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Chapter 1

Categori
al Variables and

Related Distributions

1.1 Categori
al Variables

Mu
h of the observed data whi
h a statisti
ian en
ounters is not in the form of

quantitative measurements.

Rather some 
hara
teristi
 or attribute of the individuals is re
orded.

Su
h 
hara
teristi
s take one or more distin
t values.

1.1.1 Events

The 
ases of only one and two values for the variable are of spe
ial interest,

sin
e they are the most 
ommonly used.

For a single value, the observations are usually summarized as a 
ount of

the number of o

urren
es of an event of interest.

Example

If the event is the birth of a 
hild, then the 
ounts might be the number of


hildren in a family. 2

Variables with two values are 
alled binary. They are often used to re
ord

the o

urren
e and nono

urren
e of an event, usually over time or through

spa
e.

Example

Can
er patients are observed to be either alive (
oded 0) or dead (
oded

1) over a period of time. This binary variable 
an only 
hange from zero to

one. The sequen
e is 
alled a point or 
ounting pro
ess and is equivalent to

observing the survival time. 2

1.1.2 Nominal Variables

In general, if any one of say I qualitatively di�erent events may o

ur to an

individual, we have a nominal variable.
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Ea
h di�erent event has a di�erent name, but no mathemati
al relationship

exists among the events.

Ea
h possible 
hara
teristi
 or value of the variable is 
alled a 
ategory or

level.

Example

The sex of an individual is a binary 
ategori
al variable. More 
omplex

nominal variables in
lude the profession of a worker and the type of illness of a

hospital patient. 2

When a number of individuals are observed, they 
an be 
lassi�ed into the

I possible 
ategories.

The number in ea
h 
ategory, n

i

, is 
alled the (absolute) frequen
y.

This may also be transformed by dividing by the total number of individuals,

n

:

=

P

n

i

, to yield the proportion or relative frequen
y in ea
h 
ategory.

For 
larity of presentation, these numbers are often multiplied by 100 to

give per
entages.

Example

1681 residents of Copenhagen were asked about the type of housing in whi
h

they lived. The results are summarized in the following table.

Type of Housing

Tower Apart- Atrium Terra
ed

Blo
k ment House House

Absolute

Frequen
y 400 765 239 277

Relative

Frequen
y 0.2380 0.4551 0.1422 0.1648

Per
ent 23.80 45.51 14.22 16.48

2

1.1.3 Ordinal Variables

Often, a 
ategori
al variable 
ontains more information than simply the names

of the 
ategories.

If the 
ategories 
an be stri
tly ordered, we have an ordinal variable.

Su
h variables frequently o

ur for the preferen
es of individuals or their

state of health.

When available, su
h information should be used in the statisti
al analysis.

Example

256 Ameri
ans who graduated from high s
hool in 1965 were asked their

politi
al party identi�
ation in 1982. The absolute frequen
ies are given in the

following table.

2



Strong Demo
rat 10

Weak Demo
rat 59

Leaning Demo
rat 41

Independent 26

Leaning Republi
an 44

Weak Republi
an 47

Strong Republi
an 29

2

1.1.4 Counts and Frequen
ies

Counts and (absolute) frequen
ies are very similar and, indeed, are not always

distinguished. Both are numbers of events.

A 
ount is made of events on one individual unit of observation, su
h as the

family above.

A frequen
y is an aggregation of events on di�erent units of observation,

with ea
h unit appearing only on
e, at least at any given point in time.

Example

Consider the following distribution of a

idents:

A

idents Frequen
y

0 447

1 132

2 42

3 21

4 3

5 2

6 0

The �rst 
olumn is the 
ount per individual; the se
ond 
olumn is the fre-

quen
y with whi
h that 
ount o

urs a
ross individuals. 2

Similar statisti
al te
hniques 
an often be used for both 
ounts and frequen-


ies.

However, sin
e 
ounts involve events on the same unit, there will often be

some form of dependen
e among these events, whi
h often may need to be taken

into a

ount.

In 
ontrast, frequen
ies refer to numbers of independent events, sin
e they

o

ur on di�erent units.

1.1.5 Other Types of Variables

Any variable 
an be redu
ed to a simpler form by ignoring its spe
ial 
hara
-

teristi
s.

A quantitatively measured variable may be 
ut into a series of distin
t 
at-

egories, usually more or less arbitrarily.

3



Example

In
ome is often re
orded as a 
ategori
al variable, say to the nearest 500

fran
s. 2

In fa
t, any quantitative variable 
an only be measured in a 
ategori
al way,

sin
e all measuring instruments have some �nite limit to their resolution.

Example

The length of employment of a 
ertain type of British postal workers was

re
orded to the nearest month:

Months 1 2 3 4 5 6 7 8 9 10 11 12

Freq. 22 18 19 13 5 6 3 2 2 1 0 1

Months 13 14 15 16 17 18 19 20 21 22 23 24

Freq. 0 0 0 1 1 1 3 1 1 0 0 0

2

The question is rather whether the statisti
al te
hnique applied to the data

uses the quantitative information 
ontained in the labels on the 
ategories.

When only the nominal information in a variable is used, no (mathemati
al)

relationships exist among the 
ategories.

Statisti
al analysis must rely on the frequen
ies of o

urren
e of the 
ate-

gories to provide the mathemati
al stru
ture.

Thus, the less is known or assumed about the relationships among the 
at-

egories, the more observations are required in order to have suÆ
iently large

frequen
ies in ea
h 
ategory.

1.2 Poisson Distribution

If events of the i

th

type are independent a
ross individuals and o

urring at a

uniform rate, �

i

, then the (random) number of su
h events, say N

i

, will have a

Poisson distribution with probability mass fun
tion

Pr(N

i

= n

i

;�

i

) =

e

��

i

�

n

i

i

n

i

!

where �

i

= 1=�

i

is the mean number of events and where the total number of

events, n

:

=

P

n

i

, is not �xed in advan
e.

This distribution is 
hara
terized by the relationship between its mean and

its varian
e:

E[N

i

℄ = �

i

= var[N

i

℄

Example

Consider the 
lassi
al data on the numbers of deaths by horse ki
ks ea
h

year between 1875 and 1894 in 14 
orps of the Prussian army:

4



Deaths/Corps/Year 0 1 2 3 4 5

Frequen
y 144 91 32 11 2 0

Here, the mean is estimated to be �̂ = 0:70 deaths per year per 
orps. 2

If ea
h 
ategory of event has a Poisson distribution, then the total number of

events of all kinds, n

:

, will also have a Poisson distribution, with mean � =

P

�

i

.

The hypotheses of the Poisson distribution may often be reasonable for

frequen
ies sin
e the events are independent a
ross individuals.

The question is whether the (
ategories of) individuals whose events are

grouped in the frequen
ies are homogeneous enough so that they all have the

same rate for the event.

Sin
e a 
ount refers to a number of events all on the same individual unit,

the dependen
y among them must be examined 
losely.

On the other hand, all of the 
ounted events will usually have the same rate,

or they would not have been 
ounted together.

Most often, the Poisson distribution will not be found suitable for 
ounts.

Example

For the deaths by horse ki
ks, there are, in fa
t, two types of 
orps. One

may need to investigate if they both have the same death rate. 2

Thus, for frequen
ies, the heterogeneity among individuals must be 
he
ked,

while, for 
ounts, the dependen
e among events on an individual plays a more

important role.

One indi
ation will be that the mean and varian
e are substantially di�erent.

A

ording to the dire
tion of the di�eren
e, it is known as under- or overdis-

persion.

The most 
ommon 
orre
tion is to repla
e the Poisson distribution by the

negative binomial.

1.3 Multinomial Distribution

Suppose now that we keep the same hypotheses as for the Poisson distribution,

but �x the total number of events, n

:

, before making the observations.

We must now look at the 
onditional distribution

Pr(n

1

; : : : ; n

I

jn

:

;�

1

; : : : ; �

I

) =

Q

I

i=1

e

��

i

�

n

i

i

n

i

!

e

��

�

n

:

n

:

!

=

 

n

:

n

1

� � �n

I

!

I

Y

i=1

�

�

i

�

�

n

i

=

 

n

:

n

1

� � �n

I

!

