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Abstrat

The h-likelihood approah of Lee and Nelder (1996) is here interpreted as a penalised

likelihood for estimation of doubly-onstrained �xed e�ets that are shrinkage estimates similar

to those provided by random e�et models. In this way, it an be extended to arbitrary

distributions, ensored data, and nonlinear regression funtions. The estimates of both the

random e�et parameters and the variane omponents are diretly available.

The new proedure is illustrated by appliation to a standard split-plot design and to the

nonlinear parameters of a pharmaokineti one-ompartment model with left-ensored data.

Keywords: ensoring, ompartment model, �xed e�ets, h-likelihood, model seletion,
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1 Introdution

When a luster of multiple measurements is made on eah of several individuals, random e�ets

(RE) models provide a useful approah to handling the heterogeneity among the individuals that

is not aounted for by the available inter-luster ovariates. Responses (y

ij

; j = 1; : : : ; n

i

) in a

luster i are assumed independent given one or more unobserved `variables' or random e�ets.

(For simpliity in what follows, I shall restrit attention to one suh random e�et, although the

disussion extends immediately to the more general ase.) Then, models an be onstruted based

on a mixture distribution whereby these random e�ets are integrated out yielding a multivariate

distribution for the observations on eah individual (of t):
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where � is a vetor of regression parameters, and � and � are dispersion (or shape) parameters.

(Dispersion parameters will be de�ned so that they inrease with their orresponding varianes.)
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Here, f

1

(�) is a density, whereas f

0

(�) may be a density or a disrete probability distribution de-

pending on the nature of y

ij

. The unobservable u disappear in the onstrution of the multivariate

distribution and need play no further role in the analysis. The model resulting from this proedure

then yields a likelihood funtion upon whih inferenes an be made.

A major drawbak of suh models is the integration whih most often must be done numerially,

in several dimensions if there is more than one random e�ets. However, when f

0

(�) and f

1

(�) are

normal distributions, or the latter is the onjugate distribution of the former, the integration an

sometimes be performed analytially. Even in these ases, important exeptions our when the

regression funtion is nonlinear in the unobserved random e�ets to be integrated out and/or the

observations are ensored, both of whih our, for example, in appliations of pharmaokineti

ompartment models. Thus, it would be valuable to have available a proedure whih is easily

appliable for any arbitrary suitable distributions f

0

(�), and its umulative distribution funtion

(df), and f

1

(�), with regression funtions nonlinear in the unobserved random e�ets.

Let us all
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the orresponding �xed e�ets (FE) model, where the u

i

s, suitably onstrained, are the t � 1

unknown FE parameters to be estimated along with � and �. In addition, all the model based

on f

0

(y

ij

;�; �), onditioning on available ovariates, but not on the u

i

s, the null model. If an

appropriate mixing distribution has been seleted for Equation (1), one might expet it to �t

better than the orresponding FE model of Equation (2) by model seletion riteria suh as the

AIC, beause of the penalty for estimation of a muh larger number of parameters in the latter.

Lee and Nelder (1996) introdued a di�erent approah whih, unlike the RE model, does not

require integration when f

0

(�) is a generalised linear model (GLM). Subsequently, they (2001a

& b) have somewhat widened the sope. They propose to base inferenes on what they all an

h-likelihood:
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where u is a vetor of unknown parameters to be estimated, as in the FE model. However, this

h-likelihood is puzzling: it appears to be based on a model that ontains t� 1 more parameters to

estimate than the standard RE model of Equation (1) and one more (�) than the orresponding

standard FE model in Equation (2). Is the latter parameter identi�able and an it be estimated?

On the other hand, arguments in favour of this approah inlude that integration is not required

and that shrinkage estimates are diretly provided in plae of the usual FE estimates.

The presentation of Lee and Nelder only overs GLMs whih allow a rather restrited lass

of distributions and linear regression funtions, without ensoring. Their estimation proedures

depend heavily on the speial harateristis of the exponential dispersion family upon whih

GLMs are based. The question, then, is if Equation (3) an be adapted in some way so that it
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an be treated as an ordinary likelihood for models based on distributions outside the exponential

dispersion family in the presene of ensoring and having regression funtions nonlinear in the

unobserved random e�ets.

