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1. Introdu
tion to Mole
ular Biology

Sequen
es

1.1 DNA Sequen
e Analysis

The double-stranded heli
al form of

deoxyribonu
lei
 a
id (DNA) is well known.

Ea
h strand of DNA 
onsists of a linear

sequen
e of the four nu
lei
 a
id bases,

adenine (A), 
ytosine (C), guanine (G), and

thymine (T).

Opposite strands 
ontain 
omplementary

pairs: A with T and C with G so that only one

of the strands need by studied.
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In a protein-
oding gene, 
onse
utive,

non-overlapping triplets of bases 
ode


orresponding sequen
es 
onsisting of the 20

di�erent amino a
ids that make up a protein.

This is 
alled an open reading frame (ORF).

A 
oding region is read by messenger

ribonu
lei
 a
id (mRNA) and translated by

ribosomes into a polypeptide.

There are 64 possible 
ombinations of the

bases.

Thus, the 
ode is redundant, parti
ularly in

the third base, with several triplets often


oding the same amino a
id.
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Spe
ial three-base 
odes also signal the

initiation (ATG) and termination (TAG, TGA, TAA)

of a 
oding sequen
e.

A promoter and enhan
er signal region,


ontaining so-
alled promoter boxes (for

example, TATA, CCAAT), generally o

urs

somewhat before the �rst exon in a

protein-
oding se
tion.

Some other regions are genes 
oding for

ribosomal (rRNA) or transfer (tRNA)

ribonu
lei
 a
ids.

Thus, most bases in a DNA sequen
e do not


ode for proteins.

Only sele
tive se
tions of the strands are

a
tually a
tive.
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In addition, the bases 
oding a given protein

are not ne
essarily all 
onse
utive but may be

split into several se
tions.

These are 
alled the exons of the gene

whereas the non-
oding se
tions in between

are 
alled introns.

Be
ause the set of exons de�ne a protein,

they are subje
t to natural sele
tion; one may

expe
t the bases in the introns to be more

random.

A mutation in an exon sequen
e will often

result in a 
ode for a non-viable or

inappropriate protein, whereas a mutation in

an intron does not have this harmful e�e
t.
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1.2 Sequen
ing Methods

A 
hromosome is �rst divided in some

ordered way into smaller pie
es.

DNA mole
ules are digested by restri
tion

endonu
lease, 
utting them into small

fragments.

Ea
h spe
i�
 endonu
lease has a target site

of 
utting de�ned by a unique sequen
e of

four to eight base pairs.

For example, the enzyme Not I re
ognizes the

eight base pair sequen
e, GCGGCCGC.
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Su
h sequen
es are not distributed randomly

and the four nu
leotide bases do not all

appear equally frequently in the genome.

Thus, the length of the fragments produ
ed

depends of the target 
utting sequen
e.

These fragments are separated by size using

ele
trophoresis in agarose.

They are multiplied for mapping and

sequen
ing to be possible.

Ba
teriophage �, ba
teria 
ontaining 
osmid

re
ombinants, or yeast arti�
ial 
hromosomes

(YACs) 
an be used to 
lone the fragments

and generate a library.
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Then, the 
loned fragments must be

positioned in the same linear order as in the


hromosome by dete
ting overlaps.

This produ
es a physi
al map of the


hromosome.

One possibility for ordering the fragments is


hromosome walking:

a 
lone is 
hosen and used as a probe to

dete
t other 
lones with whi
h it will

hybridize; these should overlap with it.

This is repeated many times, providing a

series of steps.

Other te
hniques su
h as restri
tion enzyme

�ngerprinting, marker sequen
es, and

hybridization assays are also used.
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The 
hain terminator or dideoxy method for

DNA sequen
ing developed by Sanger uses

two important properties of these mole
ules:

the ability to synthesize a 
omplementary


opy from a single strand of DNA and the

possibility of using dideoxynu
leotides as


hain terminators.

DNA is synthesized in the presen
e of the

four deoxynu
leoside triphosphate bases, one

of whi
h is labelled with

32

P.

Four bat
hes ea
h 
ontain a low


on
entration of one of the di�erent

dideoxynu
leotides.