I

Y

i=1

�

n

i

i

where �

i

= �

i

=� may take values between zero and one, with sum equal to one,

and hen
e are probabilities.
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This is known as the multinomial distribution.

It des
ribes the distribution of I di�erent types of events o

urring inde-

pendently, ea
h type of event with a 
onstant rate, where the total number of

events is �xed.

This relationship between the Poisson and multinomial distributions is im-

portant.

It allows us to 
onstru
t univariate models for 
ategori
al data whose fre-

quen
ies are multivariate, simply by 
onditioning on the total number of events.

Example

In the Copenhagen housing example, the distribution of the n

:

= 1681

residents might be taken to be multinomial, with four 
ategories.

However, it 
an be modelled as Poisson by 
onditioning on the observed

total, n

:

. 2

1.3.1 Binomial Distribution

A spe
ial 
ase of the multinomial distribution, when only two types of events

are observed, so that the variable is binary, merits mention.

This is the binomial distribution:

Pr(N

1

= n

1

jn

:

;�

1

) =

 

n

:

n

1

!

�

n

1

1

(1� �

1

)

n

:

�n

1

The mean and varian
e of the random variable, N

1

, are given by

E[N

1

℄ = �

1

= n

:

�

1

var[N

1

℄ = n

:

�

1

(1� �

1

)

1.4 Chi-Squared Distribution

If U

i

are random variables having independent standard normal distributions,

with mean 0 and varian
e 1,

U

i

� N(0; 1)

then U

2

i

has a Chi-squared distribution with one degree of freedom, �

2

1

and

Z

p

=

p

X

i=1

U

2

i

� �

2

p

a Chi-squared distribution with p degrees of freedom and E[Z

p

℄ = p.

Often, we have a random variable, Y

i

, with mean, �

i

, and varian
e, �

2

, su
h

that

U

i

=

Y

i

� �̂

i

�

6



so that

Z =

P

(Y

i

� �̂

i

)

2

�

2

where the varian
e, �

2

, is known.

For p large, �

2

p

:

= N(p; 2p).

The Chi-squared distribution is a spe
ial 
ase of the gamma distribution:

f(y) =

y

p

2

�1

e

�

y

2

�

�

p

2

�

2

p

2

1.4.1 Maximum Likelihood Estimate

The maximum likelihood estimate (m.l.e.),

^

 , has asymptoti
 distri-

bution N[ ; I

�1

( )℄.

Under mild regularity 
onditions, for n independent observations, we know

that the mean and varian
e of the s
ore, U, are

E[U( )℄ = 0

and

E[UU

T

℄ = E[�U

0

℄

= I > 0

where I is the Fisher information.

Expand the s
ore in a Taylor series about the true value,  

U(

^

 ) = U( ) +U

0

( )

^

 �  

1!

+ : : :

The left hand side is zero.

By the law of large numbers,

lim

n!1

[�U

0

( )℄ = I( )

so that

(

^

 �  )

:

= I

�1

( )U( )

The mean and varian
e of the right hand side are 0 and I

�1

( ).

Then, sin
e U( ) is a sum, by the 
entral limit theorem, asymptoti
ally

^

 � MVN[ ; I

�1

( )℄

Sin
e,  is typi
ally unknown, any 
onsistent estimate of I( ), su
h as I(

^

 ),


an be used without a�e
ting the limiting distribution. 2
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This implies, asymptoti
ally, that the standard error of the parameter esti-

mates is the square root of the diagonal elements of I

�1

( ) and that

(

^

 �  )

T

I( )(

^

 �  ) � �

2

p

where p is the dimension of  .

This result is known as Wald's statisti
.

Example

For the parameter of the binomial distribution, with

I(�

1

) =

n

:

�

1

(1� �

1

)

Wald's statisti
 is

n

:

(�̂

1

� �

1

)

2

�

1

(1� �

1

)

=

(n

1

� n

:

�

1

)

2

n

:

�

1

(1� �

1

)

2

Wald's statisti
 and the asymptoti
 standard errors have several major

handi
aps, espe
ially in small samples:

� If the log likelihood is not quadrati
 (i.e. Gaussian) for a parameter, they


an be very misleading.

� They are not invariant under parameter transformations.

Thus, in 
ategori
al data analysis, Wald's statisti
 and the asymptoti
 standard

errors should only be used with great 
are and as an approximation.

1.4.2 Log Likelihood and Devian
e

Expand the log likelihood fun
tion as a Taylor series at  =

^

 :

l( ) = l(

^

 ) + ( �

^

 )

T

l

0

(

^

 )

+

1

2

( �

^

 )

T

l

00

(

^

 )( �

^

 ) + : : :

Sin
e l

0

(

^

 ) = 0, we have minus two times the log likelihood ratio, l( ) � l(

^

 )


alled the devian
e,

D( )

:

= ( �

^

 )

T

I(

^

 )( �

^

 )

For n suÆ
iently large,

^

 will be 
lose to the true value,  , and this will be a

good approximation.

As we have seen above,

( �

^

 )

T

I(

^

 )( �

^

 ) � �

2

p

so that, asymptoti
ally,

D( ) � �

2

p

8



where  is the true value, with dimension p.

Example

For the binomial distribution, the devian
e is

D(�

1

) = �2

�

n

1

log

�

�

1

�̂

1

�

+ (n

:

� n

1

) log

�

1� �

1

1� �̂

1

��

= 2

2

X

i=1

n

i

log

�

n

i

n

:

�

i

�

In 
ategori
al data analysis, this is often 
alled G

2

. 2

Now, suppose that we wish to 
ompare this full model to some submodel,

 

1

, of dimension r < p, nested in 	, i.e. where 	

1

� 	.

We have

�2[l(

^

 

1

)� l(

^

 )℄ = �2f[l( )� l(

^

 )℄� [l( 

1

)� l(

^

 

1

)℄

� [l( )� l( 

1

)℄g

= D( ) �D( 

1

) + 2[l( ) � l( 

1

)℄

The �rst term has a �

2

p

distribution, the se
ond, �

2

r

, and the third is a positive


onstant, near zero if the 
orre
t model is indexed by  

1

. Then,

D( ) �D( 

1

) � �

2

p�r

under  

1

2 	

1

� 	, sin
e sums of Chi-squared variables are Chi-squared.

1.4.3 S
ore

Sin
e we know that the mean of the s
ore is zero and its varian
e is the Fisher

information, and sin
e the s
ore is a sum, by the 
entral limit theorem, asymp-

toti
ally

U( ) � MVN[0; I( )℄

and, hen
e,

U

T

( )I

�1

( )U( ) � �

2

p

This is 
alled the s
ore statisti
.

The same result 
an be obtained in another way.

From the asymptoti
 normality of the m.l.e., we know that

^

 �  

:

= I

�1

( )U( )

Substituting this into the asymptoti
 distribution of the devian
e, we obtain

D

U

( ) = U

T

( )I

�1

( )U( )

whi
h will have an asymptoti
 Chi-squared distribution.

9



The advantage of this statisti
, as 
ompared to the devian
e and its normal

approximation, is that it does not require the 
al
ulation of

^

 , but depends

only on the �xed value,  .

Example

For the binomial distribution, with

U(�

1

) =

n

1

� n

:

�

1

�

1

(1� �

1

)

and Fisher information as given above, we have the s
ore statisti


(n

1

� n

:

�

1

)

2

n

:

�

1

(1� �

1

)

=

2

X

i=1

(n

i

� n

:

�

i

)

2

n

:

�

i

whi
h, in this 
ase, is identi
al to Wald's statisti
. 2

This is a simple 
ase of the Pearson Chi-squared statisti
, whi
h is the s
ore

statisti
 approximation to the devian
e,

D(�

1

) = 2

2

X

i=1

n

i

log

�

n

i

n

:

�

i

�

given above.

Both have an asymptoti
 Chi-squared distribution.

Example

For the postal workers example, suppose that we entertain the null hypoth-

esis of 
onstant loss over the 24 months.

The 
onstant probability of loss is �

i

=

1

24

, whi
h gives a Pearson statisti


of 243.7 and a devian
e of 189.5, both with 23 d.f. 2
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Chapter 2

Contingen
y Tables and

Independen
e

2.1 Contingen
y Tables

Throughout this 
hapter, we shall 
on
entrate on the relationships between

only two variables, sin
e more 
omplex situations are more easily handled by

the 
onstru
tion of formal models, presented in the next 
hapter.