2 h-likelihoods

In a way similar to that used for ordinary GLMs, Lee and Nelder (1996, 2001a & b) do not use the

h-likelihood based on Equation (3) to estimate the dispersion parameters, but only � and u for �xed

values of � and �. Their proedure for doing this depends heavily on the speial harateristis of

the exponential dispersion family and hene annot be used in the more general ase onsidered

here.

2.1 h-likelihoods orrespond to no model

For arbitrary distributions f

0

(�) and f

1

(�), possibly with a nonlinear regression funtion and/or

ensoring, we must be able to maximise the h-likelihood globally over all parameters, as an be

done with any standard likelihood. However, an h-likelihood annot be treated as an ordinary

likelihood for at least two reasons.

1. Equation (3) appears to orrespond to a model that an yield the probability of the data for

�xed values of the parameters, inluding u. However, the sum or integral of the �rst fator

on the right over all possible values of y

ij

is unity so that multiplying by the seond fator

will give a value less than or equal to one. Thus, the h-likelihood is does not orrespond to

a true probability model. Normalising simply eliminates the seond fator.

2. The h-likelihood based on Equation (3), when optimised over all parameters, has an in�nite

maximum with all u

i

idential and � = 0 (that is, zero variane for the mixing distribution),

the null model. However, this problem does not our in the Lee and Nelder approah beause

they �x � at some �nite nonzero value alulated by other proedures. An in�nite likelihood

is harateristi of inappropriate use of a density instead of a probability in a likelihood

funtion; it an be eliminated by replaing the densities by di�erenes of dfs for some �nite

unit of preision about the random variables so that the maximum of the h-likelihood is then

less than or equal to unity. Unfortunately, that does not solve the problem here.

I shall now outline ways in whih these two problems an be overome. In onstruting an h-

likelihood, let L

0

(�; �; u

i

; y

ij

) represent the �rst fator on the right of Equation (3), L

1

(�; u

i

) the

seond fator, and L(�; �; �; u

i

; y

ij

) their produt.

2.2 h-likelihood estimates

The problemati parameter in this h-likelihood is �. Inspetion of Equation (3) shows that this

parameter must be a funtion of the u

i

s. For example, in a random interept model with f

0

(�) and
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f

1

(�) both normal distributions, the estimate of the mixing variane is �̂ =

P

û

2

i

=t. The speial

ase of the null model with all u

i

= 0 has �̂ = 0. Thus, � is not, in fat, an additional parameter;

it is not identi�able. Let us look at this more losely.

Consider �rst optimising the seond fator of the h-likelihood alone. For one �xed u

i

, the

maximum is given by

lim

�!0

L

1

(�; u

i

) = 1

(if based on probabilities; if based on densities, the maximum is in�nite). However, in the omplete

h-likelihood, there are several u

i

s and they are not �xed, but are unknown parameters. Thus,

onsider next the simultaneous maximum of the produt,

Q

i

L

1

(�; u

i

). This will still be unity

when � = 0, implying that all of the u

i

s are idential, orresponding to the null model.

Consider now the unonstrained maximum of the �rst fator in the h-likelihood, alone. This

orresponds to the FE model of Equation (2), yielding a value muh smaller than one. Generally,

the values of the u

i

s estimated in this way will all be di�erent unless all lusters are very similar.

Thus, this onits with optimisation of the seond fator.

Now let us look at the two fators together. If the u

i

s in the seond fator were set to the FE

values, this funtion would have a maximum when � is the dispersion of these values (for example,

the variane of the u

i

s when f

1

(�) is a normal distribution). This would also be very onsiderably

less than its unonstrained maximum of unity. Thus, the maximum of the omplete h-likelihood,

Q

ij

L(�; �; �; u

i

; y

ij

), should yield a ompromise between the null and FE models, depending on

the value of �. The struture of the h-likelihood should at to plae a onstraint on the FE u

i

parameter values. However, this does not our when � is estimated simultaneously with the u

i

s,

instead of being �xed, beause the seond fator an reah one, greatly outweighing the �rst fator,

so that the overall maximum of the h-likelihood orresponds to the null model.

