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Chapter 1

Categorical Variables and
Related Distributions

1.1 Categorical Variables

Much of the observed data which a statistician encounters is not in the form of
quantitative measurements.

Rather some characteristic or attribute of the individuals is recorded.

Such characteristics take one or more distinct values.

1.1.1 Events

The cases of only one and two values for the variable are of special interest,
since they are the most commonly used.

For a single value, the observations are usually summarized as a count of
the number of occurrences of an event of interest.

Example
If the event is the birth of a child, then the counts might be the number of
children in a family. O

Variables with two values are called binary. They are often used to record
the occurrence and nonoccurrence of an event, usually over time or through
space.

Example

Cancer patients are observed to be either alive (coded 0) or dead (coded
1) over a period of time. This binary variable can only change from zero to
one. The sequence is called a point or counting process and is equivalent to
observing the survival time. O

1.1.2 Nominal Variables

In general, if any one of say I qualitatively different events may occur to an
individual, we have a nominal variable.



Each different event has a different name, but no mathematical relationship
exists among the events.

Each possible characteristic or value of the variable is called a category or
level.

Example

The sex of an individual is a binary categorical variable. More complex
nominal variables include the profession of a worker and the type of illness of a
hospital patient. O

When a number of individuals are observed, they can be classified into the
I possible categories.

The number in each category, n;, is called the (absolute) frequency.

This may also be transformed by dividing by the total number of individuals,
n. =Y, n;, to yield the proportion or relative frequency in each category.

For clarity of presentation, these numbers are often multiplied by 100 to
give percentages.

Example
1681 residents of Copenhagen were asked about the type of housing in which
they lived. The results are summarized in the following table.

Type of Housing

Tower Apart- Atrium Terraced

Block ment House House
Absolute
Frequency 400 765 239 277
Relative
Frequency | 0.2380 0.4551 0.1422 0.1648
Percent 23.80 45.51 14.22 16.48

1.1.3 Ordinal Variables

Often, a categorical variable contains more information than simply the names
of the categories.

If the categories can be strictly ordered, we have an ordinal variable.

Such variables frequently occur for the preferences of individuals or their
state of health.

When available, such information should be used in the statistical analysis.

Example

256 Americans who graduated from high school in 1965 were asked their
political party identification in 1982. The absolute frequencies are given in the
following table.



Strong Democrat 10

Weak Democrat 59
Leaning Democrat 41
Independent 26

Leaning Republican | 44
Weak Republican 47
Strong Republican | 29

1.1.4 Counts and Frequencies

Counts and (absolute) frequencies are very similar and, indeed, are not always
distinguished. Both are numbers of events.

A count is made of events on one individual unit of observation, such as the
family above.

A frequency is an aggregation of events on different units of observation,
with each unit appearing only once, at least at any given point in time.

Example
Consider the following distribution of accidents:

Accidents | Frequency
0 447
1 132
2 42
3 21
4 3
5 2
6 0

The first column is the count per individual; the second column is the fre-
quency with which that count occurs across individuals. O

Similar statistical techniques can often be used for both counts and frequen-
cies.

However, since counts involve events on the same unit, there will often be
some form of dependence among these events, which often may need to be taken

into account.
In contrast, frequencies refer to numbers of independent events, since they
occur on different units.

1.1.5 Other Types of Variables

Any variable can be reduced to a simpler form by ignoring its special charac-

teristics.
A quantitatively measured variable may be cut into a series of distinct cat-

egories, usually more or less arbitrarily.



Example

Income is often recorded as a categorical variable, say to the nearest 500
francs. O

In fact, any quantitative variable can only be measured in a categorical way,
since all measuring instruments have some finite limit to their resolution.

Example
The length of employment of a certain type of British postal workers was
recorded to the nearest month:

Months | 1 2 3 4 5 6 7 8 9 10 11 12
Freq. 22 1819 13 5 6 3 2 2 1 0 1
Months | 13 14 15 16 17 18 19 20 21 22 23 24
Freq. o o0 o 1 1 1 3 1 1 O O O

O
The question is rather whether the statistical technique applied to the data
uses the quantitative information contained in the labels on the categories.