Be
ause of the di�eren
e in termination, ea
h

bat
h will 
ontain partially synthesized

radioa
tive DNA mole
ules of di�erent length.
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A high-resolution sequen
ing gel fra
tionates

denatured (single-strand) DNA fragments

a

ording to size by ele
trophoresis.

It is 
apable of distinguishing fragments

di�ering in length by only one base pair.

The labelled DNA bands 
an be examined

manually to determine the sequen
e after

autoradiography on X-ray �lm.

The maximum length of DNA that 
an be

sequen
ed at one pass is between 300 and

500 bases.

However, for the pro
ess to be automated,

the radioa
tive tags are repla
ed by


uores
ent ones atta
hed to the terminators.

Ea
h dideoxynu
leotide 
arrying a di�erent


uorophore.
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The four bands 
an be then dete
ted in the

same lane of gel and many lanes

ele
troni
ally analyzed simultaneously.

The sequen
ed fragments 
an either be

reassembled

(1) by previously 
onstru
ting a physi
al map

of the genome or

(2) by a shotgun approa
h of mat
hing

overlapping ends of fragments to produ
e the

assembly.

During this pro
ess, the partial sequen
es


reated are known as 
ontigs (
ontiguous

sequen
es).

The �nal result of the assembly is a


onsensus sequen
e.
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Roughly 5000 to 10 000 bases must be

analyzed to produ
e a sequen
e of 1000

bases.

1.3 Alignment

DNA sequen
es 
oding similar proteins must

be similar.

This will be true of two proteins in the same

organism but also of those in two 
losely

related organisms.

The latter may di�er through evolutionary

mutations.

On the other hand, the non-
oding sequen
es

may di�er widely.

Only 
ertain mutations that 
hange an exon,

those that still produ
e a viable protein, are

permissible.

11



Mutations of the introns 
an be mu
h more

random be
ause they do not a�e
t the

protein.

In order to 
ompare su
h sequen
es, the DNA

must be aligned.

Then, one 
an de
ide if su
h an alignment

would likely to have arisen by 
han
e or

be
ause the sequen
es are related.

Several fa
tors must be taken into a

ount:

� what alignments should be allowed;

� how should they be ranked;

� what algorithm should be applied to �nd

an optimal alignment;
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� what statisti
al pro
edure should be used

to evaluate signi�
an
e of the ranked

s
ores.

Simple pro
edures only perform pairwise

alignment.

Two basi
 types of mutations 
an 
hange

sequen
es:

(1) substitutions of one base for another and

(2) insertions or deletions of bases.

Some forms of mutations are observed more

frequently than others be
ause natural

sele
tion generally removes the nonviable

ones.
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For example, be
ause of the redundan
y in

the third base of a triplet, more variability 
an

often be observed there.

At ea
h site, a s
ore is assigned to the pair of

bases o

urring there.

For DNA bases, there are 16 possible s
ores

but, by symmetry, not all are di�erent.

These form a 4� 4 s
ore or substitution

matrix.

To align sequen
es optimally, gaps may have

to be left in some of the sequen
es,


orresponding to insertions and deletions.

A penalty is assigned for opening a gap and

another (usually smaller) one for widening it.
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The total ranked s
ore for an alignment,

then, 
onsists of a sum of terms for ea
h

aligned pair of bases plus those for the gaps.

Additivity implies that mutations at di�erent

sites have o

urred independently.

Various algorithms are used to obtain optimal

alignment among two or more sequen
es.

These dynami
 programming te
hniques are

guaranteed to �nd the optimal pairwise

alignment.

A number of these programs are publi
ly

available; sequen
es 
an also be submitted for

alignment over the internet.
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Global alignment of 
omplete sequen
es is

generally performed by the

Needleman{Wuns
h algorithm, whereas

lo
ation alignment of subsequen
es uses the

Smith{Waterman algorithm.

Multiple sequen
e alignments are more


omplex.

S
oring methods must allow for the

evolutionary dependen
e among the

sequen
es, in
luding the fa
t that some sites

may be more 
onserved than others.

On
e a set of s
ores has been 
hosen,

multidimensional dynami
 programming must

be applied.

16



1.4 Finding genes and their exons

On
e a se
tion of DNA has been sequen
ed

so that its 
ontent is known, one question to

be asked is whi
h se
tions of it are a
tive in


oding a protein.

