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1 A learning experiment

16 laboratory animals were tested for learning in a 2 x 2 factorial experiment
with training or not and light or bell stimulus. Each animal was allowed 20
attempts to complete a task in each of a series of trials (Aickin, 1983, pp. 238
240). Trials for an animal stopped when a perfect score was reached.

Not trained Trained
Light Bell Light Bell
6 1 2 1 1 0 2 1 2 0 0 3 0 0 2 0
8 6 7 6 0 0 2 1 0 0 0 4 0 0 0 3
3 16 5 15 2 0 9 0 0 10 0 4 4 7 3 2
6 17 13 19 3 0 4 0 7 17 10 6 4 5 0 0
6 17 19 17 16 0 1 4 18 17 15 8 15 3 0 0
5 8§ 19 19 12 0 9 4 19 19 18 15 10 4 7 0
18 18 18 17 17 0 15 5 19 19 19 17 11 6 14 3
18 17 19 19 18 0 16 7 18 19 15 15 13 2 11 2
17 18 17 19 15 14 17 13 18 19 19 14 19 11 15 8
19 18 20 20 16 15 17 17 20 19 19 16 20 12 18 12
19 19 - - 17 18 19 15 - 20 18 19 - 6 18 15
18 20 - - 20 16 19 15 - - 19 18 - 13 17 18
20 - - - - 18 20 19 - - 20 19 - 14 20 17
- - - - - 18 - 18 - - - 20 - 19 - 18
- - - - - 17 - 20 - - - - - 18 - 18
- - - - - 17 - - - - - - - 17 - 20
- - - - - 19 - - - - - - - 18 - -
- - - - - 19 - - - - - - - 20 - -
_ _ _ _ ~ 19 _ _ _ _ _ _ _ _ _ _
_ _ _ _ — 920 _ _ _ _ _ _ _ _ _ _
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2 Overdispersion

Negative binomial distribution

Pr(n) = Fé?r?nl;) <1 i U)'“ <1 :i U)”

with mean, u = kv, and correlation, p = 1/k.
Double Poisson distribution

Pr(n: v, 5) = 1 (v, 5) L (2)” (@)nn

ervp! \e n
with sufficient statistics, n and n log(n)
Multiplicative Poisson distribution
,u”/-;n2 e H
Pr(n; p, k) = 2, H)T

with sufficient statistics, n and n?
Consider growth curves of logistic

_ 20exp(Bo + Aitrial + Brstimulus)
14 exp(By + Brtrial + Bostimulus)

Mt

and Gompertz
pe = 20{1 — exp[— exp(fo + frtrial + f2stimulus)|}

forms.

Logistic = Gompertz

Poisson 618.1 622.1
Negative binomial 615.0 616.9
Multiplicative Poisson 618.7 618.8
Double Poisson 577.9 580.1
Normal-Poisson 603.4 602.7

No allowance has been made for dependence over time or heterogeneity.

3 Allowing for deviation from the norm

Suppose a common underlying profile exists for all individuals under the same
conditions. Obtain individual profiles by predicting the result at time (trial) t+1
from the previously available information. Use the common profile corrected by
how far that individual (¢) was from it at the previous time point:

fige1 = et + P (i — i)

Wlth0<p< 1 and nijo = Ho-
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Logistic =~ Gompertz

Poisson 566.0 566.3
Negative binomial 552.8 552.1
Multiplicative Poisson 966.8 566.2
Double Poisson 950.9 551.3

p =0.66 A second-order AR is unnecessary.

3.1 Binomial models

Independent Gompertz

Binomial 591.1 595.1
Beta binomial 540.2 461.8
Multiplicative binomial 473.3 457.2
Double binomial 549.6 454.9
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4 A general model for repeated measurements
Consider some cumulative distribution function
F(t;;0) =1 —exp{—H(t;;0)}

where, H(t;;0) is the corresponding integrated intensity function.
Apply a Laplace transform, E[exp{H (t;;0)z + log(z)}],
of the gamma distribution,

ﬁaza—le—ﬁz

to H(t;;0) to give

f(tj;eaaaﬁ) = {ﬂ-i—HO(é;Z,o)}a""l h(t370)

Let us use the parameters, a and 3, to model the dependence among the
repeated observations. Suppose they are functions of time such that

aj = i1t
Bi = Bj—1+H(t;0)

where, for discrete observation times, n; is the number of identical tied events
observed at that time point. Then, we obtain the conditional distribution,

f(t]|t17 v 7tj—1;07aaﬂ)
Q51 ;‘Sl h(t;; @)™
{Bj—1 + H(t;; )}t nyl
Oéj—lﬁ?iil h(t;; 0)"
lop n;!
Let the initial conditions ag = By = ¢ be an unknown parameter. Then, the
resulting multivariate distribution is

f(ty,...,tn;6,0)
X ] comthies )
0+ S (1 0))7 2 !

_ aj—1h(t;; 0)™
- Q%NH n;l

J
a frailty model, symmetric in all observations. Each new observation depends
on all preceding ones to the same extent. Suppose that the ¢; are fixed times
and the n; are random. Then, for example, if an exponential intensity function
is used, we obtain a multivariate negative binomial distribution.




Other possible ways to update these parameters include

aj = Wit ey g 4+ (1—wh T 4 n;
Bi = WwhTEB 0+ (1—whTh)6 4+ H(ty;0)

a non-stationary dependence and

a; = wti*ti*laj—l+(1—Wtj7tj71)‘5+”j
B, = +whTU H(t;_1;0) + H(t;;0)

a Markov dependence. The conditional distribution remains unchanged, but
the multivariate distribution no longer collapses to a simple form:

fltr,...,tN;0,0,w)

_ H O{j—lﬁ;i:l h(t;; @)™
B+ Ht; 0% 7yl

For the learning data, the Markov update fits best.

Time profile

Intensity None Logistic
Exponential 602.1 585.4
Weibull 569.9  569.5

w = 0.47, A = 1.92. No regression profile over time is required. The Weibull
intensity function allows for changes over time.
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5 Specifying the intensity function
We require an S-shaped intensity function such as

1
o+ Beti

h(t;) =
with slope 7 and asymptote 1/«. This has survival function

a+ i 1/ey

() =t/
and density

(a+ Bt
(CY + ﬁefvtj)l/ory—i-l

f(tg) =etil®

It is a truncated logistic distribution when v = 1/« and an exponential distri-
bution when =0, v =1/«

With a different v for each stimulus, the AIC is 563.0. The slope is 43 = 1.04
for the bell and 4, = 0.42 for the light, the asymptote is 1/& = 19.9, and the
dependence is @ = 0.53.
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6 Discussion

Repeated measurements may have both serial dependence and heterogeneity.
Individual and mean profiles are both informative. Modelling the intensity
function is a useful approach to longitudinal count data. Kalman filtering is a
powerful tool for longitudinal data.
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