When only the nominal information in a variable is used, no (mathematical)
relationships exist among the categories.

Statistical analysis must rely on the frequencies of occurrence of the cate-
gories to provide the mathematical structure.

Thus, the less is known or assumed about the relationships among the cat-
egories, the more observations are required in order to have sufficiently large
frequencies in each category.

1.2 Poisson Distribution

If events of the i*" type are independent across individuals and occurring at a
uniform rate, 7;, then the (random) number of such events, say N;, will have a
Poisson distribution with probability mass function

e_ﬂi u:bl

Pr(N; = nj; ;) = .
where p; = 1/7; is the mean number of events and where the total number of
events, n. = Y n;, is not fixed in advance.

This distribution is characterized by the relationship between its mean and
its variance:

E[Ni] = pi
= var[N;]

Example
Counsider the classical data on the numbers of deaths by horse kicks each
year between 1875 and 1894 in 14 corps of the Prussian army:



Deaths/Corps/Year | 0 1 2 3 4
2

)
Frequency 144 91 32 11 0

Here, the mean is estimated to be i = 0.70 deaths per year per corps. O
If each category of event has a Poisson distribution, then the total number of
events of all kinds, n_, will also have a Poisson distribution, with mean p = Y y;.

The hypotheses of the Poisson distribution may often be reasonable for
frequencies since the events are independent across individuals.

The question is whether the (categories of) individuals whose events are
grouped in the frequencies are homogeneous enough so that they all have the
same rate for the event.

Since a count refers to a number of events all on the same individual unit,
the dependency among them must be examined closely.

On the other hand, all of the counted events will usually have the same rate,
or they would not have been counted together.

Most often, the Poisson distribution will not be found suitable for counts.

Example
For the deaths by horse kicks, there are, in fact, two types of corps. One
may need to investigate if they both have the same death rate. O

Thus, for frequencies, the heterogeneity among individuals must be checked,
while, for counts, the dependence among events on an individual plays a more
important role.

One indication will be that the mean and variance are substantially different.

According to the direction of the difference, it is known as under- or overdis-
persion.

The most common correction is to replace the Poisson distribution by the
negative binomial.

1.3 Multinomial Distribution

Suppose now that we keep the same hypotheses as for the Poisson distribution,
but fix the total number of events, n_, before making the observations.
We must now look at the conditional distribution

oeTtipt

[ u
Pr(ny,...,nr|ln;p1,...,pr) = Ze,m,?_l'
I .
()
i=1 VH
I
i=1

(e

where m; = p;/p may take values between zero and one, with sum equal to one,

n-

nl .. n[
n.

ny ny

and hence are probabilities.



This is known as the multinomial distribution.

It describes the distribution of I different types of events occurring inde-
pendently, each type of event with a constant rate, where the total number of
events is fixed.

This relationship between the Poisson and multinomial distributions is im-
portant.

It allows us to construct univariate models for categorical data whose fre-
quencies are multivariate, simply by conditioning on the total number of events.

Example

In the Copenhagen housing example, the distribution of the n, = 1681
residents might be taken to be multinomial, with four categories.

However, it can be modelled as Poisson by conditioning on the observed
total, n.. O

1.3.1 Binomial Distribution

A special case of the multinomial distribution, when only two types of events
are observed, so that the variable is binary, merits mention.
This is the binomeal distribution:

PI‘(Nl :n1|n,,u1) = (n'>7{'?1 (]. —Wl)n'inl
ng
The mean and variance of the random variable, Ny, are given by
EM] = m
= nm
var[N1] = nm(l—m)

1.4 Chi-Squared Distribution

If U; are random variables having independent standard normal distributions,
with mean 0 and variance 1,

Ui ~ N(0,1)

then U7 has a 1-squared distribution with one degree of freedom an
hen U? has a Chi-squared distribution with one degree of freedom, x7 and

P
Zp = Z Ui2
i=1
a Chi-squared distribution with p degrees of freedom and E[Z,] = p.

