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Abstra
t

Regression models based on the normal distribution are easy to interpret be
ause the

distribution is symmetri
 and, with 
onstant varian
e, always has the same shape about the

regression fun
tion. The same is not true of skewed distributions. In simple 
ases, su
h as

the gamma and inverse Gauss distributions within the family of generalised linear models, an

easily interpretable parameter, the mean, is still available for regression modelling. This is not

more widely true, even with as 
ommon a distribution as the Weibull.

We des
ribe the problems that have arisen in the analysis of a two-treatment 
ross-over

trial involving use of vitamin B12 for hemodialysis patients. The natural parameter for re-

gression modelling in the best �tting generalised Weibull distribution does not appropriately

des
ribe the 
hanging position of this distribution. The problem is further aggravated when

auto
orrelation is in
luded.

Keywords: Auto
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1 Introdu
tion

In 
lassi
al normal-theory linear regression modelling, a plot of the �tted regression line fairly

represents the position of the model be
ause the normal distribution is symmetri
, with 
onstant

varian
e, and this line des
ribes 
hanges in the 
onditional mean. However, su
h a plot, alone, does

not des
ribe the sto
hasti
 variability about that line, as given by the varian
e of that distribution.

The lo
ation{s
ale family of distributions has the lo
ation (�) and s
ale (�) parameters related

to the response by (Y ��)=�. Su
h distributions are often symmetri
, su
h as the normal, Cau
hy,

logisti
, Lapla
e, and Student t distributions, so that � is the mode, as well as the mean (when it
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exists) and the median. In this sense, with 
onstant s
ale parameter, they are ideal for 
onstru
ting

regression models to des
ribe 
hanges in the position of a distribution with 
hanging 
ovariates.

In generalised linear models, the regression line des
ribes 
hanges in the mean of the 
hosen

distribution (for example, gamma or inverse Gauss). However, this may no longer be a suitable

representation of the model if the distribution is very skewed. For example, the mode may be more

appropriate. In addition, the varian
e is no longer suÆ
ient to des
ribe the variability about the

regression line be
ause of the skewness. Indeed, the varian
e is not even 
onstant in these models.

In other words, the 
omplete shape of the distribution needs to be taken into 
onsideration.

In the above families, the mean or some other lo
ation parameter determines the position of

the distribution. However, in other distributions, when su
h a parameter is not available, another

parameter may play a similar role with respe
t to the position. Thus, outside the generalised linear

and lo
ation{s
ale families, no parameter may dire
tly represent the mean so that the situation

be
omes even more 
omplex.

Consider, for example, the Weibull distribution,
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In regression models involving this distribution, log(�) is usually allowed to depend on various


ovariates. Note that � = � is a s
ale, not a lo
ation, parameter. However, it does have an

interpretation in terms of the position of the distribution: the s
ale parameter is proportional both

to the mean

� = �

�

1 +

1

�

�

�

and to the mode
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In some other distributions, su
h as the gamma, the mean is a s
ale parameter. In both of these

distributions, the s
ale parameter indi
ates position; in 
ontrast, for the symmetri
 members of

the lo
ation{s
ale family mentioned above, the s
ale parameter is independent of position.

In many modelling situations, it is also ne
essary to allow the shape parameter to depend on

some 
ovariates. Thus, for the Weibull distribution, log(�) would depend on 
ovariates, in whi
h


ase � is no longer proportional to the mean and the mode. It then be
omes essential to know how

the shape of the distribution is 
hanging with the 
ovariates. One example of su
h 
hanging shape

was given by Lambert and Lindsey (1999) for the four-parameter family of stable distributions.

Here, the problem of des
ribing the 
hanging position and shape of a skewed distribution

over time has arisen in the analysis of a two-treatment 
ross-over trial involving seven repeated

measurements within ea
h of three periods. The study involved use of vitamin B12 for hemodial-

ysis patients with treatments being either the 
onventional (HD) pro
edure or hemo-dia�ltration

(HDF). One mg of B12 was inje
ted intramus
ularly at the beginning of ea
h period and B12 was
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subsequently measured at weeks 1, 2, 3, 6, 8, 10, and 12. The two sequen
es were HDF/HD/HDF

and HD/HDF/HD. A washout period 
ould not be used be
ause the patients require dialysis at

least several times a week; there is no neutral treatment; either HD or HDF has to be used. There

were 26 patients involved, aged between 23 and 74 years, six of whom were female.

After inje
tion, B12 was expe
ted to de
line in a nonlinear fashion. In an earlier study, Moelby

et al. (2000) had found that, on 
onventional HD, vitamin B12 de
lined following su
h an inje
tion

whereas methyl maloni
 a
id (MMA) in
reased. This re
ipro
al movement of B12 and MMA

indi
ated that the perturbations of B12 
on
entration 
ould be of biologi
al signi�
an
e. The new

study, presented here, was designed to address this issue. The HDF treatment mentioned above

involved the use of a �lter with higher porosity to see if indeed B12 de
lined more and MMA also

in
reased more. Here, we look only at the 
hanges in B12.

