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Abstra
t

Re
tangular data matri
es and linear formula spe
i�
ation used in 
urrent statisti
al soft-

ware pa
kages are two of the major impediments to developing and implementing advan
ed

statisti
al models.

A set of three data obje
ts is proposed to repla
e the re
tangular data matrix. Although

developed for repeated measurements data, these have mu
h wider appli
ation, su
h as to

independent data and to time series. The three obje
ts 
ontain, respe
tively, the response

variable, with all of the information required to spe
ify its probability distribution, the inter-

unit 
ovariates, and the intra-unit 
ovariates, ne
essary for any set of models of interest.

As an extension to the Wilkinson and Rogers (1973) notation widely used to spe
ify the

linear part of regression models, two general pro
edures for des
ribing nonlinear models are

proposed. The �rst simply uses the builtin fun
tion 
onstru
tion fa
ilities of R or S, whereas

the se
ond is more 
losely related to the Wilkinson and Rogers notation, but allows unknown

parameters to have individual names. Then, su
h a formula 
an be automati
ally transformed

into a suitable fun
tion, with the software distinguishing between knowns and unknowns.

Both the data obje
ts and the model formulation have been implemented in R. A wide


olle
tion of model-�tting fun
tions for nonlinear regression, in
luding repeated measurements,

based on them is available.

Keywords: Clustering, data obje
ts, durations, model spe
i�
ation, nonlinear model,

repeated measurements, time series, time-varying 
ovariates.

1 Introdu
tion

In this paper, I dis
uss some limitations of 
urrently available software with respe
t to data handling

and model spe
i�
ation and make suggestions for improvements. I have implemented all of my

proposals in a library of fun
tions for R (Ihaka and Gentleman, 1996), demonstrating that they

are all feasible and useful.

One of my 
on
erns is with how 
urrently available te
hniques 
onstrain statisti
al users in a
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mind-frame su
h that they must think in �xed and old-fashioned ways not suitable for modelling the

data now being 
olle
ted in s
ien
e and industry. Current 
omputing power has revolutionized data


olle
tion; it should also fundamentally 
hange the ways in whi
h su
h data are analyzed. Some

may 
laim that modern nonparametri
 and Bayesian pro
edures are doing this. However, the �rst

are essentially either des
riptive methods (su
h as kernel density estimation and other smoothers)

or designed for testing hypotheses (su
h as Cox proportional hazards), not for understanding the

me
hanisms by whi
h the data were generated. The se
ond is a `bigger is better' philosophy that

has not (yet?) fundamentally 
hanged the way data are a
tually treated be
ause of the additional

assumptions and 
omputer time required.

Two basi
 theses underly my dis
ussion in this paper:

1. the 
lassi
al re
tangular data matrix is inadequate to handle many modern data types;

2. the now standard Wilkinson and Rogers (1973) formul� for linear models need to be ex-

tended, in user-friendly ways, to the spe
i�
ation of nonlinear models.

All 
urrent major statisti
al software systems oblige users to 
oer
e their data into a re
tangular

form, generally with individuals as rows and variables as 
olumns. Even planned experiments are

not always balan
ed in this way. Longitudinal repeated measurements studies may have highly

unequal numbers of observations per subje
t. Missing values and dropouts may o

ur.

When only a desk 
al
ulator was available in data analysis, estimation was usually only feasible

for simple linear models. Everyone agreed that they were often poor approximations to the phe-

nomena under study, but nothing else was possible. Current 
ommer
ial software generally retains

this `desk 
al
ulator' philosophy, simply allowing users to handle larger data sets in less time. The

one major ex
eption, generalized linear models, has had a surprisingly narrow impa
t on 
urrent

pra
ti
e.

In a 
ertain sense, modern statisti
s is fundamentally anti-s
ienti�
, attempting to impose

its `generally appli
able' methods in all 
ir
umstan
es instead of trying to understand ea
h spe-


i�
 s
ienti�
 problem and to adapt spe
i�
 pro
edures to it. The 
lassi
al linear model is the

ar
hetypi
al 
ase: it is widely believed that most problems 
an be transformed in some way so

that least-squares multiple regression 
an provide a solution. Empiri
al models are preferred to

me
hanisti
 ones, the extreme example being nonparametri
 statisti
s. Those areas of statisti
s

that have es
aped from this rule (for example, statisti
al me
hani
s, population and mole
ular

geneti
s, or pharma
okineti
s) have almost ex
lusively been developed by nonstatisti
ians.