Thus, the problem is to obtain a value for �; the h-likelihood has a maximum at � = 0, pointing

to the null model. Lee and Nelder (1996) overome this by using an adjusted h-likelihood in whih

Equation (3) is multiplied by a multivariate normal distribution f

2

(�):
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where H is obtained from the GLM estimation proedure and involves �. They use this to iterate

between estimating �;u and �; � so that this is in fat the `likelihood' they are using, not the

h-likelihood

Q

ij

L(�; �; �; u

i

; y

ij

). Again, for the �rst reason given above for h-likelihoods, this

adjusted h-likelihood also does not orrespond to a probability model.

The e�et of inluding this additional fator is that � is no longer estimated only from

P

û

2

i

=t.

Thus, for example, in a linear regression model where f

0

(�) and f

1

(�) are both normal distributions,

with varianes respetively � and �, the estimate of � obtained from Equation (4) is a weighted

sum of the two variane estimates,

^

� and

P

û

2

i

=t. See the derivation by Lee and Nelder (1996)

following their Equation (4.8). The question is how to interpret this in a useful general way.
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2.3 Doubly-onstrained �xed e�ets

Consider �rst the lassial normal-normal model. In the FE model with a di�erent interept in

eah luster,

bu

i

= �y

i+

� �

i

(

b

�)

where �

i

(�) is the regression funtion �tted, not inluding u

i

. In the orresponding RE model,

Y

ij

given u

i

has onditional distribution f

0

(�), with variane � and, from Equation (3), � is the

variane of the marginal distribution of the u

i

s. Y

ij

has marginal distribution given by Equation

(1) with variane � + �, whih an be estimated by

^

� +

P

û

2

i

=t, essentially the estimate of �

obtained from the adjusted h-likelihood based on Equation (4).

Now let us look at arbitrary onditional and marginal distributions f

0

(�) and f

1

(�). Although, in

general, the varianes will not be expliit parameters in the model, let �

2

0

represent the onditional

variane of Y

ij

given u

i

and �

2

1

the marginal variane of the u

i

s parametrised with some onstraint,

suh as sum zero or produt one. Then, the former an be estimated by

�̂

2

0

=

X

i

X

j

[y

ij

� �

i

(

b

�;
^
u)℄

2

=n

+

where �

i

(�) is now some regression funtion possibly nonlinear in �;u. (n

+

might be adjusted by

the number of estimated parameters.)

Let us assume that the marginal distribution f

1

(�) is suh that its dispersion or shape parameter

� is some funtion of �

2

1

: �(�

2

1

). Examples of suh distributions inlude the normal, gamma,

inverse Gauss, Weibull, and beta, and modi�ations of them suh as the log normal and inverse

gamma; distributions with in�nite variane, suh as the Cauhy, must be exluded. Then, I

propose to estimate this parameter, not by �̂ = �(�̂

2

1

) as when Equation (3) is optimised, but by

�̂ = �(�̂

2

0

+ �̂

2

1

). For example, in the lassial normal-normal linear model, � will be estimated

by the marginal variane of Y

ij

, �̂

2

0

+

P

û

2

i

=t, as desribed above. Using this relationship, we an

maximise the h-likelihood in Equation (3) diretly in one step using a nonlinear optimiser. Beause

the estimate of � is onstrained away from zero by the inlusion of �

2

0

, this generalised h-likelihood

funtion is prevented from going to in�nity.

This proedure an be interpreted in the following way. Consider the FE model of Equation

(2). The FE parameters u

i

have some onstraint suh as sum zero or produt one, so that t � 1

independent estimates are obtained from the orresponding likelihood. Now introdue a seond

onstraint. Not only will the mean of these parameters (or their logarithm) be zero but they will

have some hosen distribution f

1

(�) with variane �

2

0

+�

2

1

. With these two onstraints inorporated

into the model, t � 2 independent estimates need to be estimated from the h-likelihood, one less

than for the orresponding FE model. Let us all this the doubly-onstrained FE model.

