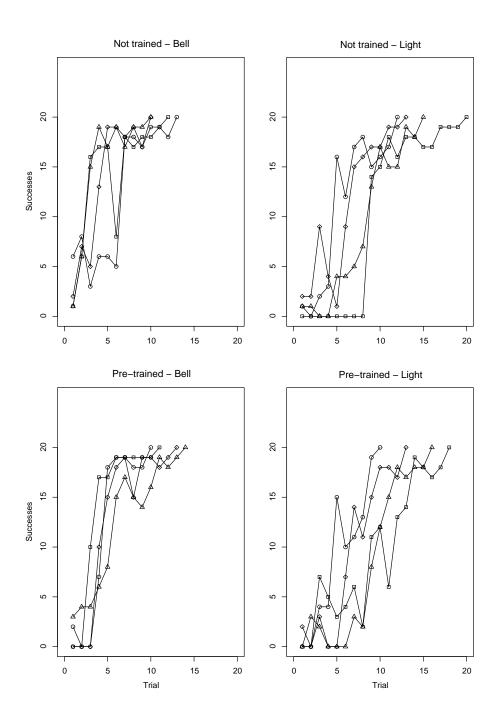
Some models for longitudinal count data

 $\begin{array}{c} {\rm J.K.\ Lindsey} \\ {\rm Biostatistics,\ Limburgs\ Universitair\ Centrum,\ Diepenbeek} \\ {\rm Email:\ jlindsey@luc.ac.be} \end{array}$

1 A learning experiment

16 laboratory animals were tested for learning in a 2×2 factorial experiment with training or not and light or bell stimulus. Each animal was allowed 20 attempts to complete a task in each of a series of trials (Aickin, 1983, pp. 238–240). Trials for an animal stopped when a perfect score was reached.

	Not trained					$\operatorname{Trained}$									
Light				Bell			Light			Bell					
6	1	2	1	1	0	2	1	2	0	0	3	0	0	2	0
8	6	7	6	0	0	2	1	0	0	0	4	0	0	0	3
3	16	5	15	2	0	9	0	0	10	0	4	4	7	3	2
6	17	13	19	3	0	4	0	7	17	10	6	4	5	0	0
6	17	19	17	16	0	1	4	18	17	15	8	15	3	0	0
5	8	19	19	12	0	9	4	19	19	18	15	10	4	7	0
18	18	18	17	17	0	15	5	19	19	19	17	11	6	14	3
18	17	19	19	18	0	16	7	18	19	15	15	13	2	11	2
17	18	17	19	15	14	17	13	18	19	19	14	19	11	15	8
19	18	20	20	16	15	17	17	20	19	19	16	20	12	18	12
19	19	_	_	17	18	19	15	_	20	18	19	_	6	18	15
18	20	_	_	20	16	19	15	_	_	19	18	_	13	17	18
20	_	_	_	_	18	20	19	_	_	20	19	_	14	20	17
_	_	_	_	_	18	_	18	_	_	_	20	_	19	_	18
_	_	_	_	_	17	_	20	_	_	_	_	_	18	_	18
_	_	_	_	_	17	_	_	_	_	_	_	_	17	_	20
_	_	_	_	_	19	_	_	_	_	_	_	_	18	_	_
_	_	_	_	_	19	_	_	_	_	_	_	_	20	_	_
_	_	_	_	_	19	_	_	_	_	_	_	_	_	_	_
_	_	_	-	_	20	-	_	_	_	-	_	_	_	-	_



2 Overdispersion

Negative binomial distribution

$$\Pr(n) = \frac{\Gamma(n+\kappa)}{n!\Gamma(\kappa)} \left(\frac{1}{1+\upsilon}\right)^{\kappa} \left(\frac{\upsilon}{1+\upsilon}\right)^{n}$$

with mean, $\mu = \kappa v$, and correlation, $\rho = 1/\kappa$.