In what follows, I shall 
on
entrate on the handling of repeated measurements types of data.

This has the advantage that it 
overs both the 
lassi
al independent observations and time series

as spe
ial 
ases, as well as providing simple extensions to spatial data. However, this also means

that I make no pretension of universality. In any 
ase, it is doubtful that one type of data stru
ture


ould ever be designed to handle all 
on
eivable 
ases.
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Table 1: An example of repeated response data for three sele
ted individuals. First line: times,

measured from randomization (with negative times being pre-randomization baseline values). Se
-

ond line: response measurement. (Lindsey, 1999, p. 400.)

-27 -13 28 56 84 168 259 331 427 504 672 771 834 945 1008 1092

561 334 157 374 191 465 125 212 232 177 98 207 127 202 143 174

1289 1306 1351

216 245 237

-14 -6 58 253 358 508 574 672 855 924

429 587 446 269 131 50 145 634 273 144

-14 -7 0 56 84 168 336 420 504 672 756 840 924 1000 1135 1260

231 312 123 127 297 337 225 312 178 111 97 133 239 151 115 297

1280 1337

141 113

2 Data obje
ts

2.1 Types of variables

The 
lassi
al re
tangular data stru
ture does not distinguish between response and explanatory

variables. This is justi�able in 
ertain situations, as for stri
tly multivariate data or for graphi
al

models. However, in most 
ontexts, these two 
lasses of variables are fundamentally di�erent; this

should be re
e
ted in the data obje
ts 
ontaining them.

2.1.1 Response variables

The response variable is that for whi
h a (
onditional) probability distribution is assumed in some

given set of models. This 
an entail a 
onsiderable amount of supplementary information. Consider

two examples. The usual longitudinal repeated measurements have times asso
iated with them,

as in Table 1. These data 
learly do not have a re
tangular stru
ture and for
ing it upon them

would be diÆ
ult and uninformative. In 
ontrast to mu
h of 
lassi
al time series, here there are

unequal numbers of observations per individual and the time points are both unequally-spa
ed and

di�erent for ea
h individual.

Times between events, as in Table 2, provide a se
ond example. If, in the previous example, the

times might possibly have been �xed in advan
e, here it is impossible. It is the random times that

are of interest. An additional 
ompli
ation is that observation of an individual may not terminate

at an event, so that last re
orded time may be 
ensored.

Thus, at ea
h observation point, we must 
olle
t more than just a univariate response value.
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Table 2: An example of repeated response data for six sele
ted individuals: times between repeated

events, with the �nal value indi
ating whether the last time is 
ensored or not. (Lindsey, 1999, p.

436.)

5 13 0

12 4 2 0

23 0

3 3 2 4 14 4 0

3 13 7 1

3 6 12 2 0

For repeated measurements, at least one of the following must also be available:

1. Times (if longitudinal).

2. Lo
ation (if spatial).

3. Nesting indi
ators (if 
lustered).

4. Censor indi
ators (if durations).

5. Binomial denominators (if binary).

6. Unit of measurement (if 
ontinuous).

7. Ja
obian of any transformation (if 
ontinuous).

8. Weights.

Many of these will also be required even for the simpler independent observations.

All of this information is ne
essary in order to 
onstru
t the statisti
al model based on a

probability distribution, even if no 
ovariates are present. It should all be stored together, along

with the 
orresponding response values, in one data obje
t.

Nevertheless, the �rst three of these types of information have a somewhat ambiguous status.

They are required with the responses in order to de�ne the dependen
ies among them. However,

they may also be ne
essary, in some 
ontexts, as explanatory variables: times or lo
ations for

trends, nesting for �xed e�e
ts. I shall return to this point below.

