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1. Introduction to Molecular Biology
Sequences

1.1 DNA Sequence Analysis

The double-stranded helical form of
deoxyribonucleic acid (DNA) is well known.

Each strand of DNA consists of a linear
sequence of the four nucleic acid bases,
adenine (A), cytosine (C), guanine (G), and
thymine (T).

Opposite strands contain complementary
pairs: A with T and C with G so that only one
of the strands need by studied.



In a protein-coding gene, consecutive,
non-overlapping triplets of bases code
corresponding sequences consisting of the 20
different amino acids that make up a protein.

This is called an open reading frame (ORF).

A coding region is read by messenger
ribonucleic acid (mMRNA) and translated by
ribosomes into a polypeptide.

There are 64 possible combinations of the
pbases.

Thus, the code is redundant, particularly in
the third base, with several triplets often
coding the same amino acid.



Special three-base codes also signal the
initiation (ATG) and termination (TAG, TGA, TAA)
of a coding sequence.

A promoter and enhancer signal region,
containing so-called promoter boxes (for
example, TATA, CCAAT), generally occurs
somewhat before the first exon in a
protein-coding section.

Some other regions are genes coding for
ribosomal (rRNA) or transfer (tRNA)
ribonucleic acids.

Thus, most bases in a DNA sequence do not
code for proteins.

Only selective sections of the strands are
actually active.



In addition, the bases coding a given protein
are not necessarily all consecutive but may be
split into several sections.

These are called the exons of the gene
whereas the non-coding sections in between
are called introns.

Because the set of exons define a protein,
they are subject to natural selection; one may
expect the bases in the introns to be more
random.

A mutation in an exon sequence will often
result in a code for a non-viable or
inappropriate protein, whereas a mutation in
an intron does not have this harmful effect.



1.2 Sequencing Methods

A chromosome is first divided in some
ordered way into smaller pieces.

DNA molecules are digested by restriction
endonuclease, cutting them into small
fragments.

Each specific endonuclease has a target site
of cutting defined by a unique sequence of
four to eight base pairs.

For example, the enzyme NotlI recognizes the
eight base pair sequence, GCGGCCGC.



Such sequences are not distributed randomly
and the four nucleotide bases do not all
appear equally frequently in the genome.

Thus, the length of the fragments produced
depends of the target cutting sequence.

These fragments are separated by size using
electrophoresis in agarose.

They are multiplied for mapping and
sequencing to be possible.

Bacteriophage A\, bacteria containing cosmid
recombinants, or yeast artificial chromosomes
(YACs) can be used to clone the fragments
and generate a library.



Then, the cloned fragments must be
positioned in the same linear order as in the
chromosome by detecting overlaps.

This produces a physical map of the
chromosome.

One possibility for ordering the fragments is
chromosome walking:

a clone is chosen and used as a probe to
detect other clones with which it will
hybridize; these should overlap with it.

This is repeated many times, providing a
series of steps.

Other techniques such as restriction enzyme
fingerprinting, marker sequences, and
hybridization assays are also used.
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The chain terminator or dideoxy method for
DNA sequencing developed by Sanger uses
two important properties of these molecules:

the ability to synthesize a complementary
copy from a single strand of DNA and the
possibility of using dideoxynucleotides as
chain terminators.

DNA is synthesized in the presence of the
four deoxynucleoside triphosphate bases, one
of which is labelled with 32P.

Four batches each contain a low
concentration of one of the different
dideoxynucleotides.

Because of the difference in termination, each
batch will contain partially synthesized
radioactive DNA molecules of different length.
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A high-resolution sequencing gel fractionates
denatured (single-strand) DNA fragments
according to size by electrophoresis.

It is capable of distinguishing fragments
differing in length by only one base pair.

The labelled DNA bands can be examined
manually to determine the sequence after
autoradiography on X-ray film.

The maximum length of DNA that can be
sequenced at one pass is between 300 and
500 bases.

However, for the process to be automated,
the radioactive tags are replaced by
fluorescent ones attached to the terminators.

