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1. Constru
ting 
ompartment models

Suppose that some sort of individual elements

(atoms, mole
ules, people, : : :) 
an move

among a number of di�erent 
ompartments.

In 
hemistry, the 
ompartments may be

mole
ules between whi
h atoms are moving.

In pharma
okineti
s, they may be organs or

tissues of the body.

In event histories, they may be states of a

patient.

Often, all potential movements among


ompartments will not be possible.
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The dynami
s of the system 
an be des
ribed

by the rates or intensities with whi
h the

elements move among the 
ompartments.

These rates will depend on a number of

fa
tors, espe
ially the numbers of elements in

the two 
ompartments between whi
h moves

are made.

Thus, the rates 
an be des
ribed

mathemati
ally by one or more di�erential

equations.

Unless these equations 
an be assumed to be

linear, the problem may be intra
table.
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In the simple 
ase, there are no inputs to the

system after t = 0 when the pro
ess begins.

The system of linear di�erential equations will

have the form

d�

T

(t)

dt

= �

T

(t)A

�(t) is a 
olumn ve
tor of length P , the

number of 
ompartments.

A is a P � P transfer matrix 
ontaining rate


onstants of movement between states in the

system.

In dire
t analogy to the solution of one su
h

equation, the general solution is

�

T

(t) = �

T

(0)e

At

If there are inputs to the system over time,

the fun
tion des
ribing these, say b(t), must

be in
luded:

�

T

(t) = �

T

(0)e

At

+

Z

t

0

b(u)e

A(t�u)

du
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Matrix exponentiation is de�ned by

e

At

= I+

At

1!

+

(At)

2

2!

+ � � �

A preferable way to 
al
ulate the exponential

is by spe
tral de
omposition.

If W is a matrix with the eigenve
tors of A as


olumns and D is a diagonal matrix


ontaining the 
orresponding eigenvalues,

then

A =WDW

�1

The exponential is then

e

At

=We

Dt

W

�1

In simple 
ases, the di�erential equations 
an

be solved analyti
ally, but often only a

numeri
al solution will be available.
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Generally, we may be interested in

� how the quantities of the elements in one

or more of the 
ompartments 
hange over

time (a marginal question) or

� the probable length of time an element

stays in a given 
ompartment (a


onditional question).

As an example, 
onsider a model often used

in pharma
okineti
s.

Suppose that a substan
e is ingested at one

point in time (not 
ontinuously over the

study period).
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The 
orresponding di�erential equations are

d�

0

(t)

dt

= �k

a

�

0

(t)

d�

1

(t)

dt

= k

a

�

0

(t)� k

e

�

1

(t)

�

0

is the mean amount at the absorption site

(often the stoma
h),

�

1

is the mean of the 
on
entration that

interests us, usually measured in the blood,

k

a

is the absorption rate at that site,

k

e

the elimination rate at that site.
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Then,

A =

 

�k

a

k

a

0 �k

e

!

We 
an set the initial 
ondition to

�(0) = (x;0)

T

, where a dose of size x is the

input to the �rst 
ompartment.

When solving the above di�erential

equations, we shall be interested in the

se
ond element of �(t), the amount in the

se
ond 
ompartment.

For given, �xed values of the parameters, this


an be 
al
ulated numeri
ally using the

equation involving matrix exponentiation.
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Suppose that k

a

= 0:4, k

e

= 0:05, and x = 1.

The 
urves of total 
on
entration in the

system and of 
on
entration in the se
ond


ompartment are
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In fa
t, in this example, numeri
al

exponentiation of the transfer matrix is not

ne
essary.

The di�erential equations 
an be solved

analyti
ally.

The resulting nonlinear fun
tion for the


ompartment of interest is

�

1

(t) =

xk

a

(k

a

� k

e

)

�

e

�k

e

t

� e

�k

a

t

�

This 
ommonly used fun
tion is 
alled the

open, �rst-order, one-
ompartment model.