2.1.2 Covariates

For independent observations and for time series, 
ovariates generally have a simply stru
ture,

being in one-to-one 
orresponden
e with the response values. The same is not true for repeated

measurements. Some distinguish among the individuals (inter-unit or time-
onstant), staying

identi
al for all responses on ea
h individual whereas others (intra-unit or time-varying) may


hange along with the responses.
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Table 3: An example of repeated time-varying 
ovariates for the three individuals in Table 1. First

line: times, measured from randomization, but at di�erent moments than the response. Se
ond

line: dose. (Lindsey, 1999, p. 407.)

0 28 58 85 113 159 203 333 375 585 591 1306

1.0 1.167 1.333 1.5 1.667 1.833 2.0 1.833 2.0 0.0 2.0 0.0

0 218 312 352 403 406 973

1.0 1.2 1.4 1.6 1.8 2.0 0.0

0 29 57 87 119 164 203 241 287 818 835 1280

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 0.0 2.4 0.0

Inter-unit 
ovariates In the repeated measurements 
ontext, the re
tangular data matrix

paradigm for
es the user to repli
ate any inter-unit 
ovariates as many times as there are re-

peated responses. Not only is this wasteful of storage spa
e (and 
opying time in 
ertain statisti
al

software), but often statisti
al 
al
ulations 
an be made more eÆ
iently if ea
h su
h 
ovariate has

only one value per subje
t.

Intra-unit 
ovariates Consider again the example responses above in Table 1; the time-varying


ovariate, dose, is also available. The values are presented in Table 3. Here, not only is the 
ovariate

re
orded at unequally-spa
ed times, di�erent for ea
h individual, but the times are di�erent than

those for the responses. Thus, some kind of mat
hing may be required in order to know, in the

model, what 
ovariate value is in e�e
t at the time a given response value is measured.

Thus, an intra-unit 
ovariate may require manipulation before storage. It requires one value

per response value, in 
ontrast to an inter-unit 
ovariate that needs only one value per individual.

3 Data manipulation

Following upon this typology of variables, we 
an ask a number of questions:

� How should we read in su
h data?

� How should we store them?

� What should we do with missing values?

I shall now des
ribe my attempted solution to some of these problems.
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3.1 Re
ording and reading

It should be 
lear that ea
h type of variable should be re
orded in a separate �le (maximum 3

�les). Su
h data 
an 
reate problems as mu
h of the re
ording te
hnology (spreadsheets) 
onforms

to the re
tangular format. Foolproof ways of making the links among values in the di�erent �les

must be available, as in database te
hnology.

In simple 
ases, the data 
an �rst be read into the statisti
al software in re
tangular form (for

example, the dataframe in R or S). If the data are not in su
h balan
ed re
tangular form, they will

generally have to be read as a list (read.list or read.surv, respe
tively, for the two examples

given above) with one element (ve
tor or matrix) per individual. In either 
ase, they will then

have to be 
onverted into the data obje
ts to be des
ribed next.

3.2 Storage

In an obje
t-oriented language su
h as R or S, data are stored in obje
ts. In those languages, the

prin
ipal data obje
t is the re
tangular dataframe. From the above arguments and examples, this

is not always appropriate for modern data handling.

The one major innovation of the dataframe stru
ture was the ability to store quantitative and

qualitative (fa
tor) variables together. However, this is a

ompanied by subsequent important

ineÆ
ien
ies as the fa
tor variables do have to be transformed into the appropriate set of indi
ator

variables before a model 
an be �tted. This 
ontrasts with a program su
h as GLIM where su
h

a matrix 
ontaining indi
ator variables is never a
tually 
onstru
ted in the model-�tting pro
ess.

Su
h a pro
edure, although very desirable, would require major modi�
ations (su
h as bit-
oding)

to R or S and hen
e has not been pursued here.

Obje
ts 
ontain slots in whi
h various items of di�erent types 
an be stored and have methods

by whi
h they 
an be a

essed without the user knowing the internal stru
ture. The obje
ts have


lasses so that the language 
an re
ognize whi
h methods are appropriate for whi
h obje
ts. Here,

in the implementation in R, the obje
ts will simply be 
onstru
ted internally as lists (as is a

dataframe), permitting storage of varying types of information. The methods to a

ess them will

be fun
tions spe
i�
 to the obje
t.

However, lists 
annot easily be dire
tly transferred to and eÆ
iently a

essed in a lower level

language su
h as C or Fortran where the more 
omplex model 
onstru
tion needs to be done.