Each dideoxynucleotide carrying a different
fluorophore.



The four bands can be then detected in the
same lane of gel and many lanes
electronically analyzed simultaneously.

The sequenced fragments can either be
reassembled

(1) by previously constructing a physical map
of the genome or

(2) by a shotgun approach of matching
overlapping ends of fragments to produce the
assembly.

During this process, the partial sequences
created are known as contigs (contiguous
sequences).

The final result of the assembly is a
CONSensus sequence.
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Roughly 5000 to 10 000 bases must be
analyzed to produce a sequence of 1000
bases.

1.3 Alignment

DNA sequences coding similar proteins must
be similar.

This will be true of two proteins in the same
organism but also of those in two closely
related organisms.

The latter may differ through evolutionary
mutations.

On the other hand, the non-coding sequences
may differ widely.

Only certain mutations that change an exon,
those that still produce a viable protein, are
permissible.
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Mutations of the introns can be much more
random because they do not affect the
protein.

In order to compare such sequences, the DNA
must be aligned.

Then, one can decide if such an alignment
would likely to have arisen by chance or

because the sequences are related.

Several factors must be taken into account:

e Wwhat alignments should be allowed;

e how should they be ranked;

e what algorithm should be applied to find
an optimal alignment;
12



e what statistical procedure should be used
to evaluate significance of the ranked
SCOres.

Simple procedures only perform pairwise
alignment.

Two basic types of mutations can change
Sequences:

(1) substitutions of one base for another and
(2) insertions or deletions of bases.

Some forms of mutations are observed more
frequently than others because natural
selection generally removes the nonviable
ones.
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For example, because of the redundancy in
the third base of a triplet, more variability can
often be observed there.

At each site, a score is assigned to the pair of
pbases occurring there.

For DNA bases, there are 16 possible scores
but, by symmetry, not all are different.

These form a 4 x 4 score or substitution
matrix.

To align sequences optimally, gaps may have
to be left in some of the sequences,
corresponding to insertions and deletions.

A penalty is assigned for opening a gap and
another (usually smaller) one for widening it.
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The total ranked score for an alignment,
then, consists of a sum of terms for each
aligned pair of bases plus those for the gaps.

Additivity implies that mutations at different
sites have occurred independently.

Various algorithms are used to obtain optimal
alignment among two or more sequences.

These dynamic programming techniques are
guaranteed to find the optimal pairwise
alignment.

A number of these programs are publicly
available; sequences can also be submitted for
alignment over the internet.
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Global alignment of complete sequences is
generally performed by the
Needleman—Wunsch algorithm, whereas
location alignment of subsequences uses the
Smith—Waterman algorithm.

Multiple sequence alignments are more
complex.

Scoring methods must allow for the
evolutionary dependence among the
sequences, including the fact that some sites
may be more conserved than others.

Once a set of scores has been chosen,
multidimensional dynamic programming must
be applied.
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1.4 Finding genes and their exons

Once a section of DNA has been sequenced
so that its content is known, one question to
be asked is which sections of it are active in
coding a protein.

Evidence for the location of genes in a
sequence must be derived from a variety of
indications.

A protein-coding sequence may have a
number of characteristics:

e it should be preceded by known promoter
regions such as a TATA box;

e it should start with an initiation codon
and end with a termination codon;
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e it may be sufficiently similar to that for
another gene in the genome or to the
same gene in another genome to be
recognizable;

e it can show codon (triplet) regularity;

e it is unlikely to contain major sections of
repeats.

Gene finding is particularly difficult when
introns are present.

Many types of software are available on the
internet for

e integrated gene identification;

e promoter recognition;
18



e database searches to find similar gene
sequences;

e repeat analysis.
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2. Introduction to Log Linear Models

2.1 Data, Models, and Inference

Suppose that each observation, y;, can take
one among a small number of possible values.

For example, the four nucleic acid bases of
DNA or RNA, or the 20 amino acids of
proteins.