Eviden
e for the lo
ation of genes in a

sequen
e must be derived from a variety of

indi
ations.

A protein-
oding sequen
e may have a

number of 
hara
teristi
s:

� it should be pre
eded by known promoter

regions su
h as a TATA box;

� it should start with an initiation 
odon

and end with a termination 
odon;
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� it may be suÆ
iently similar to that for

another gene in the genome or to the

same gene in another genome to be

re
ognizable;

� it 
an show 
odon (triplet) regularity;

� it is unlikely to 
ontain major se
tions of

repeats.

Gene �nding is parti
ularly diÆ
ult when

introns are present.

Many types of software are available on the

internet for

� integrated gene identi�
ation;

� promoter re
ognition;
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� database sear
hes to �nd similar gene

sequen
es;

� repeat analysis.
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2. Introdu
tion to Log Linear Models

2.1 Data, Models, and Inferen
e

Suppose that ea
h observation, y

i

, 
an take

one among a small number of possible values.

For example, the four nu
lei
 a
id bases of

DNA or RNA, or the 20 amino a
ids of

proteins.

The results 
an be summarized as a

frequen
y table giving the number of times,

n

i

, that ea
h value o

urs.
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For the 
omplete human betaglobin gene, the

frequen
ies are

A C G T

n

i

360 277 296 491

�̂

i

0.25 0.19 0.21 0.34

For the exons, the frequen
ies are

A C G T

n

i

88 113 137 106

�̂

i

0.20 0.25 0.31 0.24

and for the introns,

A C G T

n

i

272 164 159 385

�̂

i

0.28 0.17 0.16 0.39
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If the observations are independent, their

joint probability 
an be written as

Pr(n) =

�

n

�

n

1

� � �n

I

�

Y

�

n

i

i

where n

�

=

P

I

i=1

n

i

.

This is a multinomial distribution.

Models are de�ned by the way in whi
h

numbers are assigned to the probabilities, �

i

,

of the possible observed values.

Inferen
es are made by studying the

probability of the observed data for various

su
h models.

This is 
alled the likelihood fun
tion, L(�).

It is a fun
tion of the models, whereas the

probability is a fun
tion of the data.
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Often, it is easier to study the negative log

likelihood:

� log[L(�)℄ / �

X

n

i

log(�

i

)

for whi
h smaller values indi
ate better

models.

The maximum likelihood estimate (mle) is

the model that makes the data most probable

or the negative log likelihood smallest.

For independen
e, the mles of � are just the

relative frequen
ies.
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2.2 Log Linear Models

Generally, the sequen
e of observed values is

not independent.

It may depend on various fa
tors.

Thus, in the betaglobin gene, the probabilities

of the four bases appear to depend on

whether they lie in an intron or an exon:

A C G T

Exon 0.20 0.25 0.31 0.24

Intron 0.28 0.17 0.16 0.39

One way to model this is to set

�

ij

=

e

�

i

+�

ij

P

i

e

�

i

+�

ij

where j indexes the lo
ation of the base.
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Some 
onstraints need to be pla
ed on the

parameters, su
h as

P

i

�

i

= 0 and

P

i

�

ij

=

P

j

�

ij

= 0.

Then, this 
an be rewritten as

log

 

�

ij

_�

j

!

= �

i

+ �

ij

where _�

j

is the geometri
 mean of the

probabilities at lo
ation j.

The mles are �̂= (�0:02;�0:15;�0:07;0:24)

and

�̂=

 

�0:20 0:18 0:29 �0:28

0:20 �0:18 �0:29 0:28

!

re
e
ting the fa
t that introns have fewer C

and G bases.
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In the model of independen
e, the

probabilities of the bases are the same in

both lo
ations.

That is �

ij

= �

i

for all i and j.

This 
an be written

log

 

�

ij

_�

j

!

= �

i

The respe
tive negative log likelihoods are

1936.3 for independen
e and 1900.7 when a

di�eren
e between introns and exons is

allowed.

The model with dependen
e on lo
ation

makes the observed data mu
h more

probable:

e

1936:3�1900:7

= 3:1� 10

15

times more

probable!
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However, the latter model has three extra

parameters.

