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1. Constructing compartment models

Suppose that some sort of individual elements
(atoms, molecules, people, ...) can move
among a number of different compartments.

In chemistry, the compartments may be
molecules between which atoms are moving.

In pharmacokinetics, they may be organs or
tissues of the body.

In event histories, they may be states of a
patient.

Often, all potential movements among
compartments will not be possible.
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The dynamics of the system can be described
by the rates or intensities with which the
elements move among the compartments.

These rates will depend on a number of
factors, especially the numbers of elements in
the two compartments between which moves
are made.

Thus, the rates can be described
mathematically by one or more differential
equations.

Unless these equations can be assumed to be
linear, the problem may be intractable.



In the simple case, there are no inputs to the
system after ¢t = 0 when the process begins.

The system of linear differential equations will
have the form

JTHO
dt
p(t) is a column vector of length P, the
number of compartments.

=p' (A

A is a P x P transfer matrix containing rate
constants of movement between states in the
system.

In direct analogy to the solution of one such
equation, the general solution is

wT(t) = uT(0)ert

If there are inputs to the system over time,
the function describing these, say b(t), must
be included:

BT (@) =T (A + [ "b(w)eAl- gy
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Matrix exponentiation is defined by

(At>2

—I+ a +.

A preferable way to calculate the exponential
IS by spectral decomposition.

If W is a matrix with the eigenvectors of A as
columns and D is a diagonal matrix
containing the corresponding eigenvalues,
then

A =WwWDWwW™1
The exponential is then

— Weth—l

In simple cases, the differential equations can
be solved analytically, but often only a
numerical solution will be available.



Generally, we may be interested in

e how the quantities of the elements in one
or more of the compartments change over
time (a marginal question) or

e the probable length of time an element
stays in a given compartment (a
conditional question).

As an example, consider a model often used
in pharmacokinetics.

Suppose that a substance is ingested at one
point in time (not continuously over the
study period).
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The corresponding differential equations are

dugt(t) = —kapo(t)
d”ollt(t) = kapo(t) — kepy (t)

uo IS the mean amount at the absorption site
(often the stomach),

u1 i1s the mean of the concentration that
interests us, usually measured in the blood,

kq 1S the absorption rate at that site,

ke the elimination rate at that site.
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T hen,

A — —ka  ka
0 —ke

We can set the initial condition to
1(0) = (x,0) T, where a dose of size z is the
input to the first compartment.

When solving the above differential
equations, we shall be interested in the
second element of u(t), the amount in the
second compartment.

For given, fixed values of the parameters, this
can be calculated numerically using the
equation involving matrix exponentiation.



Suppose that kg = 0.4, k. = 0.05, and z = 1.

The curves of total concentration in the
system and of concentration in the second
compartment are
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In fact, in this example, numerical
exponentiation of the transfer matrix is not
necessary.

The differential equations can be solved
analytically.

The resulting nonlinear function for the
compartment of interest is

Tka —ket —kqt
p1(t) = e vt —e e
G )
This commonly used function is called the
open, first-order, one-compartment model.

The first compartment does not appear in
the final function.
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Recurrent events:

0 —=Ao1 Aopn 0 '
0 0 —Agp Azp - )

Alternating events:
<—)\2|1 A2|1 >
Al —ALp2
Progressive events:
—A2)1 Aot 0
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Alternative outcomes:
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2. Event histories

A Markov chain describes a process that
moves from state to state (the
compartments).

Let w(¢) be the vector of marginal
probabilities of being in the various states at
(discrete) time t and

T be the transition matrix of conditional
probabilities of changing among states.
Then,
T+ =x"@)T
and
T () =x"(0)T!
where t is an integer.
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For a Markov chain in continuous time, T is
replaced by a matrix A of transition
intensities such that

T = eA
so that

7' (t) = 7' (0)eM

This involves the following assumptions:

the process remains in each state ¢ a strictly
positive length of time

the sojourn times in each state have
independent exponential distributions,

each with a different mean time in the state
w; Or intensity of leaving the state \; = 1/u;.

If the state is absorbing, the mean duration is
infinite and \; = 0.
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The matrix A contains the conditional
transition intensities A;; of moving from state
¢ to state 5 # 1.

The diagonal element is set equal to —);
where

Ai =D Al
J7i
so that the sum of each row is zero.

The corresponding matrix of transition
probabilities for a given time interval At can
be obtained by matrix exponentiation:

TAt — eAAt

Modelling involves allowing the conditional
Intensities A;; to depend on covariates.
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Advantages:

e Simple to estimate.

e Missing values and dropouts easily
handled (add compartments).