The results can be summarized as a
frequency table giving the number of times,
n;, that each value occurs.
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For the complete human betaglobin gene, the
frequencies are

A C G T
n; 360 277 296 491
m, 0.25 0.19 0.21 0.34

For the exons, the frequencies are

A C G T
n; 88 113 137 106
7, 0.20 0.25 0.31 0.24

and for the introns,

A C G T
n; 272 164 159 385
7, 0.28 0.17 0.16 0.39
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If the observations are independent, their
joint probability can be written as

Pr(n) = ( [1~"

Te )
nlo.onI

where ne = S1_ 1 n;.
This is a multinomial distribution.

Models are defined by the way in which
numbers are assigned to the probabilities, =,
of the possible observed values.

Inferences are made by studying the
probability of the observed data for various
such models.

This is called the likelihood function, L(r).
It is a function of the models, whereas the

probability is a function of the data.
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Often, it is easier to study the negative log
likelihood:

—log[L(7)] < — an log(7;)

for which smaller values indicate better
models.

The maximum likelihood estimate (mle) is
the model that makes the data most probable
or the negative log likelihood smallest.

For independence, the mles of « are just the
relative frequencies.
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2.2 Log Linear Models

Generally, the sequence of observed values is
not independent.

It may depend on various factors.

Thus, in the betaglobin gene, the probabilities
of the four bases appear to depend on
whether they lie in an intron or an exon:

A C G T
Exon 0.20 0.25 0.31 0.24
Intron 0.28 0.17 0.16 0.39

One way to model this is to set

eMi T

Y ettt

where 5 indexes the location of the base.
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Some constraints need to be placed on the
parameters, such as >, u; = 0 and

25 = > j oy = 0.
Then, this can be rewritten as
_
log <£> = p; + o
Tj
where m; is the geometric mean of the
probabilities at location j.

The mles are i = (—-0.02,-0.15,-0.07,0.24)
and

~_(-020 018 029 -0.28
— | 020 -0.18 -0.29 0.28

reflecting the fact that introns have fewer C
and G bases.
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In the model of independence, the
probabilities of the bases are the same in
both locations.

That is m;; = m; for all « and j.

This can be written

The respective negative log likelihoods are
1936.3 for independence and 1900.7 when a
difference between introns and exons is
allowed.

The model with dependence on location
makes the observed data much more
probable:

e1936.3-1900.7 — 31 x 101> times more
probablel
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However, the latter model has three extra
parameters.

In making inferences, this can be allowed for
by penalizing the negative log likelihood by

adding the number of estimated parameters.

These are respectively 3 and 6, yielding
1939.3 and 1906.7.

This is penalization is called the Akaike
Information Criterion (AIC).
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2.3 Software

Most available software does not allow direct
modelling of the multinomial distribution.

Generally, only the Poisson distribution is
available:

Here, v; is the theoretical average number of
events of type ¢, while m; was the theoretical
proportion of events of that type.

Suppose that a set of frequencies, ny---ny,
has a Poisson distribution with means vy ---vy.

Then, their sum, ne, also has a Poisson
distribution with mean, ve, the sum of the
individual means.
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Recall that the conditional probability for an
event A given an event B is defined by

Pr(A and B)

Pr(A|B) = Pr(B)

Then, if we condition on the total number of
events,

[Ti_; e i /n;!

Pr(nl, ce ,n]|n.) —

|
N\
S
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S
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which is the multinomial distribution with

T = V;/Ve.

The two distributions are identical.
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Thus, the Poisson distribution can be used for
log linear models instead of the multinomial.

For example,
_
log <£> = T
Tj
with multinomial probabilities is equivalent to
y
log <ﬂ> = Hj T O
Vy

with Poisson means.
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Most common software use a standard
notation to communicate models.

Variables are specified by their names.

The model
log(v;;) = 109(¥;) + p; +
would correspond to

location + base + base - location

This can also be written more simply as

base x location

The independence model is

base 4+ location
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2.4 More Complex Models

Often, we may wish to study how more than
one factor influences the probabilities of the
observed values.