Double Poisson distribution

$$\Pr(n; v, \kappa) = c_1(v, \kappa) \frac{\sqrt{\kappa}}{e^{\kappa v} n!} \left(\frac{n}{e}\right)^n \left(\frac{ve}{n}\right)^{n\kappa}$$

with sufficient statistics, n and $n \log(n)$

Multiplicative Poisson distribution

$$\Pr(n; \mu, \kappa) = c_2(\mu, \kappa) \frac{\mu^n \kappa^{n^2} e^{-\mu}}{n!}$$

with sufficient statistics, n and n^2

Consider growth curves of logistic

$$\mu_t = \frac{20 \exp(\beta_0 + \beta_1 \text{trial} + \beta_2 \text{stimulus})}{1 + \exp(\beta_0 + \beta_1 \text{trial} + \beta_2 \text{stimulus})}$$

and Gompertz

$$\mu_t = 20\{1 - \exp[-\exp(\beta_0 + \beta_1 \text{trial} + \beta_2 \text{stimulus})]\}$$

forms.

	Logistic	$\operatorname{Gompertz}$
Poisson	618.1	622.1
Negative binomial	615.0	616.9
Multiplicative Poisson	618.7	618.8
Double Poisson	577.9	580.1
Normal-Poisson	603.4	602.7

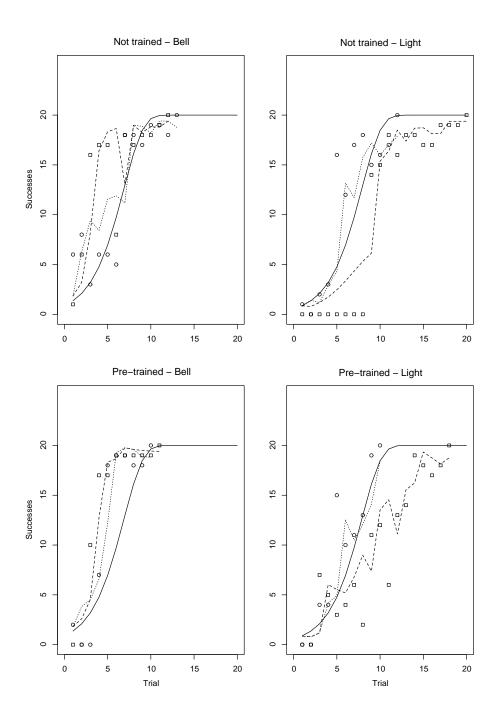
No allowance has been made for dependence over time or heterogeneity.

3 Allowing for deviation from the norm

Suppose a common underlying profile exists for all individuals under the same conditions. Obtain individual profiles by predicting the result at time (trial) t+1 from the previously available information. Use the common profile corrected by how far that individual (i) was from it at the previous time point:

$$\mu_{i,t+1} = \mu_{t+1} + \rho^{\Delta t} (n_{it} - \mu_t)$$

with $0 < \rho < 1$ and $n_{i0} = \mu_0$.



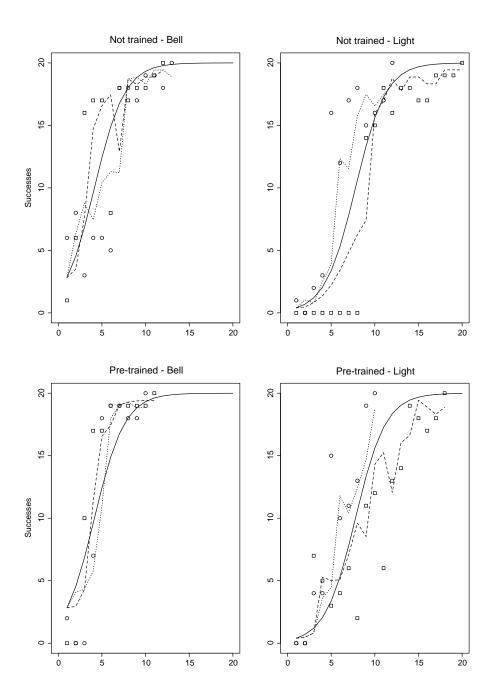
	Logistic	$\operatorname{Gompertz}$
Poisson	566.0	566.3
Negative binomial	552.8	552.1
Multiplicative Poisson	566.8	566.2
Double Poisson	550.9	551.3

 $\hat{\rho}=0.66$ A second-order AR is unnecessary.