Hen
e, for modelling eÆ
ien
y, data for all individuals, in an obje
t's slots, will stored together as

ve
tors or matri
es so that these 
an be dire
tly a

essed in the lower level language.

Another major ineÆ
ien
y of Lisp-like languages su
h as R and S is that 
opies of obje
ts

are generally made when they are passed between fun
tions. In 
ontrast to Fortran or C, obje
ts


annot be a

essed through pointers. In R, this problem 
an be minimized by using R's s
oping

rules and fun
tion 
losure. However, this implies that many of the spe
i�
 pro
edures developed

here for R will not work in S.
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In the R implementation, three 
lasses of obje
ts, 
orresponding to types of variables, are

available, 
alled response, t

ov, and tv
ov.

The response 
lass 
ontains all of the relevant supplied information dis
ussed above as sepa-

rate ve
tors; for a given problem, irrelevant slots are NULL. Be
ause of its importan
e in repeated

measurements for lo
ating the appropriate observations, the �rst level of nesting, indi
ating the

number of observations per individual, is kept as a ve
tor in a separate slot. The unit of mea-

surement and Ja
obian are 
ombined in one slot: the unit of measurement is the pre
ision of the

instrument used (when di�erent from unity) whereas the Ja
obian of the transformation is a set of

numeri
al values. For example, if the response is stored in its slot as say log(y), then the Ja
obian

is stored as 1=y (times the unit of measurement).

At present, in the R implementation, if fa
tor variables are present among either the intra-unit

or inter-unit 
ovariates, the user may 
hoose to store them in the 
orresponding slot in the obje
t as

a dataframe instead of as an ordinary matrix. Model-�tting fun
tions need to know how to handle

this. This approa
h leads to serious ineÆ
ien
ies as a 
opy of all of the data must be made when

the indi
ator variables are 
onstru
ted in setting up a model; in 
ontrast, when the 
ovariates are

stored as a matrix, with the indi
ator variables already 
al
ulated for the fa
tor variables, they 
an

be dire
tly read in the obje
t without making a 
opy. The tradeo� is between ease of referen
ing

variables by name (indi
ator variables must all be spe
i�ed by name) and speed of model �tting.

When the observation times for the response and a time-varying 
ovariate di�er, the most

re
ent value of the latter 
an be brought forward to the response time (using the fun
tion, gettv
).

However, 
are must be taken with ties in the times when the two are re
orded. If the 
ovariate

and the response are measured at the same time, does the e�e
t begin instantaneously? If the


ovariate is, say blood pressure, the 
urrent value should be used, but if it is the new level of dose

of medi
ation, the 
hange will not have had time to take e�e
t, and the previous dose level should

be used.

The spe
ial 
ovariates, times and nesting indi
ators 
ontained in the response obje
t, 
an be

a

essed in model formul� by keywords: times, individuals (for the �rst level of nesting), and

nesting (for 
lusters within individuals, for example in 
ertain 
ross-over trials).

The handling of missing values is a parti
ularly thorny issue. The missing value pro
ess will

rarely be independent of the pro
ess of interest. The only appropriate pro
edure would seem to be

to have a separate slot 
ontaining information as to why ea
h parti
ular value is missing so that a

model for missingness 
ould be 
onstru
ted. This would be required in all three 
lasses of obje
ts.

Su
h a stru
ture has not yet been implemented, but su
h information 
ould, at present, in many


ases, simply be stored as extra 
ovariates.

Finally, all of the information from a set of one to three obje
ts of 
lasses response, t

ov,

and tv
ov must be 
ombined to produ
e an obje
t of the new 
lass 
alled repeated (using rmna).

In this way a given 
ombination of variables in a model is 
ombined, with missing values (NAs)

removed. This obje
t provides all of the information that will be required to �t some set of models
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of interest that will be dire
tly 
omparable be
ause they are based on the same set of data (for

example, with the same missing values removed).

3.3 Methods

Some of the fun
tions and methods required for this approa
h have already been dis
ussed above.

It is now time to look at the required methods in some more detail.