The �rst 
ompartment does not appear in

the �nal fun
tion.
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2. Event histories

A Markov 
hain des
ribes a pro
ess that

moves from state to state (the


ompartments).

Let �(t) be the ve
tor of marginal

probabilities of being in the various states at

(dis
rete) time t and

T be the transition matrix of 
onditional

probabilities of 
hanging among states.

Then,

�

T

(t+1) = �

T

(t)T

and

�

T

(t) = �

T

(0)T

t

where t is an integer.
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For a Markov 
hain in 
ontinuous time, T is

repla
ed by a matrix � of transition

intensities su
h that

T = e

�

so that

�

T

(t) = �

T

(0)e

�t

This involves the following assumptions:

the pro
ess remains in ea
h state i a stri
tly

positive length of time

the sojourn times in ea
h state have

independent exponential distributions,

ea
h with a di�erent mean time in the state

�

i

or intensity of leaving the state �

i

= 1=�

i

.

If the state is absorbing, the mean duration is

in�nite and �

i

= 0.
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The matrix � 
ontains the 
onditional

transition intensities �

jji

of moving from state

i to state j 6= i.

The diagonal element is set equal to ��

i

where

�

i

=

X

j 6=i

�

jji

so that the sum of ea
h row is zero.

The 
orresponding matrix of transition

probabilities for a given time interval �t 
an

be obtained by matrix exponentiation:

T

�t

= e

��t

Modelling involves allowing the 
onditional

intensities �

jji

to depend on 
ovariates.
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Advantages:

� Simple to estimate.

� Missing values and dropouts easily

handled (add 
ompartments).

Disadvantages:

� Unrealisti
 
onstant intensity (exponential

distribution) assumption of random

movement among states.
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Possible extensions:

� semi-Markov models where the


onditional intensities depend on time;

� variation in intensities among individuals

(frailty);

� time-varying random external in
uen
es;

� nonlinear di�erential equations.
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Consider the example of people who may


ontra
t a nonfatal infe
tious disease that


onfers immunity upon re
overy.

We 
an then divide a given population into

three distin
t 
ategories:

1. sus
eptibles (S) who 
an 
at
h the

disease;

2. infe
tives (I) who have the disease and

are 
ontagious so that they 
an transmit

it;

3. re
overed (R), who have had the disease

and are now immune.
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Closed SIR model

Susceptible
k2 Infective

k3 Recovered

Open SIR model

k1 Susceptible
k2 Infective

k3 Recovered

Assumptions:

� the rate (k

2

) of exit from the sus
eptible


ategory and entry to the infe
tive


ategory is proportional to the present

numbers of infe
tives and sus
eptibles;

� the rate (k

3

) of exit from the infe
tive


ategory and entry to the re
overed


ategory is proportional to the present

number of infe
tives;
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� ea
h 
ategory of people is uniformly

mixed so that every pair of individuals has

the same probability of meeting; and

� the population is of 
onstant size.

Then, the model 
an be de�ned by the

nonlinear di�erential equations

dS(t)

dt

= �k

2

S(t)I(t)

dI(t)

dt

= k

2

S(t)I(t)� k

3

I(t)

dR(t)

dt

= k

3

I(t)

with initial 
onditions S(0) = S

0

> 0,

I(0) = I

0

> 0, and R(0) = 0.

If the population is not 
losed so that

sus
eptibles are born or 
an immigrate at the


onstant rate k

1

, the �rst equation be
omes

dS(t)

dt

= k

1

� k

2

S(t)I(t)
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3. Pharma
okineti
s

Individuals following a sto
hasti
 pro
ess 
an

move through a number of di�erent states in

an event history.

Similar pro
edures 
an be used to des
ribe

the quantity (parti
les) of some material that

moves through the di�erent parts (the states)

of a system.

In 
ertain sto
hasti
 systems, we 
annot

observe 
hanges for individual elements but

only in aggregation.
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For example, in a 
hemi
al rea
tion, we


annot observe the 
hanges of state of the

parti
ipating atoms but only the total


on
entration of ea
h rea
tant and produ
t.