The �rst onstraint an be introdued into the standard likelihood based on Equation (2)

diretly in the usual way. However, point estimation using the seond requires that this likelihood

be multiplied by f

1

(�), yielding the h-likelihood of Equation (3), a form of penalised likelihood.
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Then, this funtion must be maximised using �̂ = �(�̂

2

0

+�̂

2

1

). On the other hand, the likelihood for

making inferenes about the doubly-onstrained FE model, suh as model seletion, remains that

based on Equation (2). The h-likelihood is an estimation proedure, a form of penalised likelihood

for introduing an additional onstraint on the u

i

s, not an ordinary likelihood funtion.

Note that the hoie of the way in whih � depends on the other parameters, here via � = �(�

2

0

+

P

u

2

i

=t), only determines the onstraint plaed on the u

i

. It does not involve any approximate

inferene proedure, as do the derivation of the adjusted h-likelihood of Equation (4) or quasi-

likelihood.

2.4 Goodness of �t

In omplex models outside the exponential family, standard proedures for goodness of �t, suh as

examination of residuals, are generally of little use for indiating problems with a model and for

suggesting alternatives. The interpretation of h-likelihood as an ordinary FE likelihood penalised

by an additional onstraint on the FE parameters allows us to use the likelihood based on Equation

(2), not the h-likelihood, in model seletion riteria, suh as the AIC or BIC.

One example used by Lee and Nelder (1996) is the seed germination data of Crowder (1978).

As shown by Lindsey (1999), there is little evidene of overdispersion in these data. Beause Lee

and Nelder do not have available an objetive model seletion riterion, they do not realise that

the model based on their h-likelihood �ts no better than the ordinary binomial model. A standard

binomial GLM has an AIC (negative log likelihood plus the number of estimated parameters) of

58.9 as ompared to 58.8 for the orresponding beta-binomial model whih has been penalised for

one extra parameter. A binomial generalised linear mixed model (GLMM) for overdispersion, with

normal mixing distribution, has an AIC of 58.6, again with one more parameter than the standard

binomial model. Aording to Lee and Nelder (1996), the latter analysis is essentially similar to

their h-likelihood.

Thus, some objetive model seletion riterion is essential when doing any model �tting, both

to obtain reasonably �tting models and to avoid over�tting as in this example.

3 Examples

3.1 Choolate akes

A seond example used by Lee and Nelder (1996) involves the breaking angle of hoolate akes,

from Cohran and Cox (1957, p. 300). For these data, there are 15 lusters (the repliations) with

18 observations in eah (three reipes at eah of six temperatures).

All approahes point to a model with di�erenes among repliations and reipes and a linear

trend in temperature, so that I shall only disuss this. Consider �rst the lassial analysis of

Cohran and Cox using a normal distribution. Applying maximum likelihood to the RE model, we
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Table 1: Estimates of repliation e�ets from various models �tted to the hoolate ake data with

their standard errors (s.e.). The last repliate has e�et equal to minus the sum of the others.

Those for the gamma-inverse gamma are on the log sale.

Normal-normal Gamma-inverse gamma

Fixed Doubly-onstrained FE Fixed Doubly-onstrained FE

1 14.71 14.30 0.397 0.410

2 13.43 13.06 0.365 0.379

3 4.82 4.69 0.155 0.169

4 1.16 1.13 0.057 0.070

5 0.27 0.27 0.020 0.035

6 �3:40 �3:30 �0:094 �0:081

7 �4:79 �4:66 �0:152 �0:136

8 �4:73 �4:60 �0:146 �0:132

9 �4:79 �4:66 �0:144 �0:131

10 �3:29 �3:20 �0:094 �0:080

11 �2:23 �2:17 �0:053 �0:040

12 �1:18 �1:15 �0:023 �0:009

13 �0:23 �0:23 0.014 0.030

14 �4:23 �4:12 �0:131 �0:116

15 �5:51 �5:36 �0:172 �0:158

s.e. 1.06 1.04 0.033 0.031

�nd the estimated variane omponents to be 22.89 and 36.52. (In fat, reipes are nested within

repliations, giving variane estimates 19.11, 35.57, and 3.47, but, following both Cohran and Cox

and Lee and Nelder, I shall ignore this in what follows.) The orresponding point estimates using

the doubly-onstrained FE model are 21.65 and 35.72. Thus, these penalised estimates, obtained

without integration, are very lose to those from the RE model. The FE and orresponding

shrinkage estimates are shown in the �rst two olumns of Table 1. Beause of the large number of

observations within eah luster (repliation), little shrinkage ours.