The �rst basi
 set of pro
edures must be able to transform the matri
es and/or lists read into

the software to 
reate the required obje
ts just des
ribed. In my R implementation, these methods

are restove
 to 
reate response obje
ts, t

tomat to 
reate t

ov obje
ts, and tv
tomat for

tv
ov obje
ts. (The names arise for histori
al reasons, indi
ating the original underlying data

forms 
ontained in the obje
ts.) These 
an generally automati
ally transform ve
tors, matri
es, or

lists of data to the appropriate obje
t. For example, if a list of matri
es (one for ea
h individual,


ontaining responses as the �rst 
olumn and possibly times as the se
ond 
olumn) is supplied

to restove
, it 
an automati
ally dete
t whi
h other 
olumns 
ontain binomial denominators,


ensoring, nesting, and/or units of measurement.

On
e the obje
ts have been 
reated, methods are available to print summary information for

ea
h 
lass, not the whole data array, and to plot longitudinal responses and time-varying 
ovariates.

The latter allows

� 
hoi
e of subsets.

� individual points or pro�les.

� if nesting, times starting over at zero in ea
h 
luster (for example, in a 
ross-over design).

Methods must also be available to �nd all information about ea
h individual for a given model.

� As des
ribed above, time-varying 
ovariates may need to be 
arried forward to response times

(gettv
).

� Intera
tions among time-varying 
ovariates or with time-
onstant 
ovariates may be required

(tv
tomat).

� The user may want to transform the response, the times, or 
ertain 
ovariates (transform).

If the response is transformed, the Ja
obian is also automati
ally updated.

� If the model-�tting pro
edure does not perform the task itself in 
onstru
ting the likelihood,

time-
onstant 
ovariates must be mat
hed to individual responses (
ovind).

As dis
ussed above, missing values 
an only be handled after all information has been joined for

a given model. Methods must be available so that, when appli
able, this 
an be 
oordinated for

ea
h given 
ombination of variables (rmna).

8



The only method 
urrently available for handling missing values in my implementation is the

elimination of these re
ordings (rmna), with the a

ompanying (generally in
orre
t) assumption

of randomness. This 
an only be done for a given 
ombination of all three types of variables, as

otherwise the individual values 
ould no longer be mat
hed up. It has the 
onsequen
e that the

number of re
orded observations 
an 
hange with the 
ovariates present in the model and that entire

individuals 
an disappear when the model is 
hanged, for example if an inter-individual 
ovariate

value is missing and this 
ovariate is added to the model. However, it would be te
hni
ally, if not


on
eptually, easy to develop other methods for handling missing values to be used in pla
e of the

rmna method.

4 Formul�

In the mid 1970s, statisti
s was at the forefront of 
omputations using ele
troni
 
omputers with

the introdu
tion of the GLIM intera
tive system for generalized linear models. Later, S (Be
ker

and Chambers, 1984) extended the same basi
 paradigm to a wider 
lass of statisti
al operations,

the major innovation for modelling being to allow the user to extend the language, something

that was rather diÆ
ult with GLIM ma
ros. This lead was, however, rather qui
kly lost as more

powerful pa
kages were developed in other areas, su
h as Matlab for linear algebra and Maple and

Mathemati
a for symboli
 algebrai
 manipulation. For example, the latter pa
kages 
ontain pow-

erful fa
ilities for distinguishing among known and unknown variables, for translating fun
tions

dire
tly into C or Fortran, and for exporting formul� into T

E

X. These, and other, useful possibil-

ities that would be invaluable aids for spe
ifying models, are not available in standard pa
kages

designed spe
i�
ally for statisti
ians.

4.1 Models

4.1.1 Cal
ulating the likelihood

On
e data are available in an appropriate form, as des
ribed above, and some model has been


hosen, the major role of the statisti
al software is to �t the model by likelihood methods and then

to provide any required information about the results. Various 
riteria 
an be spe
i�ed for su
h a

pro
ess. Among others, these in
lude

1. 
orre
t model formulation;

2. speed: �tting in real time;

3. ease of user spe
i�
ation;

4. default information displayed should not be erroneous or misleading in any 
ontext.

Readers will have varying orders of preferen
e for these 
riteria and will 
ertainly add others.
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4.1.2 Spe
ifying the model

Any statisti
al model generally has two basi
ally distin
t parts, the probability distribution and

the regression model(s). These are re
e
ted in the data obje
ts des
ribed above.