This study, thus, is somewhat similar to that of propoxyphene analysed by Lindsey (1999, pp.

157{162 and 2001, pp. 131{135). However, an additional 
ompli
ation in the analysis of these

data is the fa
t that the B12 
on
entration was 
ensored at an upper limit of 1500 pmol/l. This

o

urred at the beginning of ea
h period just after inje
tion. As well, there is strong indi
ation of

auto
orrelation among the responses of ea
h individual within ea
h period.

Analysis showed that the generalised Weibull distribution

f(y; �; �; �) =
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best des
ribed the distributional shape when � depended on 
ovariates. Note that, when � = 1,

this is the usual Weibull distribution. Unfortunately, in general, when � 6= 1, this distribution does

not have a simple relationship between the mean/mode and �.

Here, we only 
onsider a model for 
on
entration of vitamin B12 depending on time and patient

weight at the end of ea
h dialysis (dry weight):

�
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where t is total time from the beginning of the trial, t

0

time from the beginning of a period (that

is, from inje
tion of B12), and x

2t

is the dry weight at time t. This latter 
ovariate is time-varying;

it 
an 
hange both within and between periods. Treatment (x

1t

) is also a time-varying 
ovariate

between periods, but was found not to be ne
essary in this model. As well, the � shape parameter

in Equation (1) was found to depend on dry weight but not dire
tly on time:

�

t

= �

0

0

e

�

0

2

x

2t

(3)

For simpli
ity and 
larity of the analysis here, we shall ignore the e�e
ts spe
i�
 to the 
ross-over

design, su
h as period and 
arry-over. A 
lini
al interpretation of these data will be published

elsewhere.
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2 Censoring

Let us �rst ignore the dependen
ies in the repeated measurements and 
on
entrate on the shape

of the distribution about the regression 
urve. We �t the above model based on the generalised

Weibull distribution of Equation (1) with two of the parameters depending on 
ovariates as de-

s
ribed by Equations (2) and (3). If we use the density for the un
ensored response values and the

survivor fun
tion for the 
ensored values, we obtain a negative log likelihood of 2400.9 whereas,

if we set the latter values to 1500 and use the density for all responses, we obtain 3287.7. This


learly indi
ates that 
ensoring is important. In the former model,

^

� = 7:94, very far from a

standard Weibull distribution. Thus, we may suspe
t that �

t

may not follow 
losely the mode of

the distribution.

The 
orresponding 
urves for the s
ale parameter �

t

, with the observed values, for one typi
al

subje
t are plotted in Figure 1. Clearly, a

ounting for 
ensoring in
uen
es the whole 
urve and

not just the estimates at the 
ensored values. Although the likelihood indi
ates that the model

allowing for 
ensoring �ts better, the plot seems to show that the �tted regression 
urve is 
loser to

the observations when 
ensoring is ignored. However, this is a plot of the s
ale parameter whi
h,

with su
h a large value of

^

�, may not a be a good measure of position.

Let us look more 
losely at the �rst (week 1) and last (week 12) values in the �rst period for

this individual. The estimated values of B12 
on
entration given by b�

t

are, at week 1, 839.3 pmol/l

allowing for 
ensoring and 976.6 pmol/l ignoring it; they are, respe
tively, 230.0 and 386.1 pmol/l

at week 12. To see how well these parameter values represent the position of the distribution,


onsider now the shapes of the distribution at these time points, as shown in Figure 2. Although

�

t

is estimated to be quite di�erent by the two models at week 12, the distributions are rather


lose, 
entred near 500 pmol/l where the observations lie. On the other hand, the shapes of the

distributions at week 1 are quite di�erent, as might be expe
ted be
ause the observation at this

time point is 
ensored. Although �̂

1

= 839:3 pmol/l for the 
ensoring model, the mode lies over

1500 pmol/l.

We 
an now use this approa
h to plot the regression 
urve using the mode instead of �

t

to

indi
ate the position. The improvement in interpretability is 
lear in Figure 3. The superior �t of

the model taking into a

ount 
ensoring is now evident, espe
ially for the 
ensored values. We may

note that, for the 
omplete set of observations on all subje
ts, the values of �

t

are between 156.27

and 912.93 pmol/l less than the 
orresponding modes, 
learly not proportional. This is primarily

due to the large value of

^

�, although �

t

is also varying over time with dry weight.