For example, does the distribution of nucleic
acid bases differ among species as well as
between exons and introns?

A C G T

Human Exon 0.20 0.25 0.31 0.24
Intron 0.28 0.17 0.16 0.39
Chimp Exon 0.19 0.25 0.32 0.24
Intron 0.27 0.17 0.16 0.40
Gorilla Exon 0.19 0.24 0.32 0.25
Intron 0.28 0.17 0.16 0.39

32



We can extend our model to

i
log ( - ) = pi + a5 + Bik + Vijk

ﬂ-jk
with with k indexing species.

Constraints on the parameters similar to
those above are also required.

B;1 Will measure the differences among
species.

Yijk Will allow for the possibility that the
relationship between exons and introns differs
among species.
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The model with only differences between
locations and not among species,

T

log ( .”k> = pi + o
7'(']']€

has an AIC of 4493.6 with siXx parameters.

This compares to 4590.1 for the
independence model with three parameters.

If we also allow for species differences

the AIC is 4499.4 with 12 parameters.

Finally, the full model has an AIC of 4505.3
with 18 parameters.

These models indicate no significant
differences among the three species.
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When using the Poisson approach in software,
the minimal model can be written

Ri+Ro+---+E1xEp*---

R; represents a response variable (here only
one, base type).

E; an explanatory variable (here location and
species).

The product indicates all possible
combinations of interactions among variables.

This cannot be simplified even if the AIC
indicates that some terms are unnecessary.

In our example, independence is specified by

base + location * species
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Dependency of a response on an explanatory
variable is introduced as a product:

Ry +Ro+ -+ EyxEp*---+ Ry * By

as is dependency between responses:

Ry+Ro+ -+ EyxEp*---+ Ry xR

Thus dependency of base type on location is
given by

base + location * species + base * location

that on species by

base + location * species + base * location

and on both by

base + location * species + base *x location

+base *x species

36



3. Introduction to Markov Chains
3.1 Serial Dependence

A finite number of different types of events,
observed in a sequence, defines the states,
say x, of the process.

Suppose that the individual value, v, at a
given point, t, in the sequence depends only
on the state, y;_1, at the immediately
preceding point:

Priyelyi—1,...,91) = Pryt|yi—1)

This is the hypothesis of a first-order Markov
chain.

Because DNA sequences are read in one
direction (5’ to 3’), Markov chain theory can
be applied.
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Then, the probability for a complete sequence
IS

N

Pr(yi,...,yn) = Pr(y1) [] Privtlyi—1)
=2

These conditional probabilities can be
represented in a square transition matrix, T,
of each state given the previous one.

If if depends further back, the chain is of
higher order.

If the rows correspond to the states at the
previous time point and the columns to the
present states, then the row probabilities sum
to one.

If this matrix is the same for all positions in
the sequence, the chain is said to be
homogeneous.
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Pre-multiplying this matrix by the vector, ny,
of frequencies of units in the different states
(the marginal frequencies) at a given point, ¢,
will give the vector for the next point, ¢t + 1:

T R
nt_|_1—ntT

The marginal stationary distribution of the
states is the m such that

7TT — 7TTT

A Markov chain is said to be irreducible if any
state can be reached from any other.

Various assumptions about Markov chains,
such as order or homogeneity, can be
compared by fitting appropriate log linear
models
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3.2 More Complex Markov Chains

If the present state depends on the k previous
states

Pryt|lyi—1,.--,y1) = Pryelye—1,-- -, Y¢—1)

the chain is said to be of order k.

Any such sequence can be written as a
first-order Markov chain by changing the
state space.

Instead of the states, x, take the states to be
all possible combinations of a set of k£ zs.

For example, with kK = 2, a sequence CGTCA
becomes CG-GT-TC-CA.

Here, some of the transition probabilities
must be zero: TC cannot follow CG, etc.
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If the transition matrix changes depending on
the position in the sequence, the chain is
iInhomogeneous.

A DNA sequence coding a protein consists of
triplets.

