quite distinct from
subsequent repetitions of the event.

Often, it is convenient to start the process
from the time of the first event.

If this is unknown, the possible models that
can be fitted may be limited.

For example, a birth process is usually
unreasonable because the actual number of
previous events is unknown.



2. Counting processes

The cumulated number, N, of events up to
time, ¢, in @ point process is known as a
counting process.

Let the intensity of transition from state 5 to
state k be w;;(¢|F;—), defined by

w i (| F—)dt Pr(the event in (¢,t 4+ dt)|Fi—)
= PI’(dNt = 1|.7:t_)

where F;_ is the complete history up to, but
not including, t.

If

E[Mt] < o0
E[Miy — M| F-] = O
Vt,0 < k < oo, then, M; is called a martingale.

For a counting process,

/
My = Ny — /0 w;i, (| Fy—)dt

fulfils this condition.



3. Likelihood function

The kernel of the log likelihood function for
observation over the interval (0,7T] is

T
10g[L(B3)] =/O 109w, (t| Fr_; B)1AN;

_ /OT k(| Fr—; BYI(t)dt

where I(t) is an indicator function.

In any empirical situation, even a
continuous-time process will only be observed
at discrete time intervals, once an hour, once
a day, once a week.

Suppose that these are sufficiently small so
that at most one event is observed to occur
in any interval.

(There will be a finite non-zero theoretical
probability of more than one, unless the event
is absorbing or a transition to another state.)
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With R intervals of observation, not all
necessarily the same size, this equation
becomes, by numerical approximation,

R
log[L(B)] = ) log[w;i(t|Fi—; B)]AN;
t=1

R
— > wip(t|F—; B)I() Ay
t=1

where A; is the width of the tth observation

interval and AN; is the change in the count

during that interval, with possible values zero
and one.

This is the kernel of the log likelihood for the
Poisson distribution of AN, with mean

w(t|Fi—; B)A¢.

Conditional on the filtration, it is the
likelihood for a Poisson process.
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4. Examples of intensity functions

Important simplifications occur when the
intensity depends only on the complete
history through Ny: w;(¢|Ny). Special cases
include:

e the ordinary homogeneous Poisson
process, with

w(t|N¢) = w

where the intensity is always the same
(the only counting process with stationary
independent increments);

e the nonhomogeneous Poisson process,
with

w(t|N) = w(t)

where the intensity is a function of time;
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e the pure birth or Yule process, with
w(t|N¢) = Nyw

where the intensity is proportional to the
number of previous events;

e the nonhomogeneous birth process, with
w(t|Nt) = Nyw(t)

where the intensity, proportional to the
number of previous events, is also a
function of time;

e the renewal process, with

w(t|Nt) = w(t —ty,)

where the intensity depends on the time
since the last recurrent event, starting
afresh after each event;

12



e the semi-Markov or Markov renewal
process, with

wik(t|Ny) = wjp(t —tn,)

where the form of the intensity function
depends on the time since the last event,
with the process changing state at each
event.

Those processes with an intensity depending
on time are non-stationary.

This dependence may be on the elapsed time,
either total or since the previous event, or on
the number of previous events, or both.

In more complex cases, it may also depend on
other time-varying covariates.
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5. Intensity and probability transition
matrices

The intensity transition matrix, say (¢), is a
matrix with elements, w;;(¢), the transition
intensity from state 5 to state k&, off diagonal
and —3°;w;r(t) on diagonal.

Thus, rows sum to zero.
The probability transition matrix, say T(t), is

a matrix with elements, 7;;(¢), the transition
probability from state 5 to state k, including

Wjj(t).

Thus, rows sum to unity.
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6. Transition probabilities

The transition probabilities can be found
from the transition intensities.

They are defined as
mi(t—,t) = Pr(Yy = k|Y;— = j, F¢—)

the probability of being in state k£ at time ¢
given the previous history up until that time,
including the previous state(s), the
immediately preceding one being j.

These satisfy

mik(t1,t3) = Y wi(t1,to)m(to, t3)
[

for t1 <to <ts3.
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They can be obtained from the set of
differential equations,

dT(t—,t)
dt
where T (t—,t) is the matrix of transition
probabilities, m;,(t—,t), to and from all
possible states.

— T(t—, )Q(¢)

These are the forward recurrence equations.

They can only easily be solved for
homogeneous Markov processes where none
of the transition intensities either vary with
time or depend on time-varying covariates.
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Then, matrix exponentiation can be used,
defined by

(At)2

+ + +.

However, a preferable way to calculate the
exponential is by spectral decomposition.