GLIM 
learly separated spe
i�
ation of the distribution ($yvariate and $error) from the

linear stru
ture in the model ($fit) using the Wilkinson and Rogers (1973) notation. Between

these is the link fun
tion ($link). S (Chambers and Hastie, 1992) obs
ured this 
larity in model


onstru
tion by 
ombining the �rst and third GLIM instru
tions as, in a simple 
ase, y�x1+x2.

This stru
ture appears to imply that Y is distributed with mean depending linearly on x

1

and

x

2

. However, this 
an only be true when the link fun
tion is the identity and hen
e is generally

misleading. Both GLIM and S have the additional defe
t of maintaining the user in a mentality

whereby only the mean parameter 
an possibly depend on 
ovariates.

The probability distribution is generally 
hosen by the user from a list of possibilities. In the

future, one may expe
t that software will be able to optimize over some set of prespe
i�ed model

fun
tions in the same way as over a set of parameter values; from a likelihood point of view,

the two are logi
ally equivalent. Stepwise and all subsets regression illustrate the misuse of su
h

pro
edures. What is required is some penalty for the number of models tried, just as the AIC

penalizes for the number of parameters in a model.

Regression models des
ribe the ways in whi
h the various parameters (lo
ation, dispersion,

shape) of this distribution depend on 
ovariates. For linear (parts of) regression models for the

mean, the standard way is now by a Wilkinson and Rogers formula set up by the user.

4.1.3 Probability distribution

For the probability distribution, the �rst 
riterion is the need for a wide 
hoi
e. The �ve gen-

eralized linear models usually provided (even the Weibull distribution is ex
luded!) by statisti
al

software are entirely insuÆ
ient. This 
urrent restri
tion is essentially a te
hni
ally one: the linear

parameters of all generalized linear models 
an easily be estimated by the iterated weighted least

squares algorithm.

For repeated measurements, the sto
hasti
 dependen
e relationships among the responses of an

individual must be spe
i�ed. These in
lude the longitudinal dependen
ies and 
lustering e�e
ts.

Ex
ept in spe
ial 
ases, the former will require re
ursive updating. The latter are generally handled

by random e�e
ts, but this requires either some form of eÆ
ient multidimensional integration or

re
ursive updating. For speed, re
ursive likelihoods (su
h as Kalman �ltering) must be 
al
ulated

in a lower level language su
h as C, dynami
ally loaded into R or S. Only ve
torized operations

are suÆ
iently fast for likelihood 
onstru
tion dire
tly in R or S and su
h re
ursion 
annot be

ve
torized.
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4.1.4 Covariate dependen
e

Nonlinear fun
tion 
onstru
tion In a language su
h as R or S, one natural way to spe
ify


omplex regression models, not handled by the Wilkinson and Rogers notation, is to use the builtin

fun
tion 
onstru
tion abilities of these languages. Let us �rst look at this approa
h.

As an example, 
onsider an open �rst-order one-
ompartment model widely used in pharma-


okineti
s. The lo
ation parameter over time varies as

�

t

=

V k

a

k

a

� k

e

�

e

�k

e

t

� e

�k

a

t

�

where t is time, V is volume, k

a

is the absorption rate, and k

e

is the elimination rate. The latter

three are unknown parameters. In R or S, this 
an be spe
i�ed as a fun
tion of the parameter

ve
tor:

mu <- fun
tion(p)f

p[1℄*p[2℄/(p[2℄-p[3℄)*(exp(-p[3℄*times)-exp(-p[2℄*times))g

Note that the fun
tion does not have, as argument, the times, so that they are not 
opied when the

fun
tion is evaluated, but must be found somewhere in the environment, preferably in a spe
i�ed

data obje
t.

In addition, the dispersion parameter depends on time through the lo
ation parameter, often

assumed to be

�

2

= �

Æ

t

The 
orresponding fun
tion for the log dispersion might be

disp <- fun
tion(p, mu) p[1℄*log(mu)

Another possibility is that the regression fun
tions for two parameters of the probability distribu-

tion may have parameters in 
ommon without one being a stri
t fun
tion of the other, as here.