In making inferen
es, this 
an be allowed for

by penalizing the negative log likelihood by

adding the number of estimated parameters.

These are respe
tively 3 and 6, yielding

1939.3 and 1906.7.

This is penalization is 
alled the Akaike

Information Criterion (AIC).
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2.3 Software

Most available software does not allow dire
t

modelling of the multinomial distribution.

Generally, only the Poisson distribution is

available:

Pr(n

i

) =

e

��

i

�

n

i

i

n

i

!

Here, �

i

is the theoreti
al average number of

events of type i, while �

i

was the theoreti
al

proportion of events of that type.

Suppose that a set of frequen
ies, n

1

� � �n

I

,

has a Poisson distribution with means �

1

� � � �

I

.

Then, their sum, n

�

, also has a Poisson

distribution with mean, �

�

, the sum of the

individual means.
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Re
all that the 
onditional probability for an

event A given an event B is de�ned by

Pr(AjB) =

Pr(A and B)

Pr(B)

Then, if we 
ondition on the total number of

events,

Pr(n

1

; : : : ; n

I

jn

�

) =

Q

I

i=1

e

��

i

�

n

i

i

=n

i

!

e

��

�

�

n

�

�

=n

�

!

=

n

�

!e

��

�

Q

I

i=1

�

n

i

i

Q

I

i=1

n

i

!e

��

�

�

n

�

�

=

�

n

�

n

1

� � �n

I

�

I

Y

i=1

�

�

i

�

�

�

n

i

whi
h is the multinomial distribution with

�

i

= �

i

=�

�

.

The two distributions are identi
al.
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Thus, the Poisson distribution 
an be used for

log linear models instead of the multinomial.

For example,

log

 

�

ij

_�

j

!

= �

i

+ �

ij

with multinomial probabilities is equivalent to

log

 

�

ij

_�

j

!

= �

i

+ �

ij

with Poisson means.
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Most 
ommon software use a standard

notation to 
ommuni
ate models.

Variables are spe
i�ed by their names.

The model

log(�

ij

) = log( _�

j

) + �

i

+ �

ij

would 
orrespond to

lo
ation+ base+ base � lo
ation

This 
an also be written more simply as

base � lo
ation

The independen
e model is

base+ lo
ation
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2.4 More Complex Models

Often, we may wish to study how more than

one fa
tor in
uen
es the probabilities of the

observed values.

For example, does the distribution of nu
lei


a
id bases di�er among spe
ies as well as

between exons and introns?

A C G T

Human Exon 0.20 0.25 0.31 0.24

Intron 0.28 0.17 0.16 0.39

Chimp Exon 0.19 0.25 0.32 0.24

Intron 0.27 0.17 0.16 0.40

Gorilla Exon 0.19 0.24 0.32 0.25

Intron 0.28 0.17 0.16 0.39
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We 
an extend our model to

log

 

�

ijk

_�

jk

!

= �

i

+ �

ij

+ �

ik

+ 


ijk

with with k indexing spe
ies.

Constraints on the parameters similar to

those above are also required.

�

ik

will measure the di�eren
es among

spe
ies.




ijk

will allow for the possibility that the

relationship between exons and introns di�ers

among spe
ies.
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The model with only di�eren
es between

lo
ations and not among spe
ies,

log

 

�

ijk

_�

jk

!

= �

i

+ �

ij

has an AIC of 4493.6 with six parameters.

This 
ompares to 4590.1 for the

independen
e model with three parameters.

If we also allow for spe
ies di�eren
es

log

 

�

ijk

_�

jk

!

= �

i

+ �

ij

+ �

ik

the AIC is 4499.4 with 12 parameters.

Finally, the full model has an AIC of 4505.3

with 18 parameters.

These models indi
ate no signi�
ant

di�eren
es among the three spe
ies.
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When using the Poisson approa
h in software,

the minimal model 
an be written

R

1

+R

2

+ � � �+ E

1

� E

2

� � � �

R

i

represents a response variable (here only

one, base type).

E

j

an explanatory variable (here lo
ation and

spe
ies).

The produ
t indi
ates all possible


ombinations of intera
tions among variables.

This 
annot be simpli�ed even if the AIC

indi
ates that some terms are unne
essary.