The transition matrix may depend on the
position in the triplet.

There will be three different matrices, at
positions 1, 2, and 3.

Within a gene, the transition matrix may be
different between exons and introns.
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3.3 Comparing Transition Matrices in
Exons and Introns

For the betaglobin data, the transition matrix
for the entire gene is

A C G T
0.29 0.18 0.21 0.32
0.31 0.23 0.03 0.43
0.21 0.22 0.30 0.27
0.22 0.17 0.25 0.36

400>

As might be expected, we see that C is very
rarely followed by G.
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The matrices for the exons and for the
introns are respectively

A C G T
0.26 0.28 0.31 O0.15
0.27 0.31 0.04 0.38
0.18 0.25 0.33 0.24
0.08 0.19 0.57 0.16

400>

and

A C G T
0.29 0.15 0.18 0.38
0.34 0.18 0.02 0.45
0.24 0.19 0.27 0.30
0.25 0.16 0.17 0.42

400>

We can use log linear models to investigate if
there is a difference in transitions between
exons and introns.
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The contingency tables are

A C G T
Exons

A 23 24 27 13
C 30 35 5 43
G 25 34 45 33
T 9 20 o0 17
Introns
A 80 42 48 102
C 56 30 3 74
G 38 30 43 48
T 98 62 65 160

The independence model, where the base at a
given position depends neither on the previous
base nor on the location (exon or intron),

base + location * previous

has an AIC of 3663.3 with 3 parameters.
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That with dependence only on location,

base + location * previous + base *x location

has 3627.3 with 6 parameters and that for
previous base only

base + location * previous + base * previous

has 3609.8 with 12 parameters.

This latter model assumes that the transition
matrix is the same in exons and introns.

However, the model where dependence on the
previous base is different in the exon and
intron

base * location * previous

has an AIC of 3555.0 with 24 parameters.
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This shows that the relationship between
successive bases is different in exons and
introns.

The two transition matrices are significantly
different.

The sequence over the whole gene is not
homogeneous.
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4. Introduction to Hidden Markov Models

4.1 Basic Concepts

Suppose that a sequence of responses is
discrete-valued, often categories that would
appear to be the observed states of some
Markov chain.

However, dependence cannot adequately be
described by the simple Markov property.

In a hidden Markov model, an underlying,
unobserved sequence of states follows a
Markov chain, the hidden state determining
the probabilities of the observed states.

Such an approach is widely used in speech
processing and in biological sequence analysis
of nucleic acids in DNA and of amino acids in
proteins.
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For a binary time series, each event might be
generated by one of two Bernoulli
distributions.

The process switches from the one to the
other according to the state of the hidden
Markov chain, in this way generating state
dependence.

Analogous models can be constructed for
other discrete distributions, such as the
Poisson or multinomial distributions.

The distributions could even, themselves, be
Markov chains with different transition
matrices.
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4.2 The Model

Consider an irreducible homogeneous Markov
chain with M x M transition matrix, H.

This gives the probabilities of changing
among the hidden states, with marginal
stationary distribution, .

The latter can be calculated from the
transition matrix and hence does not
introduce any new parameters.

Then, the probability of the observed
response at position t, vy, = Pr(yem; km),
will depend on the unobserved state, m, at
that position.

vmt 1S called the emission probability.
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The series of responses on a given unit are
assumed to be independent, given the hidden
state.

Thus, there are M(M — 1) unknown
parameters in the transition matrix as well as
M times the length of k., in the probability
distributions.

Although the probability of the observed data
IS complex, it can be written in a recursive
form over the sequence:

R
fly;x,H) =« T] @F)IT
t=1

F: is an M x M diagonal matrix containing,
on the diagonal, the probabilities, v,,:, of the
observed data given the various possible
states.
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To construct the likelihood function from
this, first calculate the marginal probability
times the observed probability for each state
at position 1, say am = 7 Pr(y1|m; £m).

At the second point, the first step is to
calculate the observed probability for each
state multiplied by this quantity and by the
transition probabilities in the corresponding
column of H.