2.1.1 Two-way Tables

Suppose that X and Y are two 
ategori
al variables having respe
tively I and

J di�erent levels.

If individuals are 
lassi�ed simultaneously a

ording to both variables, IJ


ombinations are possible.

This 
an be displayed as a re
tangular table with I rows and J 
olumns,

with the 
ells of the table representing the possible out
omes.

When the 
ells 
ontain the frequen
ies, say n

ij

, of out
omes in a sample,

the table is 
alled a 
ontingen
y table.

The marginal totals are represented by n

:j

, n

i:

and n

::

.

Example

Injuries in 
ar a

idents in Florida in 1988 are 
lassi�ed as to whether a seat

belt was being used at the time or not.

Injury

Seat Belt Fatal Nonfatal Total

No 1601 162527 164128

Yes 510 412368 412878

Total 2111 574895 577006

Here, we have a 2� 2 table. 2

In general, we have an I � J table.

When presenting the frequen
ies of a 
ontingen
y table as proportions or

per
entages, it is important to indi
ate in whi
h dire
tion they are 
al
ulated.

11



Example

For the 
ar a

ident data, the per
entages are

Injury

Seat Belt Fatal Nonfatal Total

No 0.98 99.02 100.00

Yes 0.12 99.88 100.00

Total 0.37 99.63 100.00

Per
entages might also be 
al
ulated separately for ea
h type of a

ident (the


olumns) or globally for the 
omplete table. 2

2.1.2 Types of Designs

Prospe
tive Studies

In a prospe
tive study, individuals are sampled from a population and then

followed over a 
ertain period of time. Two 
ases may be distinguished.

1. In a 
lini
al trial, the subje
ts are randomly allo
ated to one of a number

of di�erent treatments before the followup.

Of all the designs mentioned, this is the only one whi
h is experimental.

2. In a 
ohort study, all variables are simply observed as they o

ur over

time.

Cross-se
tional Studies

A 
ross-se
tional study simply observes all variables on individuals at one

given �xed point in time.

The data in the 
ar a

ident example 
ome from su
h a study.

Retrospe
tive Studies

In a retrospe
tive or 
ase-
ontrol study, subje
ts are 
hosen a

ording to

their response values and then the values of the explanatory variables obtained.

Thus, the explanatory variables are random and the response �xed.

Example

58 married women under treatment for myo
ardial infar
tion in England

and Wales during 1968{1972 were ea
h mat
hed with three 
ontrol patients in

the same hospitals who were being treated for something else.

All subje
ts were asked if they had ever used 
ontra
eptives, yielding the

following table:

Myo
ardial Infar
tion

Contra
eptive Yes No

Yes 23 34

No 35 132

2

12



2.2 Probability and Dependen
e

2.2.1 Joint and Conditional Probabilities

Suppose, for the moment, that only the total number of events, n

::

, is �xed.

This will be the 
ase in 
ross-se
tional and 
ohort studies.

Denote the probability of out
ome (i; j) by �

ij

.

These probabilities des
ribe the joint distribution of X and Y , and might

be taken to have a multinomial distribution.

The marginal distributions are obtained by summing the joint probabilities

to obtain row or 
olumn totals.

Denote these by

�

i:

=

X

j

�

ij

�

:j

=

X

i

�

ij

These marginal probabilities 
ontain no information about the relationships

between the variables. Only the joint probabilities do.

Often, one variable, say Y , is taken to be a response and the other, an

explanatory variable.

In other words, Y is random, but X is �xed, so that the joint distribution

is no longer meaningful. Su
h will be the 
ase in a 
lini
al trial.

The distribution of Y for �xed X, with probabilities

�

jji

=

�

ij

�

i:

is 
alled the 
onditional distribution.

Then, we wish to 
ompare the 
onditional distribution of Y at various levels

of the explanatory variable, X.

The maximum likelihood estimates 
an be shown to be

�̂

ij

=

n

ij

n

::

for the joint distribution,

�̂

i:

=

n

i:

n

::

�̂

:j

=

n

:j

n

::

for the marginal distributions, and

�̂

jji

=

n

ij

n

i:

for the 
onditional distribution.

Example

In an Ameri
an so
ial survey, people were asked about their opinions on the

death penalty and gun registration, with the following results:

13



Death Penalty

Gun Registration Favour Oppose

Favour 784 236

Oppose 311 66

The maximum likelihood estimates of the joint probabilities are (0.56, 0.17,

0.22, 0.05), of the marginal probabilities, (0.73, 0.27) for gun registration and

(0.78, 0.22) for the death penalty, and of the 
onditional probabilities, (0.77,

0.23) for those favouring gun registration and (0.83, 0.17) for those opposing

it. 2

2.2.2 Independen
e

The variables X and Y are statisti
ally independent if all joint probabilities

equal the produ
t of the 
orresponding marginal probabilities:

�

ij

= �

i:

�

:j

8i; j

This is also equivalent to

�

jji

= �

:j

8i; j

Ea
h 
onditional distribution of Y is equal to the marginal distribution.

Thus, the response, Y , does not depend on the �xed 
onditions, X, when

the probabilities are the same for all of those 
onditions.

Example

In the death penalty example, neither variable might be taken as a response

with the other �xed, so we look at the joint probabilities.

Under independen
e, they are estimated as (0.57, 0.16, 0.21, 0.06) as 
om-

pared to (0.56, 0.17, 0.22, 0.05) given above, indi
ating some dependen
e.

In the 
ar a

ident example, the type of injury might be taken as a response,

given the fa
t that a seat belt was being worn at the time or not.

The 
onditional probability of a fatal a

ident, given that a seat belt was

worn, is estimated as 0.0012 
ompared with 0.0098 without a seat belt.

Again, this indi
ates a dependen
e of type of a

ident on whether a seat

belt was worn or not. 2

2.2.3 Comparison of Probabilities

All estimates involved in the 
omparison of probabilities 
an be obtained di-

re
tly from the maximum likelihood estimates of the probabilities, due to their

invarian
e property.

Di�eren
es

For the 
onditional probabilities, any two rows of the table 
an be 
ompared

by taking the appropriate di�eren
es of probabilities: �

jji

� �

jji

0 for rows i and

i

0

.

14



Su
h di�eren
es must lie between �1:0 and 1.0. If all di�eren
es are zero,

the 
onditional probability distributions are identi
al and the two variables are

independent.

The drawba
k of this rather intuitive approa
h is that a di�eren
e in prob-

abilities of given size may have greater importan
e when the proportions are


lose to the limits, 0 or 1, than in the middle, near 0.5.

Relative Risk

The ratio of 
onditional probabilities under di�erent 
onditions is known as

the relative risk, �

jji

=�

jji

0 , whi
h 
an take any nonnegative real value.

If all relative risks are equal to unity, the variables are independent.

Relative risks will di�er depending on whi
h variable is taken as response

and whi
h as explanatory.

Thus, it is not appropriate in situations where there is no su
h distin
tion

among the variables.

Example

In the 
ar a

ident example, the relative risk of a fatal a

ident is estimated

as

1601

1601+162527

510

510+412368

= 7:90

when not wearing a seat belt as 
ompared to wearing one, while that of a

nonfatal a

ident is

162527

1601+162527

412368

510+412368

= 0:99

Nonseat belt wearers have a higher risk of a fatal a

ident than seat belt wearers,

but not of a nonfatal a

ident.

This indi
ates a dependen
e of type of a

ident on whether or not a seat

belt was worn. 2

Odds Ratio

The ratio of probabilities under the same 
onditions is known as the odds,

�

jj

0

ji

=

�

jji

�

j

0

ji

=

�

ij

�

ij

0

whi
h 
an take any nonnegative real value.

The log odds is often 
alled the logit.

�

jj

0

ji

is greater than unity when response j is more probable than response

j

0

and 
onversely.

For independen
e, the ve
tor of odds under ea
h 
ondition, i, must be the

same.

Example

15



In the 
ar a

ident example, the odds of a fatal as 
ompared to a non-

fatal injury is estimated to be 1601/162527=0.0099 without a seat belt and

510/412368=0.0012 with one.