Often, we have a random variable, Y;, with mean, p;, and variance, o2, such
that




so that

where the variance, o2, is known.
For p large, Xzz) = N(p, 2p).
The Chi-squared distribution is a special case of the gamma distribution:

7187

ks

Y
fly) = r (@2

WIS ope

1.4.1 Maximum Likelihood Estimate

The maximum likelihood estimate (m.l.e.), 1/3, has asymptotic distri-
bution N[, I7 ().

Under mild regularity conditions, for n independent observations, we know
that the mean and variance of the score, U, are

E[U(4)] =0
and
E[UUT] = E[-U
= I>0

where I is the Fisher information.
Expand the score in a Taylor series about the true value, v

% — ¢
1!

U(h) = U(h) + U' (1) +...

The left hand side is zero.

By the law of large numbers,

lim [—U' ()] = (1))

n—00

so that

(=) =T ($)U(y)

The mean and variance of the right hand side are 0 and I7%(1).
Then, since U(v)) is a sum, by the central limit theorem, asymptotically

1 ~ MVN[p, I (1))]

Since, 1 is typically unknown, any consistent estimate of I(¢), such as I(l/;),
can be used without affecting the limiting distribution.



This implies, asymptotically, that the standard error of the parameter esti-
mates is the square root of the diagonal elements of I7!(¢) and that

W — )T IW) (¢ — ) ~ x2

where p is the dimension of .

This result is known as Wald’s statistic.

Example

For the parameter of the binomial distribution, with
n
I(7y -
(m1) w1 (1 —m)
Wald’s statistic is

n.(f —m)? ~(n1— n.m)?

71'1(1 —71'1) N n.m(l — 7r1)
O

Wald’s statistic and the asymptotic standard errors have several major
handicaps, especially in small samples:

e If the log likelihood is not quadratic (i.e. Gaussian) for a parameter, they
can be very misleading.

e They are not invariant under parameter transformations.

Thus, in categorical data analysis, Wald’s statistic and the asymptotic standard
errors should only be used with great care and as an approximation.

1.4.2 Log Likelihood and Deviance

Expand the log likelihood function as a Taylor series at 1 = 1:
() = 1)+ (-9 ($)
1 . . .
=BG - D)+ ..

Since I'($)) = 0, we have minus two times the log likelihood ratio, 1(1) — 1(2))
called the deviance,

D(y) = (¢ — ) L) (3 — )

For n sufficiently large, zﬁ will be close to the true value, 1, and this will be a
good approximation.
As we have seen above,

~

(W =)L) W — ) ~ x;
so that, asymptotically,

D(y) ~ x;

8



where 1 is the true value, with dimension p.

Example
For the binomial distribution, the deviance is

Dir) = 2 [mlog (2) + (n. ~ mo)tog (12|

1—7‘(1
nﬂi

2
= 2 an log <
i=1 :

In categorical data analysis, this is often called G2. O
Now, suppose that we wish to compare this full model to some submodel,
11, of dimension r < p, nested in ¥, i.e. where ¥ C V.
We have

=20(¢1) — 1)) = —2{[L%) — L) — L) — L))
= [1(®) = U(¢1)]}
= D(¥) = D(¢) +2[1(y) —1(¢1)]

The first term has a X;% distribution, the second, x?, and the third is a positive
constant, near zero if the correct model is indexed by ;. Then,

D() =D (1) ~ xp—r

under ¢ € ¥; C U, since sums of Chi-squared variables are Chi-squared.

1.4.3 Score

Since we know that the mean of the score is zero and its variance is the Fisher
information, and since the score is a sum, by the central limit theorem, asymp-
totically

U(y) ~ MVN[0, I(4)]
and, hence,
UM ()T () UY) ~ X
This is called the score statistic.

The same result can be obtained in another way.
From the asymptotic normality of the m.l.e., we know that

P —p =T (h)U(y)

Substituting this into the asymptotic distribution of the deviance, we obtain

Dy (4) = UM ()17 () U (%)

which will have an asymptotic Chi-squared distribution.



The advantage of this statistic, as compared to the deviance and its normal
approximation, is that it does not require the calculation of 1, but depends
only on the fixed value, .

Example
For the binomial distribution, with

ny —nm

71'1(1 — 7'('1)

and Fisher information as given above, we have the score statistic

U(m) =

2

2
(ny —n.m)? —n.m;)
n.m(l —m) ; n_m;
which, in this case, is identical to Wald’s statistic. O
This is a simple case of the Pearson Chi-squared statistic, which is the score
statistic approximation to the deviance,
given above.