These are summed vyielding, say
bm = Y2 p amHy,p Pr(yzlh; k).

This is the new vector of forward
probabilities, but, to prevent underflow, it is
divided by its average, yielding a new vector,
a.
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This average is also cumulated as a
correction to the likelihood function.

These steps are repeated at each successive
position.

Finally, the sum of these a,, at the last point
in the sequence is the likelihood except that
the cumulative correction must be added to
it.

At each step, the vector, a, divided by its
sum gives the (filtered) conditional
probabilities of being in the various possible
states given the previous observations.
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4.3 Locating the Betaglobin Gene

LLet us first apply hidden Markov models to
the complete sequence of 3007 bases to see if
any correspondence can be found between
the hidden states and the coding sections.

The model for multinomial independence has
an AIC of 4091.8, whereas that with two
hidden states has 4044.2.
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We see that the three exons are all
completely located in one of the states.

The second intron is similar to the sections of
the sequence before and after the gene
whereas the first intron is indistinguishable
from the exons by this method.

The transition matrix is

0.997 0.003
0.003 0.997

with stationary probabilities, 0.481 and 0.5109.

In the first state, the probabilities of A, C, G,
and T are respectively 0.31, 0.15, 0.14, and
0.40.

In the second, they are 0.23, 0.25, 0.26, and
0.27.
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The latter is the state in which the exons
OCCuUr.

Thus, the noncoding regions are CG poor.

Adding a third state further reduces the AIC
to 4023.8 but does not further aid in
distinguishing the gene.

Allowing the probability of each type of base
to cycle through each of the three positions
of triplets along the whole sequence with two
hidden states does not improve the model,

the AIC is 4048.6.

On the other hand, if an ordinary Markov
chain is used instead of a hidden one, the AIC
IS reduced to 3997.0.
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If the process is allowed to switch between

two such Markov chains using a hidden
Markov model, the AIC is 3938.6.

The hidden transition matrix for this model is

and the two ‘observed’ transition matrices are

0.995 0.005
0.004 0.996

A

C

G

T

0.338
0.365
0.141
0.193

0.140
0.284
0.317
0.175

0.124
0.064
0.394
0.420

0.399
0.288
0.148
0.212

H Q QrPHQQ P>

0.240
0.288
0.254
0.164

0.223
0.300
0.212
0.242

0.331
0.035
0.313
0.326

0.206
0.377
0.222
0.263

Notice how rarely G follows C in either state.
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4.4 Locating the exons

Let us now look more closely at the gene
itself, ignoring the noncoding regions on each
side.

The multinomial independence model has an
AIC of 1939.3 compared to 1913.2 for the
two-state model.
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The complete exons still occur in one hidden
state.

However, the second intron is not so clearly
distinguished as when the whole sequence is
used.

On the other hand, there is some indication
of the first intron being similar to the second.

The transition matrix is

0.976 0.024
0.009 0.991

with stationary probabilities, 0.265 and 0.735.

The probabilities of the four bases in state 2,
containing the exons, are respectively 0.27,
0.20, 0.26, and 0.27, whereas they are 0.21,
0.18, 0.06, and 0.54 in state 1.

Indeed, 41% of intron 2 consists of T.
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If I now allow a different set of probabilities
for the four bases at each of the three
positions in a triplet, the AIC is reduced to
1912.0.

This is rather surprising as only the second
exon has a complete set of triplets and
neither of the introns does.

Note that the triplets in the second exon do
not correspond to amino acids because the
first intron occurs in the middle of a triplet.

Thus, triplets are out of alignment among
the three exons.

Nevertheless, the changes of state become
much clearer, as can be seen in the lower
graph.
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The transition matrix is now

0.998 0.002
0.001 0.999

with stationary probabilities, 0.317 and 0.683.