In our example, independen
e is spe
i�ed by

base+ lo
ation � spe
ies
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Dependen
y of a response on an explanatory

variable is introdu
ed as a produ
t:

R

1

+R

2

+ � � �+ E

1

� E

2

� � � �+R

1

�E

1

as is dependen
y between responses:

R

1

+R

2

+ � � �+ E

1

� E

2

� � � �+R

1

�R

2

Thus dependen
y of base type on lo
ation is

given by

base+ lo
ation � spe
ies+ base � lo
ation

that on spe
ies by

base+ lo
ation � spe
ies+ base � lo
ation

and on both by

base+ lo
ation � spe
ies+ base � lo
ation

+base � spe
ies
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3. Introdu
tion to Markov Chains

3.1 Serial Dependen
e

A �nite number of di�erent types of events,

observed in a sequen
e, de�nes the states,

say x, of the pro
ess.

Suppose that the individual value, y

t

, at a

given point, t, in the sequen
e depends only

on the state, y

t�1

, at the immediately

pre
eding point:

Pr(y

t

jy

t�1

; : : : ; y

1

) = Pr(y

t

jy

t�1

)

This is the hypothesis of a �rst-order Markov


hain.

Be
ause DNA sequen
es are read in one

dire
tion (5

0

to 3

0

), Markov 
hain theory 
an

be applied.
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Then, the probability for a 
omplete sequen
e

is

Pr(y

1

; : : : ; y

N

) = Pr(y

1

)

N

Y

t=2

Pr(y

t

jy

t�1

)

These 
onditional probabilities 
an be

represented in a square transition matrix, T,

of ea
h state given the previous one.

If if depends further ba
k, the 
hain is of

higher order.

If the rows 
orrespond to the states at the

previous time point and the 
olumns to the

present states, then the row probabilities sum

to one.

If this matrix is the same for all positions in

the sequen
e, the 
hain is said to be

homogeneous.
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Pre-multiplying this matrix by the ve
tor, n

t

,

of frequen
ies of units in the di�erent states

(the marginal frequen
ies) at a given point, t,

will give the ve
tor for the next point, t+1:

n

T

t+1

= n

T

t

T

The marginal stationary distribution of the

states is the � su
h that

�

T

= �

T

T

A Markov 
hain is said to be irredu
ible if any

state 
an be rea
hed from any other.

Various assumptions about Markov 
hains,

su
h as order or homogeneity, 
an be


ompared by �tting appropriate log linear

models
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3.2 More Complex Markov Chains

If the present state depends on the k previous

states

Pr(y

t

jy

t�1

; : : : ; y

1

) = Pr(y

t

jy

t�1

; : : : ; y

t�k

)

the 
hain is said to be of order k.

Any su
h sequen
e 
an be written as a

�rst-order Markov 
hain by 
hanging the

state spa
e.

Instead of the states, x, take the states to be

all possible 
ombinations of a set of k xs.

For example, with k = 2, a sequen
e CGTCA

be
omes CG{GT{TC{CA.

Here, some of the transition probabilities

must be zero: TC 
annot follow CG, et
.
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If the transition matrix 
hanges depending on

the position in the sequen
e, the 
hain is

inhomogeneous.

A DNA sequen
e 
oding a protein 
onsists of

triplets.

The transition matrix may depend on the

position in the triplet.

There will be three di�erent matri
es, at

positions 1, 2, and 3.

Within a gene, the transition matrix may be

di�erent between exons and introns.

41



3.3 Comparing Transition Matri
es in

Exons and Introns

For the betaglobin data, the transition matrix

for the entire gene is

A C G T

A 0.29 0.18 0.21 0.32

C 0.31 0.23 0.03 0.43

G 0.21 0.22 0.30 0.27

T 0.22 0.17 0.25 0.36

As might be expe
ted, we see that C is very

rarely followed by G.
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The matri
es for the exons and for the

introns are respe
tively

A C G T

A 0.26 0.28 0.31 0.15

C 0.27 0.31 0.04 0.38

G 0.18 0.25 0.33 0.24

T 0.08 0.19 0.57 0.16

and

A C G T

A 0.29 0.15 0.18 0.38

C 0.34 0.18 0.02 0.45

G 0.24 0.19 0.27 0.30

T 0.25 0.16 0.17 0.42

We 
an use log linear models to investigate if

there is a di�eren
e in transitions between

exons and introns.
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The 
ontingen
y tables are