Again, this indi
ates a dependen
e of type of a

ident on whether or not a

seat belt was worn. 2

Note that the estimation of the odds does not involve the marginal frequen-


ies.

The odds ratio or 
ross produ
t ratio is de�ned as

�

ij;i

0

j

0

=

�

jj

0

ji

�

jj

0

ji

0

=

�

jji

�

j

0

ji

0

�

j

0

ji

�

jji

0

=

�

ij

�

i

0

j

0

�

ij

0

�

i

0

j

whi
h again 
an take any nonnegative real value.

Degrees of dependen
e are measured from unity, whi
h indi
ates indepen-

den
e.

A value greater than unity indi
ates the same degree of dependen
e, but in

the opposite dire
tion, as its re
ipro
al, whi
h will be less than unity.

Thus, the ranges are not symmetri
, being (1;1) above unity and (0; 1)

below.

However, the odds ratio is symmetri
 in the variables, as 
an be seen from

its de�nition in terms of joint probabilities.

Often, it is more 
onvenient to use the log odds ratio,

�

ij;i

0

j

0

= log(�

ij;i

0

j

0

)

whi
h 
an take any real value and is symmetri
 in measuring dependen
e on

ea
h side of independen
e (at 0).

Example

In the 
ar a

ident example, the estimated odds ratio is

1601=162527

510=412368

= 7:96

and the 
orresponding log odds ratio, 2.075.

Both indi
ate a positive dependen
e between fatal injuries and not wearing

a seat belt, i.e. that there is a mu
h greater 
han
e of a fatal a

ident without

a seat belt. 2

However, one major problem with any ratio of probabilities, su
h as relative

risk and odds, is that its estimate is not de�ned if a denominator probability is

estimated as zero.

The log odds is not de�ned if any probability is estimated as zero.

Sampling Distributions

16



In 
ohort and 
ross-se
tional studies, the total number of observations to

be made is usually �xed.

Thus, a multinomial distribution over all 
ombinations of 
ategories is ap-

propriate. This is known as multinomial sampling.

In a 
lini
al trial, the marginal distribution of the treatments is �xed.

Thus, the frequen
ies for ea
h �xed value of the explanatory variables will

have a multinomial distribution.

This is known as independent or produ
t multinomial sampling.

However, when a distin
tion is to be made between response and explana-

tory variables, it usually makes sense to treat all sampling s
hemes as if they

were produ
t multinomial.

2.3 Chara
teristi
s of the Odds Ratio

2.3.1 Retrospe
tive Studies

As we have seen, the odds ratio is symmetri
 in the variables and its estimation

does not involve the marginal frequen
ies.

Due to these 
hara
teristi
s, it has a further useful property.

It 
an measure dependen
e even when the study is performed \ba
kwards",

as in a retrospe
tive or 
ase-
ontrol study.

There, the marginal distribution of the response variable is �xed by the

design.

Example

In the myo
ardial infar
tion example, the marginal distribution of myo
ar-

dial infar
tion is �xed by the design of the study.

The dependen
e of infar
tion on 
ontra
eptive use, as measured by the log

odds ratio, is

log

�

23� 132

34� 35

�

= 0:937

indi
ating a strong positive relationship between them. 2

2.3.2 Relation to Relative Risk

For a 2� 2 table, we have

�

11;22

=

�

1j1

�

1j2

�

�

2j2

�

2j1

=

�

1j1

�

1j2

�

1� �

1j2

1� �

1j1

The �rst fa
tor is the relative risk.

If the 
onditional probability of response one, �

1ji

, is small for both groups,

the se
ond fa
tor will be 
lose to unity and the relative risk and odds ratio will

be very similar.
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Example

In the 
ar a

ident example, the 
onditional probabilities of fatal injury are

0.0099 for nonseat belt wearers and 0.0012 for seat belt wearers.

The odds ratio was found to be 7.96 while the relative risk of a fatal a

ident

is 7.90. 2

This result is espe
ially important in retrospe
tive studies where the appro-

priate 
onditional probability estimates are not available, so that the relative

risk 
annot be dire
tly estimated.

2.3.3 I � J Tables

In the 2� 2 table, all four possible odds ratios are simply permutations of the

frequen
ies in the numerator and denominator.

For larger tables, a number of distin
t odds ratios 
an be 
al
ulated.

The (I � 1)(J � 1) lo
al odds ratios

�

ij;i+1;j+1

=

�

ij

�

i+1;j+1

�

i;j+1

�

i+1;j

i = 1; : : : ; I � 1; j = 1; : : : ; J � 1

between adja
ent 
ategories determine all possible odds ratios and 
ontain all

of the information in them.

However, the 
onstru
tion of a minimal set of odds ratios is not unique.

Another possibility would be to make 
omparisons with the �rst 
ategory:

�

11;ij

=

�

11

�

ij

�

1j

�

i1

i = 2; : : : ; I; j = 2; : : : ; J

2.4 Tests

2.4.1 Goodness of Fit

If the statisti
ian has some spe
i�
 model in mind for the data, its goodness of

�t 
an be tested.

Any of the statisti
s dis
ussed in Chapter 1 might be used. The devian
e

gives a likelihood ratio test and the s
ore the Pearson Chi-squared test.

In the simplest 
ases, the 
omplete model is known from theory, so that all

probabilities 
an be 
al
ulated without knowledge of the data.

Example

In a geneti
 experiment, with two gene types, G-g and H-h, a number of

Pharbitis plants were bred, yielding the table

G g

H 123 27

h 30 21

18



The theoreti
al probabilities are (

9

16

;

3

16

;

3

16

;

1

16

).

The devian
e, using the multinomial distribution, is

2

�

123 log

�

123 � 16

9� 201

�

+ 30 log

�

30� 16

3� 201

�

+27 log

�

27 � 16

3� 201

�

+ 21 log

�

21� 16

1� 201

��

= 10:61

Sin
e the total number of plants is �xed, there are three degrees of freedom,


orresponding to three of the four observed frequen
ies.

Then, the Chi-squared value is large enough to indi
ate signi�
ant departure

from the model.

The Pearson statisti
 is

�

123�

9�201

16

�

2

9�201

16

+

�

30�

3�201

16

�

2

3�201

16

+

�

27�

3�201

16

�

2

3�201

16

+

�

21�

1�201

16

�

2

1�201

16

= 11:14

giving the same 
on
lusion. 2

2.4.2 Independen
e

Independen
e is a spe
ial model whi
h very often is of interest.

Re
all that it is de�ned by

�

ij

= �

i:

�

:j

8i; j

Although the probabilities are not 
ompletely de�ned by the theory, as

they were in the previous se
tion, this relationship among them is spe
i�ed and

pla
es a 
onstraint on their values.

We 
an pro
eed by estimating the required marginal probabilities from the

data and using them in our devian
e or Pearson statisti
.

However, the degrees of freedom must be adjusted to allow for ea
h proba-

bility estimated.

Example

For the 
ar a

ident example, the devian
e is 2041 and the Pearson statisti


2338.

For the death penalty and gun registration example, they are respe
tively

5.32 and 5.15.

For the myo
ardial infar
tion example, they are respe
tively 7.87 and 8.33.

In ea
h 
ase, two marginal probabilities are estimated so that the degrees

of freedom equal one.

In all 
ases, the hypothesis of independen
e is reje
ted. 2
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2.4.3 Fisher's Exa
t Test

The pre
eding Chi-squared tests require the asymptoti
 assumption that the

sample size is very large.

In many situations, espe
ially where it is very 
ostly to obtain observations

or where the phenomenon under study is very rare, only small frequen
ies will

be available in a table.

In su
h 
ases, it is often even more important to make an a

urate inferen
e

about the meaning of the results.

Under the null hypothesis of independen
e, an exa
t distribution of the ob-

servations 
an be obtained by 
onditioning on both sets of marginal frequen
ies.

The result is a hypergeometri
 distribution, whi
h, for the 2� 2 table, may

be written

�

n

1:

n

11

��

n

2:

n

:1

�n

11

�

�

n

::

n

:1

�

Here, the only random element is n

11

whi
h, when the margins are �xed, de-

termines all frequen
ies in the table

To obtain a test, all possible tables with the given marginal frequen
ies must

be enumerated.

Those with probabilities at least as small as for that observed are retained

and those probabilities summed to give a P-value.