The parameters in su
h a regression model, k

a

; k

e

; V , may also depend, in various ways, on

other 
ovariates. I next 
onsider this.

Linear (in parameters) part As already mentioned, the linear part of a model is now generally

spe
i�ed by the Wilkinson and Rogers notation for formul�. Any extensions should retain this as a

subset. On the other hand, link fun
tions are only useful for a (transformed) parameter depending

on 
ovariates through a stri
tly linear model.

To pursue our example, if the dependen
e of a parameter on the 
ovariates 
ontains a stri
tly

linear part, this might be spe
i�ed as

mu <- fun
tion(p, linear)f

tmp <- exp(linear)

p[4℄*tmp/(tmp-p[5℄)*(exp(-p[5℄*t)-exp(-tmp*t))g

Here, the absorption parameter depends on the 
ovariates through a linear (in the parameters) part,
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after appli
ation of a log link to ensure that its value is always positive. Then, some model-�tting

fun
tion might have the following general form:

modelfn(..., mu=mu, linear=�height+gfr, ...)

Here, the expression following the tilde is in standard Wilkinson and Rogers notation and may

refer to fa
tor variables. It never 
ontains anything before the tilde and, hen
e, 
an be used to

spe
ify how any parameter of a probability distribution depends on 
ovariates.

This approa
h has been implemented in my suite of nonlinear regression and repeated mea-

surements R libraries that I shall des
ribe brie
y below. The fun
tion, fnenvir, 
an modify an R

fun
tion su
h as the above so that it reads the 
ovariates from the data obje
ts des
ribed above.

4.1.5 General nonlinear spe
i�
ation

The above approa
h to spe
ifying nonlinear models, through R or S fun
tions, is powerful and

useful, but 
ertainly not always as intuitively 
lear and user-friendly as it might be. However, for

very 
omplex models where a series of fun
tions and subfun
tions may be required, it may be the

only feasible and eÆ
ient method at present possible.

In a linear regression model, the positions of the parameter 
oeÆ
ients in the formula do

not need to appear expli
itly. They 
an be impli
itly assumed, as in the Wilkinson and Rogers

notation. This is no longer possible in any extension to nonlinear regression models. To implement

nonlinear spe
i�
ation, the ability to distinguish variables and parameters (existing ve
tors and

unknowns) in formul� (like Maple, Mathemati
a) would be a step forward. Then, both variables

and parameters 
ould retain their individual names. Thus, for the above example, the user should

be able to spe
ify, as an argument to a model-�tting fun
tion,

mu = �volume*absorption/(absorption-elimination)*

(exp(-elimination*times)-exp(-absorption*times))

and the model-�tting fun
tion 
an dete
t automati
ally whi
h are known 
ovariates (preferably

stored in the data obje
ts des
ribed above) and whi
h are unknown parameters.

Here, the tilde begins the formula to indi
ate that it is a formula; again, it is not pre
eded by

the response variable. Thus, it does not have the restri
tive S signi�
ation that the response is

`distributed as' the model in the formula. Thus, again, su
h formul� 
an be used to des
ribe how

any parameter in a probability distribution depends on 
ovariates.

Note that su
h a formulation may be ineÆ
ient in 
omplex situations, as with the linear part

for the dependen
e of the absorption parameter on 
ovariates above. Here, this would have to be

given twi
e whereas it was only given on
e above in the R fun
tion. Matters qui
kly be
ome worse

in still more 
omplex 
ases so that the dire
t use of R fun
tions is then still ne
essary.

Various 
riteria are required for handling su
h expressions in model-�tting fun
tions:

� dete
ting existing 
ovariate ve
tors;

� ignoring 
on
i
ts of unknown parameters with existing (non-variable) obje
t names, su
h as
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fun
tions;

� transforming the formula into a fun
tion of one ve
tor of unknown parameters;

� substituting the resulting fun
tion into a probability distribution fun
tion to 
onstru
t a

likelihood fun
tion that 
an be rapidly evaluated by a nonlinear optimizer;

� evaluating it either in the appropriate environment or with respe
t to the data obje
t(s)

supplied to the model-�tting fun
tion, without 
opying the data.