A C G T

Exons

A 23 24 27 13

C 30 35 5 43

G 25 34 45 33

T 9 20 60 17

Introns

A 80 42 48 102

C 56 30 3 74

G 38 30 43 48

T 98 62 65 160

The independen
e model, where the base at a

given position depends neither on the previous

base nor on the lo
ation (exon or intron),

base+ lo
ation � previous

has an AIC of 3663.3 with 3 parameters.
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That with dependen
e only on lo
ation,

base+ lo
ation � previous+ base � lo
ation

has 3627.3 with 6 parameters and that for

previous base only

base+ lo
ation � previous+ base � previous

has 3609.8 with 12 parameters.

This latter model assumes that the transition

matrix is the same in exons and introns.

However, the model where dependen
e on the

previous base is di�erent in the exon and

intron

base � lo
ation � previous

has an AIC of 3555.0 with 24 parameters.
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This shows that the relationship between

su

essive bases is di�erent in exons and

introns.

The two transition matri
es are signi�
antly

di�erent.

The sequen
e over the whole gene is not

homogeneous.
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4. Introdu
tion to Hidden Markov Models

4.1 Basi
 Con
epts

Suppose that a sequen
e of responses is

dis
rete-valued, often 
ategories that would

appear to be the observed states of some

Markov 
hain.

However, dependen
e 
annot adequately be

des
ribed by the simple Markov property.

In a hidden Markov model, an underlying,

unobserved sequen
e of states follows a

Markov 
hain, the hidden state determining

the probabilities of the observed states.

Su
h an approa
h is widely used in spee
h

pro
essing and in biologi
al sequen
e analysis

of nu
lei
 a
ids in DNA and of amino a
ids in

proteins.
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For a binary time series, ea
h event might be

generated by one of two Bernoulli

distributions.

The pro
ess swit
hes from the one to the

other a

ording to the state of the hidden

Markov 
hain, in this way generating state

dependen
e.

Analogous models 
an be 
onstru
ted for

other dis
rete distributions, su
h as the

Poisson or multinomial distributions.

The distributions 
ould even, themselves, be

Markov 
hains with di�erent transition

matri
es.
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4.2 The Model

Consider an irredu
ible homogeneous Markov


hain with M �M transition matrix, H.

This gives the probabilities of 
hanging

among the hidden states, with marginal

stationary distribution, �.

The latter 
an be 
al
ulated from the

transition matrix and hen
e does not

introdu
e any new parameters.

Then, the probability of the observed

response at position t, �

mt

= Pr(y

t

jm;�

m

),

will depend on the unobserved state, m, at

that position.

�

mt

is 
alled the emission probability.
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The series of responses on a given unit are

assumed to be independent, given the hidden

state.

Thus, there are M(M � 1) unknown

parameters in the transition matrix as well as

M times the length of �

m

in the probability

distributions.

Although the probability of the observed data

is 
omplex, it 
an be written in a re
ursive

form over the sequen
e:

f(y;�;H) = �

T

R

Y

t=1

(HF

t

)J

T

F

t

is an M �M diagonal matrix 
ontaining,

on the diagonal, the probabilities, �

mt

, of the

observed data given the various possible

states.
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To 
onstru
t the likelihood fun
tion from

this, �rst 
al
ulate the marginal probability

times the observed probability for ea
h state

at position 1, say a

m

= �

m

Pr(y

1

jm;�

m

).

At the se
ond point, the �rst step is to


al
ulate the observed probability for ea
h

state multiplied by this quantity and by the

transition probabilities in the 
orresponding


olumn of H.

These are summed yielding, say

b

m

=

P

h

a

m

H

mh

Pr(y

2

jh;�

h

).

This is the new ve
tor of forward

probabilities, but, to prevent under
ow, it is

divided by its average, yielding a new ve
tor,

a.
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This average is also 
umulated as a


orre
tion to the likelihood fun
tion.

These steps are repeated at ea
h su

essive

position.

Finally, the sum of these a

m

at the last point

in the sequen
e is the likelihood ex
ept that

the 
umulative 
orre
tion must be added to

it.