The probabilities of the four bases at the
three positions of a triplet in the two states
are summarized in the following table:

State Position A C G T
1 0.29 0.18 0.10 0.43
1 2 0.31 0.13 0.13 0.43
3 0.29 0.14 0.11 0.46
1 0.19 0.21 0.29 0.31
2 2 0.25 0.25 0.27 0.23
3 0.22 0.23 0.28 0.27

As for the complete sequence, adding a third
state improves the model, with an AIC of
1896.9, but does not further help to locate
the coding regions.
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This example should not be taken as typical
of the success with which coding sections of
a sequence can be located.

It happens that intron 2 of this gene is rather
special; this greatly helped in locating the
areas of interest.

4.5 Extensions

e Nnonstationary marginal distribution

e inhomogeneous hidden transition matrix

e higher order hidden Markov chain
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5. Applications of Hidden Markov Models
5.1 Finding CpG Islands
The dinucleotide, CG (written CpG to

distinguish it from the C—G base pair across
strands) occurs rarely.

In this combination, C is usually methylated
and mutated to T.

In certain short sections of a genome,
methylation is suppressed, such as in
promoter regions of a gene.

These CpG islands are generally a few
hundred to a few thousand bases long.
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In a CpG island, the transition matrix will be
different than elsewhere in the genome.

The transition probability, C—G will be larger.

In a set of 41 human DNA sequences with 48
known CpGQG islands, the transition matrices
are

A C G
0.18 0.27 0.43
0.17 0.37 0.27
0.16 0.34 0.38
0.08 0.36 0.38

400>
©OO0OO0
R e
0O W wON

for CpG islands and

A C G T
0.30 0.21 0.29 0.21
0.32 0.29 0.08 0.30
0.25 0.25 0.29 0.21
0.18 0.24 0.29 0.29

400>

elsewhere.
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The problem is that we do not know at what
point the transition matrix changes.

One of the first applications of hidden
Markov models in molecular biology was to
resolving this problem.

In the above 41 sequences, all but two CpG
islands were found but, 121 others were also
predicted.

However, the falsely predicted ones were quite
short compared to the real ones.

Predictions less than 500 bases apart can be
concatenated and those shorter than 500
bases ignhored.

This reduces the false predictions to 67.
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5.2 Pairwise Alignment

Consider a short section of the human
betaglobin sequence,
TGTACATATACACATATATATATATATTT as aligned with
that of a chimpanzee,
GTATATATACATACATATATATATATATATATATAT:

TG..... TACATATACACATATATATATATAT. .TT
GTATATATACATACATATATATATATATATATATAT

After optimal alignment, the observed states
in the two sequences may be

e identical nucleotides,

e different nucleotides,

e a2 gap in one sequence and a nucleotide in

the other.
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In aligning two sequences, we can have three
possible hidden states:

1. the bases in the two sequences are aligned
(M),

2. the first sequence requires an insert
opposite a gap in sequence 2 (X7),

3. the second sequence requires an insert
opposite a gap in sequence 1 (X»),

Then, the hidden transition matrix will be

M X1 Xo
M 1—-20 o o
X1 1—¢ € O
Xo> 1—€¢ O €
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0 is the probability of opening a gap.

e IS the probability of widening an existing
gap.

1 — e is the corresponding probability of
closing a gap

There will be 16 emission probabilities in
state M corresponding to all possible
combinations of pairs of nucleotides

and four emission probabilities in each of
states X1 and X» corresponding to the
possible nucleotide insertions.
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Using hidden Markov models for alignment
instead of dynamic programming algorithms
provides

e likelihood measures of reliability of the
alignment obtained,

e comparison of suboptimal alignments.

Generally, there will be several alternative
alignments with almost the same likelihood.

Some will differ only in a few positions from
the optimal alignment.

If there are repeats in one or both sequences,
suboptimal alignments may differ substantially
or completely from the optimal alignment.
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5.3 Multiple Alignments

Aligning simultaneously several sequences is
much more complex.

Usually they are sequences of DNA for similar
proteins (a-, B-, and ~-globin) or sequences
for the same protein from different species.

For different species, they are used to
construct phylogenic trees in the study of
evolution.
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