Lee and Nelder (1996), following Firth and Harris (1991), use a multipliative model (log link)

with onstant oeÆient of dispersion (gamma distribution) and the onjugate mixing distribution.

To obtain this here, I shall modify the above model in three steps, hanging sequentially the link

from identity to log, f

0

(�) from normal to gamma, and f

1

(�) from normal to inverse gamma. As an

be seen in Table 2, introduing a log link does not improve the �t. On the other hand, introduing

the gamma onditional distribution for f

0

(�) does improve it. Again, the doubly-onstrained FE

model provides a somewhat better �t than the FE model, with almost no shrinkage.

Lee and Nelder (1996) use a gamma distribution with log link and inverse gamma mixing
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Table 2: AICs for various models �tted to the hoolate ake data.

f

0

(�) Normal Normal Gamma

Link Identity Log Log

Null model 939.5 939.6 921.3

Fixed e�et 817.0 817.0 808.2

f

1

(�) Normal Inverse Normal Inverse Normal Inverse

gamma gamma gamma

Random e�et 837.2 834.6 837.5 835.7 826.0 826.5

Doubly-onstrained FE 816.2 816.3 816.8 816.9 807.2 807.2

distribution; this is the third step. As seen in Table 2, the inverse gamma mixing distribution does

not �t better than the normal. The FE and orresponding shrinkage estimates are shown in the

last two olumns in Table 1.

Lee and Nelder (1996) estimate the shape parameter of the inverse gamma mixing distribution

to be 219.1. With my proedure, the estimate is 41.2, but the likelihood is almost onstant over

a wide range of values. With �xed mean, the variane is the reiproal of these values. Lee and

Nelder laim that their residual plots point to the inverse gamma mixing distribution in preferene

to the normal mixing distribution, but these plots an be misleading and are always subjetive. A

gamma or inverse gamma distribution with suh a small variane is virtually idential to a normal

distribution with the same variane. The RE model with normal mixing distribution has a slightly

larger likelihood (with the same number of parameters estimated) and the two doubly-onstrained

FE models both show the same �t, slightly better than the FE model.

It is interesting to note that, although not the best model, the normal onditional distribution

RE model, whether with identity or log link, �ts better with the inverse gamma mixing distribution

than with the more usual normal mixing distribution, as an also be seen in Table 2.

3.2 Pharmaokineti ompartment models

Lindsey et al. (2000) analyse Phase I pharmaokineti data onerning onentrations of osequinan

and its metabolite in 18 healthy volunteers. They found that a gamma distribution was required

with a �rst-order one-ompartment model

�

t

=

k

a

d

V (k

a

� k

e

)

�

e

�k

e

t

� e

�k

a

t

�

(5)

desribing the mean onentration over time, where the absorption rate k

a

, the elimination rate

k

e

, and the volume V are parameters to be estimated, d is the dose administered, and t is time.

They also showed that it is important to model the left-ensoring due to undetetably small values

and to use an appropriate funtion for the hange in dispersion over time. For the latter, they use

Equation (5) raised to a power, an additional parameter, where all four parameters have di�erent
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Table 3: AICs for the FE models �tted to the osequinan data.

Log normal Gamma

Null 563.9 548.9

Absorption 545.2 543.4

Elimination 471.4 426.6

Volume 550.2 491.6

Table 4: AICs for the FE, RE, and doubly-onstrained FE models for the elimination rate with a

gamma onditional distribution, �tted to the osequinan data.

Mixing distribution Normal Gamma

Fixed e�et 426.6

Random e�et 460.9 458.7

Doubly-onstrained FE 425.7 425.7

values than in the regression funtion for the mean. However, the only dependenies that they

onsidered were those aounted for by FE models or by ovariates.

Here, I shall apply random e�ets and the doubly-onstrained FE model to the three nonlinear

parameters individually, using an appropriate regression funtion for the dispersion parameter and

allowing for left ensoring. I shall ompare the results from the standard log normal distribution

with those from the gamma distribution. For simpliity, I shall only onsider the lowest dose level

of the parent drug, osequinan. For this subset of the data, there are 12 observations over time

for eah of the 18 subjets and 111 nondetetable values out of 216 observations. Two individuals

have extreme urves (numbers 12 and 18), both higher than the others.