At ea
h step, the ve
tor, a, divided by its

sum gives the (�ltered) 
onditional

probabilities of being in the various possible

states given the previous observations.
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4.3 Lo
ating the Betaglobin Gene

Let us �rst apply hidden Markov models to

the 
omplete sequen
e of 3007 bases to see if

any 
orresponden
e 
an be found between

the hidden states and the 
oding se
tions.

The model for multinomial independen
e has

an AIC of 4091.8, whereas that with two

hidden states has 4044.2.
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We see that the three exons are all


ompletely lo
ated in one of the states.

The se
ond intron is similar to the se
tions of

the sequen
e before and after the gene

whereas the �rst intron is indistinguishable

from the exons by this method.

The transition matrix is

 

0:997 0:003

0:003 0:997

!

with stationary probabilities, 0.481 and 0.519.

In the �rst state, the probabilities of A, C, G,

and T are respe
tively 0.31, 0.15, 0.14, and

0.40.

In the se
ond, they are 0.23, 0.25, 0.26, and

0.27.
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The latter is the state in whi
h the exons

o

ur.

Thus, the non
oding regions are CG poor.

Adding a third state further redu
es the AIC

to 4023.8 but does not further aid in

distinguishing the gene.

Allowing the probability of ea
h type of base

to 
y
le through ea
h of the three positions

of triplets along the whole sequen
e with two

hidden states does not improve the model;

the AIC is 4048.6.

On the other hand, if an ordinary Markov


hain is used instead of a hidden one, the AIC

is redu
ed to 3997.0.
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If the pro
ess is allowed to swit
h between

two su
h Markov 
hains using a hidden

Markov model, the AIC is 3938.6.

The hidden transition matrix for this model is

 

0:995 0:005

0:004 0:996

!

and the two `observed' transition matri
es are

A C G T

A 0.338 0.140 0.124 0.399

C 0.365 0.284 0.064 0.288

G 0.141 0.317 0.394 0.148

T 0.193 0.175 0.420 0.212

A 0.240 0.223 0.331 0.206

C 0.288 0.300 0.035 0.377

G 0.254 0.212 0.313 0.222

T 0.164 0.242 0.326 0.268

Noti
e how rarely G follows C in either state.
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4.4 Lo
ating the exons

Let us now look more 
losely at the gene

itself, ignoring the non
oding regions on ea
h

side.

The multinomial independen
e model has an

AIC of 1939.3 
ompared to 1913.2 for the

two-state model.
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The 
omplete exons still o

ur in one hidden

state.

However, the se
ond intron is not so 
learly

distinguished as when the whole sequen
e is

used.

On the other hand, there is some indi
ation

of the �rst intron being similar to the se
ond.

The transition matrix is

 

0:976 0:024

0:009 0:991

!

with stationary probabilities, 0.265 and 0.735.

The probabilities of the four bases in state 2,


ontaining the exons, are respe
tively 0.27,

0.20, 0.26, and 0.27, whereas they are 0.21,

0.18, 0.06, and 0.54 in state 1.

Indeed, 41% of intron 2 
onsists of T.
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If I now allow a di�erent set of probabilities

for the four bases at ea
h of the three

positions in a triplet, the AIC is redu
ed to

1912.0.

This is rather surprising as only the se
ond

exon has a 
omplete set of triplets and

neither of the introns does.

Note that the triplets in the se
ond exon do

not 
orrespond to amino a
ids be
ause the

�rst intron o

urs in the middle of a triplet.

Thus, triplets are out of alignment among

the three exons.

Nevertheless, the 
hanges of state be
ome

mu
h 
learer, as 
an be seen in the lower

graph.
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The transition matrix is now

 

0:998 0:002

0:001 0:999

!

with stationary probabilities, 0.317 and 0.683.

The probabilities of the four bases at the

three positions of a triplet in the two states

are summarized in the following table:

State Position A C G T

1 0.29 0.18 0.10 0.43

1 2 0.31 0.13 0.13 0.43

3 0.29 0.14 0.11 0.46

1 0.19 0.21 0.29 0.31

2 2 0.25 0.25 0.27 0.23

3 0.22 0.23 0.28 0.27

As for the 
omplete sequen
e, adding a third

state improves the model, with an AIC of

1896.9, but does not further help to lo
ate

the 
oding regions.
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This example should not be taken as typi
al

of the su

ess with whi
h 
oding se
tions of

a sequen
e 
an be lo
ated.