Disadvantages:

e Unrealistic constant intensity (exponential
distribution) assumption of random
movement among states.
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Possible extensions:

e semi-Markov models where the
conditional intensities depend on time;

e variation in intensities among individuals
(frailty);

e time-varying random external influences;

e nonlinear differential equations.
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Consider the example of people who may
contract a nonfatal infectious disease that
confers immunity upon recovery.

We can then divide a given population into
three distinct categories:

1. susceptibles (S) who can catch the
disease;

2. infectives (I) who have the disease and
are contagious so that they can transmit
it

3. recovered (R), who have had the disease
and are now immune.
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Closed SIR model

Susceptible ke

Infective Recovered

Open SIR model

% Susceptible ko ks

Infective Recovered

Assumptions:

e the rate (ky) of exit from the susceptible
category and entry to the infective
category is proportional to the present
numbers of infectives and susceptibles;

e the rate (k3) of exit from the infective
category and entry to the recovered
category is proportional to the present
number of infectives;
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e cach category of people is uniformly
mixed so that every pair of individuals has
the same probability of meeting; and

e the population is of constant size.

Then, the model can be defined by the
nonlinear differential equations

diiﬂ — _kyS(DI(D)
%(:) = koS()I(t) — k3I(t)
diit) = ksl(t)

with initial conditions S(0) = Sp > 0,
I1(0) = Iy > 0, and R(0) = 0.

If the population is not closed so that
susceptibles are born or can immigrate at the
constant rate k1, the first equation becomes

ds(t)

3 = k1 — k>S(t)I(t)
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3. Pharmacokinetics

Individuals following a stochastic process can
move through a number of different states in
an event history.

Similar procedures can be used to describe
the quantity (particles) of some material that
moves through the different parts (the states)
of a system.

In certain stochastic systems, we cannot
observe changes for individual elements but
only in aggregation.
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For example, in a chemical reaction, we
cannot observe the changes of state of the
participating atoms but only the total
concentration of each reactant and product.

In the growth of a biological organism, we
cannot observe the addition of individual
proteins, or even of cells, but only the
increase in weight or length.

In other words, records of change in such a
system are averages of the stochastic
changes of the components involved.

Such a system can generally be described by
rates of change among compartments.
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Thus, one way to construct a mechanistic
model for a process of material moving
through a system is

to divide that system into compartments;

to assume that the rate of flow of the
substance between these obeys first-order
Kinetics.

The rate of transfer to a receiving or sink
compartment is proportional to the
concentration in the supply or source
compartment.

Then, the differential equations are linear.

These are called the mass balance equations.
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However, a second level of stochastic
variability is usually also present, resulting
from random external influences to the
system:

changes in pressure or temperature of a
chemical reaction, changes in food supply,
stress, and so on, to a biological organism.

Thus, changes at the level of the individual
components can only be modelled as a mean
function, with variation about it arising from
the second level.

The probability distribution of elements in a
compartment over time is used as a nonlinear
regression curve.
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Simple models are progressive.

For the open, first-order, one-compartment
model,

Tka —ket —kqt
t) = e et —e e
1O = iy | )

IS the nonlinear regression function.

However, the total dose £ may not be
absorbed into the blood.

Hence, V, called the apparent volume of
distribution, is included as an extra
parameter, a proportionality constant.
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Modelling questions:

1. What compartments are required?

2. Which distribution adequately describes
random external influences?

3. What rate constants vary among
individuals (‘frailty’)?

4. In what way is the process influenced by
unknown internal and external factors
over time?
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When only one compartment is studied, an
arbitrary set of additional compartments can
be added to the system to modify the
characteristics of the one of interest.

Consider a series of compartments where
input occurs to one of the last compartments
in the series.

Output only occurs by passing through the
compartments to the right and out the last
compartment, all with rates ke.

Input \L
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Elimination through the compartments to the
right of input corresponds to a
gamma-distributed clearance time.

The dispersion parameter equals the number
of elimination compartments, including the
input compartment.

However, some of the material can also move
through the compartments to the left of the
input, one compartment at a time.

This is a random walk with reflecting barrier
at compartment 1.

The rates are k; to the left and k, to the
right (drift if k; # k»; generally, k; < k).

A large number of compartments to the left
of input indicates a delay in elimination.
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The random walk describes retention of the
material.

With a large number of random walk
compartments, this approximates a diffusion
Process.

Thus, the model has two components:
diffusion within the site of input and

gamma-distributed clearance from that site.

The transfer matrix will be

[ —kr ky 0 0
A_| B Rk ky 0
0 k; —k; — ke ke
\ 0 0 0 —ke )

and p(0) = (0,0,z,0)" for an input dose of z.

The number of parameters to estimate in this
model does not change with the number of
compartments.
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4. Comparison

Event history

Pharmacokinetics

Level Individual
Modelling Conditional
External

disturbance No
Realistic

assumptions Not usually

‘Ecological’
Marginal

Yes

Yes
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