In the growth of a biologi
al organism, we


annot observe the addition of individual

proteins, or even of 
ells, but only the

in
rease in weight or length.

In other words, re
ords of 
hange in su
h a

system are averages of the sto
hasti



hanges of the 
omponents involved.

Su
h a system 
an generally be des
ribed by

rates of 
hange among 
ompartments.
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Thus, one way to 
onstru
t a me
hanisti


model for a pro
ess of material moving

through a system is

to divide that system into 
ompartments;

to assume that the rate of 
ow of the

substan
e between these obeys �rst-order

kineti
s.

The rate of transfer to a re
eiving or sink


ompartment is proportional to the


on
entration in the supply or sour
e


ompartment.

Then, the di�erential equations are linear.

These are 
alled the mass balan
e equations.
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However, a se
ond level of sto
hasti


variability is usually also present, resulting

from random external in
uen
es to the

system:


hanges in pressure or temperature of a


hemi
al rea
tion, 
hanges in food supply,

stress, and so on, to a biologi
al organism.

Thus, 
hanges at the level of the individual


omponents 
an only be modelled as a mean

fun
tion, with variation about it arising from

the se
ond level.

The probability distribution of elements in a


ompartment over time is used as a nonlinear

regression 
urve.
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Simple models are progressive.

For the open, �rst-order, one-
ompartment

model,

�(t) =

xk

a

V (k

a

� k

e

)

�

e

�k

e

t

� e

�k

a

t

�

is the nonlinear regression fun
tion.

However, the total dose x may not be

absorbed into the blood.

Hen
e, V , 
alled the apparent volume of

distribution, is in
luded as an extra

parameter, a proportionality 
onstant.
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Modelling questions:

1. What 
ompartments are required?

2. Whi
h distribution adequately des
ribes

random external in
uen
es?

3. What rate 
onstants vary among

individuals (`frailty')?

4. In what way is the pro
ess in
uen
ed by

unknown internal and external fa
tors

over time?
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When only one 
ompartment is studied, an

arbitrary set of additional 
ompartments 
an

be added to the system to modify the


hara
teristi
s of the one of interest.

Consider a series of 
ompartments where

input o

urs to one of the last 
ompartments

in the series.

Output only o

urs by passing through the


ompartments to the right and out the last


ompartment, all with rates k

e

.

1

kr

kl

2

kr

kl

3
ke

Input

4
ke
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Elimination through the 
ompartments to the

right of input 
orresponds to a

gamma-distributed 
learan
e time.

The dispersion parameter equals the number

of elimination 
ompartments, in
luding the

input 
ompartment.

However, some of the material 
an also move

through the 
ompartments to the left of the

input, one 
ompartment at a time.

This is a random walk with re
e
ting barrier

at 
ompartment 1.

The rates are k

l

to the left and k

r

to the

right (drift if k

l

6= k

r

; generally, k

l

< k

r

).

A large number of 
ompartments to the left

of input indi
ates a delay in elimination.
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The random walk des
ribes retention of the

material.

With a large number of random walk


ompartments, this approximates a di�usion

pro
ess.

Thus, the model has two 
omponents:

di�usion within the site of input and

gamma-distributed 
learan
e from that site.

The transfer matrix will be

A =

0

B

B

B

B

�

�k

r

k

r

0 0

k

l

�k

l

� k

r

k

r

0

0 k

l

�k

l

� k

e

k

e

0 0 0 �k

e

1

C

C

C

C

A

and �(0) = (0;0; x;0)

T

for an input dose of x.

The number of parameters to estimate in this

model does not 
hange with the number of


ompartments.
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4. Comparison

Event history Pharma
okineti
s

Level Individual `E
ologi
al'

Modelling Conditional Marginal

External

disturban
e No Yes

Realisti


assumptions Not usually Yes
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