3 Auto
orrelation

One important way of allowing for dependen
e in su
h longitudinal data is auto
orrelation. If an

observed response y

it

for an individual i is some distan
e from the �tted regression fun
tion for

some appropriate parameter �

t

des
ribing the position of the distribution at a given time point t,
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Figure 1: Fitted regression fun
tions for � in the generalised Weibull distribution, ignoring 
ensor-

ing and taking it into a

ount, for one subje
t.
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Figure 2: Fitted generalised Weibull distributions at times 1 and 12 weeks for the 
urves of Figure

1.
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Figure 3: Fitted regression fun
tions for the mode in the generalised Weibull distribution, ignoring


ensoring and taking it into a

ount, for one subje
t.
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it is often useful to predi
t that the response at the following observation point for that individual

(�

i;t+1

) may also be away from the regression fun
tion in the same dire
tion. This 
an be written

as

�

i;t+1

= �

t+1

+ �(y

it

� �

t

)

where �

t

gives the underlying predi
tion 
urve if there were no dependen
e over time and �

i;t+1

is

the predi
ted value of the parameter for the subje
t i if that individual was at a distan
e y

it

� �

t

from the underlying predi
tion 
urve at the previous time point. Here, y

it

� �

t

is supposed to be a

measure of the previous residual or innovation. (For the 
ensored values in our data, the 
ensoring

point will be used.)

However, the question for skewed distributions is what to use for the predi
tion �

t

. This is

further 
ompli
ated if there is no natural lo
ation or other position parameter. As we have seen in

the previous se
tion, for our data, the models based on the generalised Weibull distribution have an

estimated �

t

, a s
ale parameter, systemati
ally underestimating the position of the distribution as


ompared to the mode. In other words, y

it

� �

t

will generally be positive even when the responses

are following the regression fun
tion. However, these di�eren
es should nevertheless vary in an

appropriate way as y

it

moves away from the main mass of the density of the distribution.

Indeed, introdu
ing the auto
orrelation parameter, based on the generalised Weibull s
ale pa-

rameter (�

t

), greatly improves the above model for these data, redu
ing the negative log likelihood

from 2400.9 above to 2152.7 here. Now,

^

� = 2:16, 
loser to the standard Weibull distribution

but still signi�
antly di�erent from it. The regression fun
tions for this model, based on �, are

plotted in Figure 4 for the same subje
t as previously. As in Figure 1, the � s
ale parameter of

the generalised Weibull distribution does not go through the data. But the problem is mu
h more

serious for �

t

than for �

it

, for the reason just explained. As expe
ted, �

it

lies 
onsistently above �

t

.

Here, the situation is not as simple as for the independen
e 
ase. The parameter of the gen-

eralised Weibull distribution is now �

it

, not �

t

. As for the independen
e 
ase, the mode 
an be

plotted. This is shown in Figure 5 along with the 10% probability density 
ontours. Here, be
ause

^

� is mu
h smaller than in the models of the previous se
tion, �

it

follows the mode very well. In


ontrast to the independen
e 
ase given above, here for all observations, the values of �

it

are only

between 27.25 and 99.8 less than the 
orresponding modes. Most of the variation is now due to

the dependen
e of �

t

on dry weight.

On the other hand, this pro
edure 
annot be used to 
orre
t the estimated values of �

t

; they

are depressed be
ause of the systemati
ally positive values of y

it

� �

t

. One solution would be to

repla
e �

t

by the mode in the 
al
ulation of the residuals for predi
tion. However, this would

be very 
omputationally expensive and hen
e would make estimation of the model parameters

extremely slow. Another possibility would be to introdu
e a true lo
ation parameter into the

generalised Weibull distribution, at the expense of added 
omplexity. These possibilities will be

the subje
t of further resear
h.
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Figure 4: Fitted regression fun
tions for �

t

and �

it

in the generalised Weibull distribution, taking


ensoring into a

ount, for one subje
t.
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Figure 5: Mode of the �tted generalised Weibull model, taking 
ensoring into a

ount, for one

subje
t, with the 
ontours having 10% of the probability density at the mode, along with the �tted

regression fun
tion for �

it

from Figure 4.
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4 Dis
ussion

Regression models based on the normal distribution are easy to interpret be
ause the distribu-

tion is symmetri
 so that the regression fun
tion a

urately represents its position. In addition,

with 
onstant varian
e, the distribution does not 
hange shape. The same is not true of skewed

distributions, as we have seen with the rather extreme 
ase presented here.

Parameters that appear natural to model, su
h as � in the generalised Weibull distribution

of Equation (1), may sometimes have restri
ted interpretability in terms of the position of the

distribution. The dependen
e of su
h a parameter on 
ovariates does not have the same meaning

as does the dependen
e of the mean of a generalised linear model. As we have seen, the diÆ
ulty


an be 
ompounded when dependen
e over time is also taken into a

ount.

Often, as in the above study, more than one parameter of a distribution (for example, � and/or

� in the generalised Weibull distribution) will require regression fun
tions depending on 
ovariates.

Then, it is essential to study the 
hanging shape of the distribution, not simply the regression


urve(s).
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