Example

For the myo
ardial infar
tion example, the P-value for Fisher's exa
t test


an be 
al
ulated to be 0.0052.

This 
ompares with an asymptoti
 P-value of 0.0050 for the devian
e and

0.0039 for the Pearson statisti
.

The similarity among the values is not surprising, given the relatively large

number of observations in this table. 2

20



Chapter 3

Log Linear and Logisti


Models

The logisti
 and log linear models for 
ategori
al data use respe
tively the

binomial and Poisson distributions for regression analysis.

Hen
e, they are generalized linear models, using respe
tively the logit and

the log links.

In fa
t, logisti
 regression is just a spe
ial 
ase of a log linear model and all

logisti
 models 
an be �tted as log linear models.

3.1 Log Linear Models

3.1.1 Poisson Regression

To introdu
e log linear models, we shall �rst look at the simplest 
ase, when

there is only one variable, a one-dimensional table of frequen
ies or 
ounts.

Poisson regression, as the name implies, uses the Poisson distribution.

With the log link, this 
an be written

log(�

i

) =

X

k

�

k

x

ik

where �

i

= E[N

i

℄ is the mean of the Poisson distribution.

In the spe
ial 
ase of an ANOVA type situation, the x

ik

will be indi
ator or

fa
tor variables.

If the values of the variable are numeri
al quantities, three simple models

are possible.

The simplest, or null, model, with only x

i0

= 1, �ts a 
ommon mean to all


ategories.

The most 
omplex, or saturated, �ts a di�erent parameter value to ea
h


ategory using a fa
tor variable, or, equivalently, a series of indi
ator variables.

In between are situated the usual regression models, of whi
h the most


ommon is a simple linear Poisson regression:

log(�

i

) = �

0

+ �

1

x

i
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Note that, in terms of the mean values, this is an exponential 
urve:

�

i

= �

0

0

e

�

1

x

i

where �

0

0

= e

�

0

.

Sin
e, in all models, the total number of observations is �xed, Poisson re-

gression is equivalent to �tting a multinomial distribution.

Comparison of models is 
ustomarily performed using the devian
e.

Example

Consider a study where subje
ts were asked to re
all one re
ent stressful

event.

The number of months prior to the study when the event o

urred was

re
orded:

Months 1 2 3 4 5 6 7 8 9

Subje
ts 15 11 14 17 5 11 10 4 8

Months 10 11 12 13 14 15 16 17 18

Subje
ts 10 7 9 11 3 6 1 1 4

The model with a 
ommon mean for all 18 months has a devian
e of 50.84 and

17 d.f., indi
ating a poor �t.

The log mean is estimated as 2.100 with s.e. 0.08248.

As always, the saturated model has zero devian
e and zero d.f., sin
e it �ts

perfe
tly, having a di�erent mean for ea
h 
ategory.

The linear regression model, where x

i

is the number of months, has a de-

vian
e of 24.57 with 16 d.f., indi
ating a reasonable �t and a very signi�
ant

improvement over the null model.

The parameters are estimated as

^

�

0

= 2:803 and

^

�

1

= �0:08377 showing

that the number of subje
ts re
alling an event de
reases over time. 2

3.1.2 Two-way Tables

In a two-way table, we have two 
ategori
al variables whi
h must be related to

the mean.

Thus, the saturated log linear model for a two-way table may be written as

a Poisson regression:

log(�

ij

) = �+ �

i

+ �

j

+ 


ij

in the familiar ANOVA-style notation.

As usual, some arbitrary 
onstraints must be pla
ed on the parameters for

them to be identi�able.

The \
onventional" 
onstraints are

P

i

�

i

= 0, et
., although very few sta-

tisti
al 
omputer pa
kages use them.

Here, we 
hoose to set the �rst element to zero: �

1

= 0, et
.

If there is no intera
tion between the variables, they are independent, as

dis
ussed in the previous 
hapter.
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Thus, when 


ij

= 0 8i; j, we obtain the independen
e model.

The devian
e of this model is that given in the previous 
hapter.

The estimates of 


ij

in the saturated model are a minimal set of log odds

ratios, the set produ
ed depending on the 
onstraints 
hosen.

This implies that log linear models may be �tted to data from any of the

study designs des
ribed in the previous 
hapter, and, in parti
ular, to retro-

spe
tive studies.

The 
hoi
e of whi
h variable (or both) is the response does not a�e
t the

estimate of the intera
tion log odds ratio parameter.

Example

For the myo
ardial infar
tion example of the previous 
hapter, the saturated

model yields parameter estimates, �̂ = 3:135 (s.e. 0.2085), �̂

2

= 0:4199, (s.e.

0.2684),

^

�

2

= 0:3909, (s.e. 0.2700), 
̂

22

= 0:9366, (s.e. 0.3302).

As expe
ted, the value of 
̂

22

is identi
al to the log odds ratio 
al
ulated in

the previous 
hapter.

The devian
e of 7.8676 with 1 d.f. for the independen
e model is also iden-

ti
al to that obtained there. 2

If one or more of the variables in the table refer to measurements, as in

the event re
all example above, the 
ategori
al variables 
an be repla
ed by


ontinuous ones in the intera
tions in the log linear model.

However, in order to �x the marginal totals, fa
tor variables should be used

for the main e�e
ts.

Example

Consider data on the number of albinos in families of di�erent sizes.

Number of Size of family

Albinos 4 5 6 7

1 22 25 18 16

2 21 23 13 10

3 7 10 18 14

4 0 1 3 5

5 � 1 0 1

6 � � 1 0

This is a 4�6 table, but of a spe
ial form sin
e three 
ategories are impossible.

These are 
alled stru
tural zeroes and should not be in
luded in the data

set when the models are �tted.

The other zeroes in the table are 
alled sampling zeroes sin
e, in another,

perhaps larger, sample positive frequen
ies might be observed.

If we �t the independen
e model,

log(�

ij

) = �+ �

i

+ �

j

the devian
e is 24.326 with 12 d.f., whi
h gives a P-value of 0.01836, so that we

reje
t the hypothesis of independen
e.
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If we use a linear intera
tion between family size and number of albinos, the

model is

log(�

ij

) = �+ �

i

+ �

j

+ 
x

1i

x

2j

where x

1i

refers to the number of albinos and x

2j

to the family size.

For this model, the devian
e is 15.774 with 11 d.f. for a P-value of 0.1497

so that the model �ts a

eptable well.

The intera
tion parameter is estimated as 
 = 0:2076 (s.e. 0.07283), reveal-

ing a positive relationship between family size and albinism. 2

3.1.3 Multi-way Tables

The extension to higher dimensional tables is dire
t, as in the 
lassi
al ANOVA


ase.

Here, it is useful to introdu
e a di�erent notation. In addition to the `+',

the symbols `.' and `*' will be used.

The `+' has the usual meaning, while the `.' signi�es an intera
tion.

The `*' is a more 
omplex operator, with the following meaning:

W*X=W+X+W.X

This will indi
ate a saturated model, with intera
tion, for a two-way table, su
h

as that used in the previous se
tion.

Thus,

W*X*Z=W+X+Z+W.X+W.Z+X.Z+W.X.Z

is the saturated model for a three-way table, and so on.

This is known as the Wilkinson and Rogers notation.

With an in
reased number of variables indexing the table, the ways of 
hoos-

ing the response variables be
omes more 
omplex.

Thus, all variables might be taken to be responses, with no explanatory

variables, as in the gun registration and death penalty example, or any smaller

number down to only one response variable.

Usually, all marginal totals for the explanatory variables are taken to be

�xed, so that a minimal model would be

R1+R2+R3+� � �+X1*X2*X3*� � �

where Rn indi
ates a response variable and Xn an explanatory variable.

This is a model for independen
e among all responses and of responses on

explanatory variables.

Asso
iation among responses 
an be introdu
ed as R1.R2, et
., and depen-

den
e of responses on explanatory variables as R1.X1, et
.

Any ne
essary degree of intera
tion 
an be in
luded.

Example

Consider a study of the dependen
e of delinquen
y on so
ioe
onomi
 status

and on whether the person 
on
erned had been a boy s
out.
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So
ioe
onomi
 Boy Delinquent

Status S
out Yes No

Low Yes 10 40

No 40 160

Medium Yes 18 132

No 18 132

High Yes 8 192

No 2 48

This is a 2� 2� 3 
ontingen
y table.