3.1 Binomial models

	$\operatorname{Independent}$	$\operatorname{Gompertz}$
Binomial	591.1	555.1
Beta binomial	540.2	461.8
Multiplicative binomial	473.3	457.2
Double binomial	549.6	454.9

 $\hat{\rho} = 0.03$



4 A general model for repeated measurements

Consider some cumulative distribution function

$$F(t_j; \boldsymbol{\theta}) = 1 - \exp\{-H(t_j; \boldsymbol{\theta})\}\$$

where, $H(t_i; \boldsymbol{\theta})$ is the corresponding integrated intensity function.

Apply a Laplace transform, $E[\exp\{H(t_j; \boldsymbol{\theta})z + \log(z)\}],$ of the gamma distribution,

$$f(z) = \frac{\beta^{\alpha} z^{\alpha - 1} e^{-\beta z}}{\Gamma(\alpha)}$$

to $H(t_i; \boldsymbol{\theta})$ to give

$$f(t_j; \boldsymbol{\theta}, \alpha, \beta) = \frac{\alpha \beta^{\alpha}}{\{\beta + H(t_j; \boldsymbol{\theta})\}^{\alpha+1}} h(t_j; \boldsymbol{\theta})$$

Let us use the parameters, α and β , to model the dependence among the repeated observations. Suppose they are functions of time such that

$$\begin{array}{rcl} \alpha_j & = & \alpha_{j-1} + n_j \\ \beta_j & = & \beta_{j-1} + H(t_j; \boldsymbol{\theta}) \end{array}$$

where, for discrete observation times, n_j is the number of identical tied events observed at that time point. Then, we obtain the conditional distribution,

$$f(t_{j}|t_{1},...,t_{j-1};\boldsymbol{\theta},\alpha,\beta)$$

$$= \frac{\alpha_{j-1}\beta_{j-1}^{\alpha_{j-1}}}{\{\beta_{j-1} + H(t_{j};\boldsymbol{\theta})\}^{\alpha_{j-1}+n_{j}}} \frac{h(t_{j};\boldsymbol{\theta})^{n_{j}}}{n_{j}!}$$

$$= \frac{\alpha_{j-1}\beta_{j-1}^{\alpha_{j-1}}}{\beta_{j}^{\alpha_{j}}} \frac{h(t_{j};\boldsymbol{\theta})^{n_{j}}}{n_{j}!}$$

Let the initial conditions $\alpha_0 = \beta_0 = \delta$ be an unknown parameter. Then, the resulting multivariate distribution is

$$f(t_1, \dots, t_N; \boldsymbol{\theta}, \delta)$$

$$= \frac{\delta^{\delta}}{\{\delta + \sum H(t_j; \boldsymbol{\theta})\}^{\delta + \sum n_j}} \prod \frac{\alpha_{j-1} h(t_j; \boldsymbol{\theta})^{n_j}}{n_j!}$$

$$= \frac{\delta^{\delta}}{\beta_N^{\alpha_N}} \prod \frac{\alpha_{j-1} h(t_j; \boldsymbol{\theta})^{n_j}}{n_j!}$$

a frailty model, symmetric in all observations. Each new observation depends on all preceding ones to the same extent. Suppose that the t_j are fixed times and the n_j are random. Then, for example, if an exponential intensity function is used, we obtain a multivariate negative binomial distribution.

Other possible ways to update these parameters include

$$\alpha_{j} = \omega^{t_{j}-t_{j-1}} \alpha_{j-1} + (1 - \omega^{t_{j}-t_{j-1}}) \delta + n_{j}$$

$$\beta_{j} = \omega^{t_{j}-t_{j-1}} \beta_{j-1} + (1 - \omega^{t_{j}-t_{j-1}}) \delta + H(t_{j}; \theta)$$

a non-stationary dependence and

$$\alpha_j = \omega^{t_j - t_{j-1}} \alpha_{j-1} + (1 - \omega^{t_j - t_{j-1}}) \delta + n_j$$

$$\beta_j = \delta + \omega^{t_j - t_{j-1}} H(t_{j-1}; \boldsymbol{\theta}) + H(t_j; \boldsymbol{\theta})$$