If V is a column matrix of the eigenvectors of
A and D is a diagonal matrix containing the
corresponding eigenvalues, then

A=VDV~!
and

At — VeDtv—l
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If the eigenvalues of T are all distinct, the
solution will be of the form

By (ty—t
mik(t1,t2) = ) Bjrie 1(t1=12)
l

where E; are the eigenvalues.

In such cases,

mik(t1,t2) = m (0,82 — t1)
The boundary conditions are 7;;(¢t,t) =1 and
ij(t,t) = 0 for 5 #= k.

Otherwise, polynomials will also be involved.
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If there are inputs to the system, the set of
linear differential equations for a strictly
progressive model will be

dm(t)
i Qm(t) + b(t)

where 7(t) is the vector of probabilities and
b(t) defines the inputs.

The general solution is then

7w (t) = w(0)e' + /O t et h (y)du

where integration is component-wise.
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Example

Suppose that an individual can move in either
direction between healthy (1) and sick (2)
states and can die (state 3) while in either
other state z, with intensities, w;.

The intensity matrix is

—w] — W12 w12 w1
() = w21 —Wp — w1 Wy
O O O

However, the absorbing death state 3 can be
deleted without affecting the solution,
yielding the intensity matrix

O — —Ww1 — W12 W12 (1)
w21 —Ww2 — w21
where w;; is the rate of transfer between

states ¢+ and 5 and w; is the rate of output of
state ¢+ from the system.
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Q* has eigenvalues, E; = —[w1 + wo + wio +

w21 i\/(wl — wp + w1 — wp1)? + dwiowri | /2.

The entries of the matrix, exp(Q2*t), are

. _ (Brtwatwi)e — (By 4wy +wop)el?
11 =
b1 — Eo
O* — (El + wo + CUQ]_)eEQt — (EQ + wo + w21)eE1t
22 5 B
. wiz(eft —ef2t)
2 by — Ep
QEl = (E1 4+ wo + wo1)(E2 +wo + uJQl)(eEQt — eElt)

w12(E1 — E3)
Results such as these can be obtained from
symbolic algebra computer programs or from
standard texts on compartment models.

(A model in which the rows of the intensity
matrix do not sum to zero, as for the two
states here, is called defective because there
is a net flow out of those two states.)
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7. Epidemics: the SIR model

Suppose that a non-fatal infectious disease
confers immunity upon recovery.

We can then divide a given population into
three distinct categories:

1. susceptibles (S) who can catch the
disease;

2. infectives (I) who have the disease and
are contagious so that they can transmit
it

3. recovered (R), who have had the disease
and are now immune.
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The stages can then be described by a
compartment model

Closed SIR model

. k
Susceptible ko Infective 2 Recovered
Open SIR model
Ky . ko . k3
———=—>  Susceptible Infective Recovered

This is called the (closed) SIR model.
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Let us assume that

e the intensity (wy1o) of exit from the
susceptible category and entry to the
infective category is proportional to the
present numbers of infectives and
susceptibles;

e the intensity (wp3) of exit from the
infective category and entry to the
recovered category is proportional to the
present number of infectives;

e cach category of people is uniformly
mixed so that every pair of individuals has
the same probability of meeting; and

e the population is of constant size.
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Then, the model can be defined by the
differential equations

%(tt) = —w12S()I(t)
d‘;—(tt) — wz3S(t)I(t) — w23l(t)
M = w31t

with initial conditions, S(0) = Sy > 0,
I1(0) = Iy > 0, and R(0) = 0.

If Sop < wpz/wio, the infection eventually dies
out and no epidemic occurs.
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If the population is not closed so that
susceptibles are born or can immigrate at the
constant intensity wgi, the stages are now
given by the compartment model in the
pbottom panel.

The first equation becomes

dsdit) = wo1 — w125(1)I(¢)

This is an open SIR model.

The system will reach an endemic level or
equilibrium at Soc = wp3z/wi2 and

Io = wqp1/wo3, Obtained by setting the above
equations equal to zero.
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However, with stochastic variability, there will
be damped oscillations around the equilibrium
starting after each disturbance.

If the deviations from the equilibrium values
are small, the appropriate functions can be
derived.

Generally, information is only available on
infectives.

The resulting function will be

I(t) = I [1 + ke t/(20) cos(gt)}

where o = _“23_ and ¢ =, /<12 — 1,
w12wWo1 o 4o

The maximum magnitude of the oscillations
from the equilibrium value is given by  and
the period by 27 /€.
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If the stochastic disturbances occur
frequently enough, damping will not have had
time to take effect, so that

I(t) = Ioo [1 + rcOs(€t)]

From this function, we can no longer obtain
estimates of all three intensities because they
now only relate to two parameters, I and €.

In both cases, oscillations are symmetric
about /.
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