If we let D, BS, and SS signify, respe
tively, the variables delinquent, boy

s
out, and so
ioe
onomi
 status, the minimal model is

D+BS*SS

whi
h has a devian
e of 32.752 with 5 d.f.

Thus, we reje
t the hypothesis that delinquen
y is simultaneously indepen-

dent of so
ioe
onomi
 status and having been a boy s
out.

If we introdu
e the dependen
e of delinquen
y on boy s
out,

D+BS*SS+D.BS

the devian
e is redu
ed by 6.882 with 1 d.f.

The parameter estimate of -0.579, 
orresponding to D.BS, indi
ates that

delinquen
y is lower among former boy s
outs.

If, instead, we introdu
e the dependen
e on so
ioe
onomi
 status,

D+BS*SS+D.SS

it is redu
ed by 32.75 to about zero with 3 d.f.

Thus, the boy s
out variable is no longer needed in the model when so
ioe-


onomi
 status is present. By itself, it explains di�eren
es in delinquen
y, but

this is be
ause it is linked with so
ioe
onomi
 status.

The parameter estimates for dependen
e of delinquen
y on so
ioe
onomi


status, 
orresponding to D.SS, are (0:000; 0:6061; 1:792), showing that nondelin-

quen
y is higher in the higher statuses. 2

3.2 Logisti
 Models

The logisti
 model is a spe
ial 
ase of log linear models when there is only one

response variable, and that variable has only two 
ategories.

The binomial distribution is used with the logit link.

3.2.1 Binary Data

This model 
an be more easily applied to individual data whi
h have not been

grouped into the frequen
ies of a 
ontingen
y table than 
an a log linear model.
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Su
h data are known as binary data.

If there are 
ontinuous variables available, having many distin
t values, this

individual approa
h will be the only one available to analyze su
h data, unless

the values of those variables are grouped into a small number of 
ategories.

The general logisti
 regression model is now

log

�

�

i

1� �

i

�

=

X

k

�

k

x

ik

and the spe
ial 
ases are as for log linear models.

However, in distin
tion to log linear models, the response variable is not

in
luded among the x

ik

.

As we shall see, all terms in
luded in the model are, in fa
t, `intera
tions'

with the binary response variable.

Example

Let us look at a small data set with 7 individuals, whi
h will illustrate the

relationships among the various approa
hes.

X1 X2 Y

1 1 0

1 2 1

1 2 0

2 1 0

2 2 1

1 2 1

1 1 1

These are individual data, not grouped into a 
ontingen
y table.

For the response variable, Y , a one indi
ates the o

urren
e of the event of

interest.

When we �t the independen
e model

log

�

�

i

1� �

i

�

= �

we obtain a devian
e of 9.561 with 6 d.f.

However, in 
ontrast to the 
ase of frequen
y data in a 
ontingen
y table,

here, for binary data, the devian
e gives no indi
ation of goodness of �t.

Adding X1 redu
es this devian
e by 0.058, and X2 by 1.185, ea
h with 1

d.f.

As an example, the parameter value for X2 is 1.792.

These di�eren
es in devian
es are interpretable in the usual way.

The saturated model has a devian
e of 6.592 with 3 d.f., in 
ontrast to the

zero devian
e of saturated models in 
ontingen
y tables.

The di�eren
e in devian
e between the saturated and the null model is 2.969

with 3 d.f. 2

26



3.2.2 Grouped Binomial Data

Logisti
 models 
an also be applied to the frequen
y data of 
ontingen
y tables

when there is one response variable and it is binary.

The same pro
edures are used as for individual binary data and the results

will be identi
al in 
ases where the data 
ould be 
lassi�ed into a 
ontingen
y

table.

Example

Our binary data example 
an be grouped into the following 2� 2 � 2 
on-

tingen
y table:

Y

X1 X2 0 1

1 1 1 1

1 2 1 2

2 1 1 0

2 2 0 1

The devian
e for the null model is now 2.969 with 3 d.f., whi
h was our di�eren
e

in devian
e above.

This may here be interpreted as a goodness of �t.

The same redu
tions in devian
e are found as previously and the parameter

value for X2 is again 1.792, so that all of our results are identi
al.

However, we 
an also �t this table as a log linear model.

The independen
e model

Y+X1*X2

gives a devian
e of 2.969, as might be expe
ted.

The parameter estimate for the term, Y.X2, in the model

Y+X1*X2+Y.X2

is 1.792 as previously.

Thus, all three approa
hes give absolutely identi
al results. 2

3.2.3 Alternative Link Fun
tions

Binary models 
an sometimes be interpreted as arising when some underlying


ontinuous stimulus is present whi
h only gives a positive response after some


riti
al level is rea
hed.

If this underlying 
ontinuous variable has a logisti
 distribution, the result-

ing binary response will follow a logisti
 regression.

The underlying 
ontinuous distribution 
an be altered by spe
ifying a dif-

ferent link fun
tion.

The two most 
ommonly used are the probit, 
orresponding to a normal

distribution, and the 
omplementary log log, for an extreme value distribution.
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3.3 Ordinal Variables

3.3.1 Fixed S
ales

All of the models so far presented in this 
hapter impose no stru
ture on the

values of the variables.

The 
ategories 
an be reordered in any way without 
hanging the results.

If a variable does have an ordering, this will lead to a loss of information.

If reasonable, the simplest approa
h is to assign numeri
al values to the


ategories, often just a linear s
ale involving the 
onse
utive integers.

If su
h a s
ale 
an be derived, the methods already des
ribed 
an be used

dire
tly, sin
e the variable has been promoted to being 
ontinuous.

Example

Consider the 
lassi�
ation of s
hizophreni
 patients in a London institution,

where the types of visit are (A) goes home or visited regularly, (B) visited less

than on
e a month and does not go home, and (C) never visited and never goes

home.

Length Type of Visit

of Stay A B C

2-10 43 6 9

10-20 16 11 18

>20 3 10 16

Here, both variables might be taken to be ordinal.

The independen
e model has a devian
e of 38.353 with 4 d.f.

The model with a linear s
ale for visit and nominal for length has devian
e

6.46 while that with a linear s
ale for length and nominal for visit has 0.02,

both with 2 d.f.

This indi
ates that the linear s
ale is a

eptable for length of stay, but not

for type of visits allowed. 2

3.3.2 The Log Multipli
ative Model

The logi
al extension of the �xed s
ale model is to estimate the position of the


ategories on an arbitrary s
ale.

This model will have the form

log(�

ij

) = �+ �

i

+ �

j

+ 
x

i

Æ

j

where Æ

j

is an unknown s
ale for the ordinal variable indexed by j.

The last term of this model 
ontains a produ
t of two unknown parameters,

hen
e the name, log multipli
ative model, so that it is not a log linear model

and 
annot be estimated by standard software.

Example
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When this model is applied to the s
hizophreni
 data, the estimated s
ale

is

^

Æ

j

= (0:00; 0:98; 1:00), with devian
e 0.02 on 2 d.f., when length has a linear

s
ale as above.

This indi
ates that the se
ond and third 
ategories of patients, who never

go home, are similar and might be 
lassed together.

The regression 
oeÆ
ient is 
̂ = 1:63, showing that the longer is the length,

the more 
han
e there is of the patient being higher on the visit s
ale. 2

3.3.3 The Continuation Ratio Model

A se
ond type of approa
h to ordinal variables regroups the 
ategories of re-

sponse instead of 
reating a s
ale.

It is only appli
able to a response variable.

In the 
ontinuation ratio model, ea
h su

essive 
ategory is 
onsidered in

turn and the frequen
y of response at least up to that point is 
ompared to that

for the next higher 
ategory.

In this way, the original 
ontingen
y table, with a J 
ategory ordinal s
ale

is 
onverted into a series of J � 1 subtables, ea
h with a binary 
ategorization,

lower/higher than that given point.

Sin
e this is only a reparametrization of the multinomial distribution for

the table, a standard logisti
 model 
an be applied to the re
onstru
ted table.