It happens that intron 2 of this gene is rather

spe
ial; this greatly helped in lo
ating the

areas of interest.

4.5 Extensions

� nonstationary marginal distribution

� inhomogeneous hidden transition matrix

� higher order hidden Markov 
hain
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5. Appli
ations of Hidden Markov Models

5.1 Finding CpG Islands

The dinu
leotide, CG (written CpG to

distinguish it from the C{G base pair a
ross

strands) o

urs rarely.

In this 
ombination, C is usually methylated

and mutated to T.

In 
ertain short se
tions of a genome,

methylation is suppressed, su
h as in

promoter regions of a gene.

These CpG islands are generally a few

hundred to a few thousand bases long.
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In a CpG island, the transition matrix will be

di�erent than elsewhere in the genome.

The transition probability, C!G will be larger.

In a set of 41 human DNA sequen
es with 48

known CpG islands, the transition matri
es

are

A C G T

A 0.18 0.27 0.43 0.12

C 0.17 0.37 0.27 0.19

G 0.16 0.34 0.38 0.13

T 0.08 0.36 0.38 0.18

for CpG islands and

A C G T

A 0.30 0.21 0.29 0.21

C 0.32 0.29 0.08 0.30

G 0.25 0.25 0.29 0.21

T 0.18 0.24 0.29 0.29

elsewhere.
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The problem is that we do not know at what

point the transition matrix 
hanges.

One of the �rst appli
ations of hidden

Markov models in mole
ular biology was to

resolving this problem.

In the above 41 sequen
es, all but two CpG

islands were found but, 121 others were also

predi
ted.

However, the falsely predi
ted ones were quite

short 
ompared to the real ones.

Predi
tions less than 500 bases apart 
an be


on
atenated and those shorter than 500

bases ignored.

This redu
es the false predi
tions to 67.
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5.2 Pairwise Alignment

Consider a short se
tion of the human

betaglobin sequen
e,

TGTACATATACACATATATATATATATTT as aligned with

that of a 
himpanzee,

GTATATATACATACATATATATATATATATATATAT:

TG.....TACATATACACATATATATATATAT..TT

GTATATATACATACATATATATATATATATATATAT

After optimal alignment, the observed states

in the two sequen
es may be

� identi
al nu
leotides,

� di�erent nu
leotides,

� a gap in one sequen
e and a nu
leotide in

the other.
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In aligning two sequen
es, we 
an have three

possible hidden states:

1. the bases in the two sequen
es are aligned

(M),

2. the �rst sequen
e requires an insert

opposite a gap in sequen
e 2 (X

1

),

3. the se
ond sequen
e requires an insert

opposite a gap in sequen
e 1 (X

2

),

Then, the hidden transition matrix will be

M X

1

X

2

M 1� 2Æ Æ Æ

X

1

1� � � 0

X

2

1� � 0 �
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Æ is the probability of opening a gap.

� is the probability of widening an existing

gap.

1� � is the 
orresponding probability of


losing a gap

There will be 16 emission probabilities in

state M 
orresponding to all possible


ombinations of pairs of nu
leotides

and four emission probabilities in ea
h of

states X

1

and X

2


orresponding to the

possible nu
leotide insertions.
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Using hidden Markov models for alignment

instead of dynami
 programming algorithms

provides

� likelihood measures of reliability of the

alignment obtained,

� 
omparison of suboptimal alignments.

Generally, there will be several alternative

alignments with almost the same likelihood.

Some will di�er only in a few positions from

the optimal alignment.

If there are repeats in one or both sequen
es,

suboptimal alignments may di�er substantially

or 
ompletely from the optimal alignment.
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5.3 Multiple Alignments

Aligning simultaneously several sequen
es is

mu
h more 
omplex.

Usually they are sequen
es of DNA for similar

proteins (�-, �-, and 
-globin) or sequen
es

for the same protein from di�erent spe
ies.

For di�erent spe
ies, they are used to


onstru
t phylogeni
 trees in the study of

evolution.
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