All of the above 
riteria have been ful�lled in my R implementation: the fun
tion, finterp,


onstru
ts the appropriate R fun
tion from su
h a model formulation with known 
ovariates and

unknown parameters, using fun
tion 
losure to retain the environment in whi
h it was de�ned.

As for Wilkinson and Rogers formul�, whi
h finterp also re
ognizes and 
an also transform into

R fun
tions, the formul� begin with a tilde so that they have 
lass, formula and are language

obje
ts.

Although its primary use is to de�ne regression models, this formulation 
an also be used to


onstru
t a 
omplete likelihood fun
tion as the following example for Poisson nonlinear regression

shows.

# the regression fun
tion

regfn <- finterp(�a+exp(b0+b1*x1+b2*x2))

# the terms of the negative log likelihood fun
tion

poisfn <- finterp(�-y*theta+exp(theta)+lgamma(y+1), ve
tor=F)

# the null likelihood

poislikefn <- fun
tion(p) sum(poisfn(theta=p))

# the regression likelihood

poisreglikefn <- fun
tion(p) sum(poisfn(theta=regfn(p)))

The latter two assignments yield R fun
tions that 
an be fed dire
tly into the nonlinear optimizer.

Here, the variables, y, x1, and x2, are sear
hed for in the global environment and a, b0, b1, and b2

are re
ognized to be unknown parameters (if they do not exist), being 
olle
ted together to form

one ve
tor argument to the fun
tion, regfn. If the appropriate data obje
t were spe
i�ed as the

environment in an additional argument to finterp, the variables would, instead, be sought in that

obje
t (and only there).

5 Dis
ussion

Both the pro
edures for 
reating data obje
ts and for handling model formul� have been imple-

mented in my R library 
alled rmutil. They are used in a wide variety of model-�tting fun
tions

in my libraries, gnlm for generalized nonlinear regression models, growth for multivariate normal

and ellipti
al distribution models for repeated measurements, repeated for non-normal repeated
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measurements models, and event for event histories. Many of the model-�tting fun
tions in these

libraries provide the 
hoi
e among approximately 25 di�erent probability distributions.

The latest sour
e 
ode for all of these libraries is available at

www.lu
.a
.be/�jlindsey/r
ode.html

All of the examples of the analysis of repeated measurements data in Lindsey (1999) were analyzed

using this system. The data and R 
ode are available at

www.lu
.a
.be/�jlindsey/books.html

Some of the weaknesses of the implementations have been mentioned above. As well, 
ertain

data types de�nitely 
annot be handled by the proposed data obje
ts, su
h as overlapping 
lusters.

Others not yet available 
ould easily be implemented, for example, multivariate responses by storing

them in the slot as a matrix instead of a ve
tor. Still others are ineÆ
iently implemented, su
h as

spatial 
oordinates whi
h might better be stored as some sort of tree system rather than simply

as a pair of ve
tors.

Fa
tor variables 
annot be handled in the nonlinear formul� be
ause they refer to a ve
tor of

parameters. It would also be ni
e to be able to nest the spe
i�
ation of models (a formula within a

formula), for example, a linear part spe
i�ed by Wilkinson and Rogers notation within a nonlinear

regression.

A
knowledgments I thank Robert Gentleman and Ross Ihaka and the 
ore group for developing

the R software in whi
h the fun
tions des
ribed in this paper were written.

Referen
es

[1℄ Be
ker, R.A. and Chambers, J.M. (1984) S: An Intera
tive Environment for Data Analysis

and Graphi
s. Monterey: Wadsworth.

[2℄ Chambers, J.M. and Hastie, T.J. (1992) Statisti
al Models in S. Monterey: Wadsworth.

[3℄ Ihaka, R. and Gentleman, R. (1996) R: a language for data analysis and graphi
s. Journal of

Computational Graphi
s and Statisti
s, 5, 299{314.

[4℄ Lindsey, J.K. (1999, 2nd ed.) Models for Repeated Measurements. Oxford: Oxford University

Press.

[5℄ Wilkinson, G.N. and Rogers, C.E. (1973) Symboli
 des
ription of fa
torial models for analysis

of varian
e. Applied Statisti
s 22, 392{399.

14