Example

For the s
hizophreni
 data, the re
onstru
ted table is

Length Type of Visit

of Stay A B

2-10 43 6

10-20 16 11

>20 3 10

A+B C

2-10 49 9

10-20 27 18

>20 13 16

The logisti
 model

log

 

�

ij

1� �

ij

!

= �+ �x

i

+ �

j

gives a devian
e of 2.69 with 3 d.f.

The parameter for length of stay is �̂ = �2:36, indi
ating less 
han
e of

being in the lower 
ategory as the length of stay in
reases. 2

3.3.4 The Proportional Odds Model

The proportional odds model, the 
ontinuation ratio model, ex
ept that the

frequen
y up to a given point is 
ompared to that for all points higher.
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Again, a new table is 
onstru
ted, but, this time, it is not a simple re-

parametrization of the multinomial distribution, so that the logisti
 model 
an-

not be applied. Spe
ial software is required.

Example

For the s
hizophreni
 data, the re
onstru
ted table is

Length Type of Visit

of Stay A B+C

2-10 43 15

10-20 16 29

>20 3 26

A+B C

2-10 49 9

10-20 27 18

>20 13 16

This model gives a devian
e of 3.55 with 6 d.f.

The parameter for length of stay is �3:05, again indi
ating less 
han
e of

being in the lower 
ategory as the length of stay in
reases. 2

3.4 Square Tables

One spe
ial type of table whi
h is frequently en
ountered is the square table of

two or more dimensions.

This may arise, for example, in panel studies, where the same question is

asked to the same people at two or more di�erent points in time.

It is often useful for mobility and migration studies, and for 
hanges in voter

preferen
es.

3.4.1 Quasi-independen
e and the Mover-Stayer Model

One 
hara
teristi
 of su
h tables is that the frequen
ies on the main diagonal

are usually very large.

This arises be
ause a large majority of individuals do not 
hange 
ategories

between time points.

In many 
ases, the responses would be independent at di�erent time points

if it were not for these high frequen
ies.

Su
h a model �tted without the diagonal is known as quasi-independen
e.

Two type of people may be distinguished in a given population: those who

may potentially 
hange (the movers) and those who will never 
hange (the

stayers).

This is 
alled the mover-stayer model.

However, between any two time points when observations are made, some

of the movers will not have 
hanged and will be inextri
able mixed up with the

stayers.
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Thus, we know that individuals o� the main diagonal are movers. But,

movers and stayers are mixed up on the diagonal.

For this reason, we estimate the model from the o�-diagonal frequen
ies

only.

The number of movers who did not move 
an then be estimated.

Example

A study was made of migration among four areas of Britain between 1966

and 1971. We immediately noti
e the large diagonal frequen
ies.

1971 Central Lan
s. West Greater

1966 Clydes. & Yorks. Midlands London

Central

Clydes. 118 12 7 23

Lan
s.

& Yorks. 14 2127 86 130

West

Midlands 8 69 2548 107

Greater

London 12 110 88 7712

The usual independen
e model gives a devian
e of 19884 with 9 d.f.

When we �t the same model, but without the main diagonal, the devian
e

is only 4.37 with 5 d.f.

This result is somewhat surprising sin
e it means that the arrival point is

independent of the origin, and thus of the distan
e travelled.

The number of potential movers who did not move between 1966 and 1971

is estimated to be (1:6; 95:2; 60:3; 154:6). 2

3.4.2 Symmetry

One may wish to know if the probability of 
hange between two 
ategories

between two time points is the same in both dire
tions.

This is 
alled the symmetry model.

log(�

ij

) = 


ij

with 


ij

= 


ji

It implies that the marginal distributions are identi
al, instead of being �xed

at the observed values, as is usually the 
ase for log linear models.

A less demanding model is produ
ed if the ex
hange is identi
al in both

dire
tions within the limits imposed by the observed marginal distributions.

This is known as quasi-symmetry:

log(�

ij

) = �+ �

i

+ �

j

+ 


ij

with 


ij

= 


ji

On the other hand, if the marginal distributions are identi
al but there is

not re
ipro
al ex
hange, we have marginal homogeneity.

This is not a log linear model, although the other two are.
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Example

For the migration example, the symmetry model gives a devian
e of 9.13

with 6 d.f.

Sin
e this is an a

eptable �t, the quasi-symmetry model will also �t well:

2.67 with 5 d.f.

The parameter values (0:00;�0:55; 0:30; 1:79; 2:22; 2:01) indi
ate that the

highest migration is between Lan
ashire/Yorkshire and London, and the lowest

between Central Clydesdale and the West Midlands. 2
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Chapter 4

Diagnosti
s

A �rst step, where possible, is always to plot the model along with the data.

Example

Throughout this 
hapter, we shall take as an example the Poisson regression

for the re
all of events over 18 months.

We plot our �tted log linear regression model with the observations:
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2

Most of the standard diagnosti
 te
hniques for normal theory models 
an

easily be extended to generalized linear models, and, hen
e, to log linear and

logisti
 models.

4.1 Residuals

In the study of departures from a model, the role of residuals is essential.

Plots of residuals are very useful in dete
ting departures from the model.
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4.1.1 Raw Residuals

The raw residual for ea
h observation is its di�eren
e from its estimated ex-

pe
ted value:

"

R

i

= y

i

� E[Y

i

℄

= y

i

� �̂

i

= y

i

� ŷ

i

For 
ategori
al data, su
h residuals are of little use, sin
e their variability de-

pends on E[Y

i

℄.

4.1.2 The Hat Matrix

We have

"

R

= y� �̂

= y�
^
y

= (I

n

�H)y

so that H is 
alled the hat matrix, sin
e it puts the hat on y.

It is idempotent and symmetri
.

For generalized linear models,

H =W

1

2

X(X

T

WX)

�1

X

T

W

1

2

where W is the diagonal of the information matrix for the linear predi
tor.

For the Poisson distribution, it 
ontains the elements, �

i

, and for the bino-

mial distribution, n

i

�

i

(1� �

i

).

4.1.3 Studentized Residuals

Sin
e, in generalized linear models, the varian
e is a fun
tion of the mean, it is

useful to standardize the raw residuals by dividing them by the standard error

to obtain a standardized studentized residual:

"

S

i

=

y

i

� �̂

i

p

w

ii

(1� h

ii

)

where w

ii

and h

ii

are the i

th

diagonal elements of the weight and hat matri
es.

This is also sometimes 
alled the standardized Pearson residual be
ause

(y

i

�ŷ

i

)

2

=w

ii

is the 
ontribution of the i

th

observation to the generalized Pearson

(s
ore) statisti
.
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4.1.4 Devian
e Residuals

Standardized devian
e residuals are de�ned as the 
ontribution of the i

th

obser-

vation to the (la
k of �t) devian
e:

"

D

i

=

sign(~�

i

� �̂

i

)

p

2l(~�

i

; y

i

)� 2l(�̂

i

; y

i

)

p

1� h

ii

where ~�

i

is the value of the linear predi
tor, �, whi
h maximizes the un
on-

strained likelihood for the data.

4.1.5 Likelihood Residuals

Another possibility is to 
ompare the devian
e for a �tted model for the 
om-

plete set of observations with that when ea
h observation, in turn, is omitted.

Sin
e this requires a great deal of 
al
ulation, it may be approximated by

"

L

i

= sign(~�

i

� �̂

i

)
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h
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+ (1� h

ii

)("

D

i

)

2

a weighted average of the previous two.

4.1.6 Residual Plots

Residuals 
an be plotted against a variety of statisti
s, ea
h providing di�erent

information about departures from the model.

In an index plot, the residuals are shown against the 
orresponding obser-

vation number.

Ordering in this way may make identi�
ation of departures from the model

easier.

If the order has intrinsi
 meaning, for example, as the order of 
olle
tion of

the data in time, the plot may indi
ate systemati
 variability in this sense.

Residuals 
an be plotted against the estimated means or estimated linear

predi
tor.

They may also be plotted against ea
h of the explanatory variables.

Finally, a normal probability plot shows the residuals, arranged in as
ending

order, against an approximation to their expe
ted values, whi
h is given by a

standard normal distribution, �

�1

[(i�

3

8

)=(n+

1

4

)℄.

If the model �ts well, this should yield a straight line at 45 degrees.

A half-normal plot uses the absolute values of the residuals against �

�1

[(i+

n�

1

8

)=(2n+

1

2

)℄.