Inspetion of the �ts of the FE models in Table 3 shows that di�erenes in the elimination rate

explain the most variability among the individual urves. As for the omplete data set, the gamma

distribution �ts muh better than the log normal.

Let us now look at the RE and doubly-onstrained FE models for the elimination rate, with

the gamma onditional distribution and using normal and gamma mixing distributions. As an be

seen in Table 4, the doubly-onstrained FE models �t somewhat better than the FE model, and

muh better than the orresponding RE models. There is little di�erene among the two mixing

distributions. The di�erenes in log elimination rate for eah subjet are shown in Table 5 using

the three models. Here, there is virtually no shrinkage. Individuals 12 and 18 learly stand out as

extreme, with lower elimination rates.

If the left-ensored nondetetable values are set to one-half the detetable level and the density

is used for them instead of the df, the FE and doubly-onstrained FE models for the elimination

parameter onverge to the null model with an AIC of about 632, muh worse than those that allow
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Table 5: Estimates of individual e�ets for the log elimination rate from models �tted to the

osequinan data with their standard errors for the gamma onditional distribution with normal

and gamma mixing distributions.

Fixed Doubly-onstrained FE

Normal Gamma

1 0.30 0.29 0.12

2 0.05 0.05 �0:12

3 0.57 0.56 0.38

4 0.60 0.59 0.41

5 0.93 0.92 0.75

6 �0:04 �0:04 �0:22

7 0.38 0.37 0.19

8 0.48 0.47 0.30

9 0.26 0.25 0.08

10 0.61 0.60 0.42

11 �0:32 �0:31 �0:49

12 �1:64 �1:62 �1:80

13 �0:26 �0:26 �0:43

14 0.15 0.15 �0:03

15 �0:42 �0:41 �0:59

16 �0:09 �0:08 �0:26

17 0.24 0.24 0.06

18 �1:79 �1:77 �1:95

s.e. 0.10 0.07 0.06
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orretly for ensoring. As with the models �tted to the omplete data set by Lindsey et al. (2000),

the ompartment model urve is greatly distorted.

4 Disussion

Penalties on the likelihood have been used in two di�erent ways here. The h-likelihood involves a

penalty that plaes a onstraint on the parameters in the statistial model, used in their point esti-

mation. This penalty is not used in the model seletion proess one estimates with the onstraint

have been obtained. On the other hand, the AIC and other model seletion riteria involve a

penalty on the omplexity of the model. These do not a�et the point estimates of the parameters

of a given model, but provide an objetive proedure for omparing distint models.

If the `orret' mixing distribution f

1

(�) were hosen, one might expet that the RE model

would �t better than the orresponding FE model, whether with one or two onstraints, beause

the latter has a large number of parameters estimated. This, however, will depend both on the

amount of information available within eah luster and on the penalty imposed. As is well known,

the BIC may indiate a simpler model than the AIC. For the ake data, the BIC gives a small

advantage to the RE model whereas, for the pharmaokineti data, it points strongly to the FE

and doubly-onstrained FE models over the RE one.

A likelihood funtion plays several roles in the analysis of data.

1. It orresponds to some probabilisti representation of the observed data, ontaining unknown

parameters.

2. By its maximisation, it allows point estimates of these parameters to be alulated.

3. By study of its shape, the preision of these estimates an be determined.

The h-likelihood of Lee and Nelder (1996) ful�ls none of these riteria, although their adjusted h-

likelihood does meet point 2. On the other hand, the interpretation of the h-likelihood as applying

one additional onstraint to the standard FE model to bring it loser to the RE model allows

Equation (2) to be interpreted as a standard likelihood. The estimation proedure proposed above

allows a wide lass of models to be �tted to lustered data involving ensoring and nonlinear

regression funtions.

All of the models used in the examples above an be routinely �tted using my libraries for R

available at www.lu.a.be/�jlindsey/rode.html. The random e�ets models are �tted by

Romberg integration, exept for ertain with the normal mixing distribution for whih the faster

Gauss-Hermite integration may used.
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