Both have an asymptotic Chi-squared distribution.

1,
D =2 1
() zn og (-

Example

For the postal workers example, suppose that we entertain the null hypoth-
esis of constant loss over the 24 months.

The constant probability of loss is m; = ﬁ, which gives a Pearson statistic
of 243.7 and a deviance of 189.5, both with 23 d.f. O

10



Chapter 2

Contingency Tables and
Independence

2.1 Contingency Tables

Throughout this chapter, we shall concentrate on the relationships between
only two variables, since more complex situations are more easily handled by
the construction of formal models, presented in the next chapter.

2.1.1 Two-way Tables

Suppose that X and Y are two categorical variables having respectively I and
J different levels.

If individuals are classified simultaneously according to both variables, I.J
combinations are possible.

This can be displayed as a rectangular table with I rows and J columns,
with the cells of the table representing the possible outcomes.

When the cells contain the frequencies, say n;j, of outcomes in a sample,
the table is called a contingency table.

The marginal totals are represented by n j, n; and n_.

Example

Injuries in car accidents in Florida in 1988 are classified as to whether a seat
belt was being used at the time or not.

Injury
Seat Belt | Fatal Nonfatal | Total
No 1601 162527 164128
Yes 510 412368 412878
Total 2111 574895 577006
Here, we have a 2 x 2 table. O

In general, we have an I x J table.

When presenting the frequencies of a contingency table as proportions or
percentages, it is important to indicate in which direction they are calculated.

11



Example
For the car accident data, the percentages are

Injury
Seat Belt | Fatal Nonfatal | Total
No 0.98 99.02 100.00
Yes 0.12 99.88 100.00
Total 0.37 99.63 100.00

Percentages might also be calculated separately for each type of accident (the
columns) or globally for the complete table. O

2.1.2 Types of Designs

Prospective Studies
In a prospective study, individuals are sampled from a population and then
followed over a certain period of time. Two cases may be distinguished.

1. In a clinical trial, the subjects are randomly allocated to one of a number
of different treatments before the followup.

Of all the designs mentioned, this is the only one which is experimental.

2. In a cohort study, all variables are simply observed as they occur over
time.

Cross-sectional Studies

A cross-sectional study simply observes all variables on individuals at one
given fixed point in time.

The data in the car accident example come from such a study.

Retrospective Studies

In a retrospective or case-control study, subjects are chosen according to
their response values and then the values of the explanatory variables obtained.

Thus, the explanatory variables are random and the response fixed.

Example

58 married women under treatment for myocardial infarction in England
and Wales during 1968-1972 were each matched with three control patients in
the same hospitals who were being treated for something else.

All subjects were asked if they had ever used contraceptives, yielding the
following table:

Myocardial Infarction
Contraceptive | Yes No
Yes 23 34
No 35 132

12



2.2 Probability and Dependence

2.2.1 Joint and Conditional Probabilities

Suppose, for the moment, that only the total number of events, n_, is fixed.
This will be the case in cross-sectional and cohort studies.

Denote the probability of outcome (4, j) by ;.

These probabilities describe the joint distribution of X and Y, and might
be taken to have a multinomial distribution.

The marginal distributions are obtained by summing the joint probabilities
to obtain row or column totals.

Denote these by

T, = Z"Tij
j

Tjo= D
7

These marginal probabilities contain no information about the relationships
between the variables. Only the joint probabilities do.

Often, one variable, say Y, is taken to be a response and the other, an
explanatory variable.
In other words, Y is random, but X is fixed, so that the joint distribution
is no longer meaningful. Such will be the case in a clinical trial.
The distribution of Y for fixed X, with probabilities
i) = —
= i
is called the conditional distribution.
Then, we wish to compare the conditional distribution of Y at various levels
of the explanatory variable, X.

The maximum likelihood estimates can be shown to be

. Mg
T = —
for the joint distribution,
. ng;,
Ty, = n_
n
S
Tjo=
for the marginal distributions, and
. i
Tjle = -
1.

for the conditional distribution.