Example

Let us 
ompare the residual plots for the regression model with those for

the null model when �

1

= 0.

The index plots of the studentized residuals are, for the null model,
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The null model shows positive residuals on the left and negative residuals

on the right.

With a 
onstant mean, early values are underestimated and later values

overestimated.

The plot for the regression model shows no su
h trend.

The plots of residuals against the expe
ted values are, for the null model,
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and, for the regression model,
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For the null model, all observations have the same estimated value. The

regression model shows no abnormalities. The residual plot against the ex-

planatory variable is identi
al to the index plot.

The normal probability plots are, for the null model,
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and, for the regression model,
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The departure from a straight line for the null model indi
ates that it �ts

poorly.

The regression model is mu
h 
loser to the straight line, although it is still


urved. 2

4.2 Isolated Departures from a Model

When only a very few observations do not �t the model, several possibilities

may be 
onsidered.

1. there may be some error in 
hoosing 
ertain members of the population

sampled or it may not be homogeneous for the fa
tors 
onsidered,

2. there may be some error in re
ording the results, either on the part of

people doing the re
ording or trans
ribing it, or on the part of the re-

spondents, not understanding a question,

3. some rare o

urren
e may have been observed,

4. the model may not be suÆ
iently well spe
i�ed to a

ount for 
ompletely

a

eptable observations, thus, pointing to unforeseen aspe
ts of the phe-

nomenon under study.

If there is no error, one will eventually have to de
ide if the departure is impor-

tant enough to modify the model to take it into a

ount. This will be 
overed

in the next se
tion.

4.2.1 Outliers

Any individual observation whi
h departs in some way from the main body of

the data is 
alled an outlier.

It will not be well �tted by the model.
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Outliers may be due to extreme values of the random variable (the response)

or of one or more of the explanatory variables.

The likelihood that the i

th

observation is an outlier is obtained by �tting

the model without that observation. This yields a redu
tion in devian
e for the

possibility that it is an outlier, whi
h 
an be approximated by

"
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(1� h
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However, in 
omplex situations, it is rarely wise simply to eliminate an

outlier, unless it is known to be an error.

Eliminating one outlier and re�tting the model will quite often result in a

se
ond outlier appearing, and so on.

It is usually preferable, either to �nd out why the model 
annot easily

a

ommodate the observation or to a

ept it as a rare value.

4.2.2 In
uen
e

An in
uential observation is one whi
h, when 
hanged by a small amount or

omitted, will modify substantially the parameter estimates of the model.

It is an observation whi
h may have undue impa
t on 
on
lusions from the

model.

However, it may not be an outlier, in the sense that it may have a small

residual.

Leverage is an indi
ation of how mu
h in
uen
e an observation has.

A measure of leverage is the diagonal element of the hat matrix, h

ii

, sin
e

it is the e�e
t of the observation, y

i

, in the determination of �̂

i

.

It is a measure of the distan
e of that observation from the remaining ones.

Example

The plots of residuals against leverage are, for the null model,
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and, for the regression model,
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All points have the same leverage in the null model.

No points show large leverage in the regression model.

All of the residual plots seem to point to the regression model �tting well.2

Cook's statisti
 is used to examine how ea
h observation a�e
ts the 
omplete

set of parameter estimates.

The parameter estimates, with and without ea
h observation, are 
ompared

using

C

i

=

1

p

(

^

� �

^

�

(i)

)

T

X

T

WX((

^

� �

^

�

(i)

)

where

^

�

(i)

is the parameter estimate without the i

th

observation.

This statisti
 measures the squared distan
e between

^

� and

^

�

(i)

.

This 
an be approximated by

C

i

:

=

h

ii

("

S

i

)

2

p(1� h

ii

)

These are most usefully presented as a plot against index values.

Example

The index plots of Cook's statisti
 are, for the null model,
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and, for the regression model,
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We see that observations 1, 16, and 17 in
uen
e most the parameter esti-

mates for the null model and 13 for the full model. 2

4.3 Systemati
 Departures from a Model

Systemati
 departures from a model 
an often be dete
ted from the residual

plots already des
ribed.

Certain patterns will appear when the residuals are plotted against some

other statisti
.

Misspe
i�
ation of a model may 
ome about in a number of ways:

1. an in
orre
t probability distribution (for example, overdispersion),

2. an in
orre
t spe
i�
ation of the way in whi
h the mean 
hanges with the

explanatory variables,

� the systemati
 
omponent may be misspe
i�ed,
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� the link fun
tion may not be appropriate,

3. missing variables,

4. in
orre
t fun
tions of the explanatory variables in the model or not enough

su
h di�erent fun
tions,

5. dependen
e among the observations, for example over time.

These 
an be veri�ed by �tting the appropriate models and 
omparing the

likelihoods.

Sometimes, the appropriate s
ore statisti
s are 
he
ked or plotted, sin
e

they do not involve a
tually �tting the new, more 
omplex model.

For 
ategori
al data, two of the most important things to verify are overdis-

persion and the appropriateness of the link fun
tion.

42



Bibliography

[1℄ Agresti, A. (1984) Analysis of Ordinal Categori
al Data. New York:

John Wiley.

[2℄ Agresti, A. (1990) Categori
al Data Analysis. New York: John Wiley.

[3℄ Ai
kin, M. (1983) Linear Statisti
al Analysis of Dis
rete Data. New

York: John Wiley.

[4℄ Andersen, E.B. (1980) Dis
rete Statisti
al Models with So
ial S
i-

en
e Appli
ations. Amsterdam: North Holland.

[5℄ Andersen, E.B. (1990) Statisti
al Analysis of Categori
al Data.

Berlin: Springer Verlag.

[6℄ Everitt, B.S. (1977) The Analysis of Contingen
y Tables. London:

Chapman & Hall.

[7℄ Bishop, Y.M.M., Fienberg, S.E., & Holland, P.W. (1975) Dis
rete Mul-

tivariate Analysis: Theory and Pra
ti
e. Cambridge: MIT Press.

[8℄ Christensen, R. (1990) Log-Linear Models. Berlin: Springer Verlag.

[9℄ Collett, D. (1991) Modelling Binary Data. London: Chapman & Hall.

[10℄ Cox, D.R. (1970) The Analysis of Binary Data. London: Methuen.

[11℄ Cox, D.R. & Snell, E.J. (1989) The Analysis of Binary Data. London:

Chapman & Hall.

[12℄ Fienberg, S.E. (1977) The Analysis of Cross-Classi�ed Categori
al

Data. Cambridge: MIT Press.

[13℄ Fingleton, B. (1984) Models of Category Counts. Cambridge: Cam-

bridge University Press.

[14℄ Haberman, S.J. (1974) The Analysis of Frequen
y Data. Chi
ago:

University of Chi
ago Press.

[15℄ Haberman, S.J. (1978) Analysis of Qualitative Data. Vol. I. Introdu
-

tory Topi
s. New York: A
ademi
 Press.

[16℄ Haberman, S.J. (1979) Analysis of Qualitative Data. Vol. II. New

Developments. New York: A
ademi
 Press.

43



[17℄ Hosmer, D.W. & Lemeshow, S. (1989) Applied Logisti
 Regression.

New York: John Wiley.

[18℄ Knoke, D. & Burke, P.J (1980) Log-linear Models. Beverly Hills: Sage.

[19℄ Lindsey, J.K. (1973) Inferen
es from So
iologi
al Survey Data: A

Uni�ed Approa
h. Amsterdam: Elsevier.

[20℄ Lindsey, J.K. (1989) The Analysis of Categori
al Data Using GLIM.

Berlin: Springer Verlag.

[21℄ Maxwell, A.E. (1961) Analysing Qualitative Data. London: Methuen.

[22℄ Pla
kett, R.L. (1974) The Analysis of Categori
al Data. London: Grif-

�n.

[23℄ Reynolds, H.T. (1977) The Analysis of Cross-Classi�
ations. New

York: Ma
millan.

[24℄ Santner, T.J. & Du�y, D.E. (1989) The Statisti
al Analysis of Dis-


rete Data. Berlin: Springer Verlag.

[25℄ Upton, G.J.G. (1978) The Analysis of Cross-Tabulated Data. New

York: John Wiley.

44