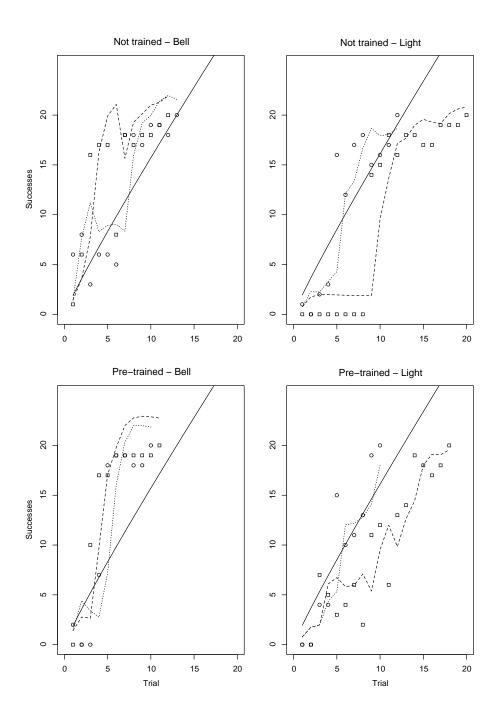
a Markov dependence. The conditional distribution remains unchanged, but the multivariate distribution no longer collapses to a simple form:

$$f(t_1,\ldots,t_N;\boldsymbol{\theta},\delta,\omega) = \prod \frac{\alpha_{j-1}\beta_{j-1}^{\alpha_{j-1}}}{\{\beta_{j-1}+H(t_j;\boldsymbol{\theta})\}^{\alpha_{j-1}+n_j}} \frac{h(t_j;\boldsymbol{\theta})^{n_j}}{n_j!}$$

For the learning data, the Markov update fits best.

	Time profile			
${ m Intensity}$	None	Logistic		
Exponential	602.1	585.4		
Weibull	569.9	569.5		

 $\hat{\omega}=0.47,~\hat{\lambda}=1.92.$ No regression profile over time is required. The Weibull intensity function allows for changes over time.



5 Specifying the intensity function

We require an S-shaped intensity function such as

$$h(t_j) = \frac{1}{\alpha + \beta e^{-\gamma t_j}}$$

with slope γ and asymptote $1/\alpha$. This has survival function

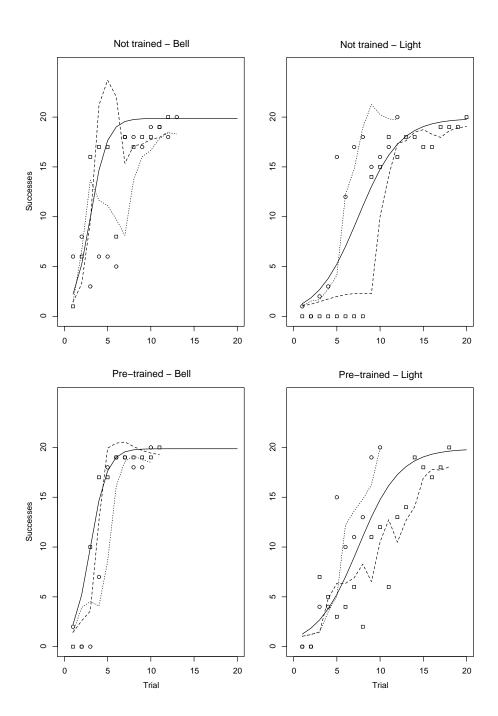
$$S(t_j) = e^{-t_j/\alpha} \left(\frac{\alpha + \beta}{\alpha + \beta e^{-\gamma t_j}} \right)^{1/\alpha \gamma}$$

and density

$$f(t_j) = e^{-t_j/\alpha} \frac{(\alpha + \beta)^{1/\alpha \gamma}}{(\alpha + \beta e^{-\gamma t_j})^{1/\alpha \gamma + 1}}$$

It is a truncated logistic distribution when $\gamma=1/\alpha$ and an exponential distribution when $\beta=0,\,\gamma=1/\alpha$

With a different γ for each stimulus, the AIC is 563.0. The slope is $\hat{\gamma}_1 = 1.04$ for the bell and $\hat{\gamma}_2 = 0.42$ for the light, the asymptote is $1/\hat{\alpha} = 19.9$, and the dependence is $\hat{\omega} = 0.53$.



6 Discussion

Repeated measurements may have both serial dependence and heterogeneity. Individual and mean profiles are both informative. Modelling the intensity function is a useful approach to longitudinal count data. Kalman filtering is a powerful tool for longitudinal data.