Example
In an American social survey, people were asked about their opinions on the
death penalty and gun registration, with the following results:

13



Death Penalty
Gun Registration | Favour Oppose
Favour 784 236
Oppose 311 66

The maximum likelihood estimates of the joint probabilities are (0.56, 0.17,
0.22, 0.05), of the marginal probabilities, (0.73, 0.27) for gun registration and
(0.78, 0.22) for the death penalty, and of the conditional probabilities, (0.77,
0.23) for those favouring gun registration and (0.83, 0.17) for those opposing
it. O

2.2.2 Independence

The variables X and Y are statistically independent if all joint probabilities
equal the product of the corresponding marginal probabilities:

Tij = M. T j Vi, j
This is also equivalent to
’/T]\l = 7'('.]' VZ,]

Each conditional distribution of Y is equal to the marginal distribution.
Thus, the response, Y, does not depend on the fixed conditions, X, when
the probabilities are the same for all of those conditions.

Example

In the death penalty example, neither variable might be taken as a response
with the other fixed, so we look at the joint probabilities.

Under independence, they are estimated as (0.57, 0.16, 0.21, 0.06) as com-
pared to (0.56, 0.17, 0.22, 0.05) given above, indicating some dependence.

In the car accident example, the type of injury might be taken as a response,
given the fact that a seat belt was being worn at the time or not.

The conditional probability of a fatal accident, given that a seat belt was
worn, is estimated as 0.0012 compared with 0.0098 without a seat belt.

Again, this indicates a dependence of type of accident on whether a seat
belt was worn or not. O

2.2.3 Comparison of Probabilities

All estimates involved in the comparison of probabilities can be obtained di-
rectly from the maximum likelihood estimates of the probabilities, due to their
invariance property.

Differences

For the conditional probabilities, any two rows of the table can be compared
by taking the appropriate differences of probabilities: m;; — ;) for rows ¢ and

7.

14



Such differences must lie between —1.0 and 1.0. If all differences are zero,
the conditional probability distributions are identical and the two variables are
independent.

The drawback of this rather intuitive approach is that a difference in prob-
abilities of given size may have greater importance when the proportions are
close to the limits, 0 or 1, than in the middle, near 0.5.

Relative Risk

The ratio of conditional probabilities under different conditions is known as
the relative risk, m;); / jjir, which can take any nonnegative real value.

If all relative risks are equal to unity, the variables are independent.

Relative risks will differ depending on which variable is taken as response
and which as explanatory.

Thus, it is not appropriate in situations where there is no such distinction
among the variables.

Example
In the car accident example, the relative risk of a fatal accident is estimated
as
1601
160145-11(?2527 —7.90
5101412368

when not wearing a seat belt as compared to wearing one, while that of a
nonfatal accident is

162527
16014162527 _
2368 — 0-99
510-+412368
Nonseat belt wearers have a higher risk of a fatal accident than seat belt wearers,
but not of a nonfatal accident.
This indicates a dependence of type of accident on whether or not a seat

belt was worn. O

Odds Ratio
The ratio of probabilities under the same conditions is known as the odds,
_—
bipi = —-
7Tj’|i

Uy

which can take any nonnegative real value.

The log odds is often called the logit.

¢ 1s greater than unity when response j is more probable than response
4" and conversely.

For independence, the vector of odds under each condition, ¢, must be the
same.

Example

15



In the car accident example, the odds of a fatal as compared to a non-
fatal injury is estimated to be 1601/162527=0.0099 without a seat belt and
510/412368=0.0012 with one.

Again, this indicates a dependence of type of accident on whether or not a
seat belt was worn. O

Note that the estimation of the odds does not involve the marginal frequen-
cies.

The odds ratio or cross product ratio is defined as
Pii'li
Pijli

7rj|i7rj’|i’

Aijsirgr =

Wj’|i7rj‘i’
7Tij 7ri/jr
Tij! it j

which again can take any nonnegative real value.

Degrees of dependence are measured from unity, which indicates indepen-
dence.

A value greater than unity indicates the same degree of dependence, but in
the opposite direction, as its reciprocal, which will be less than unity.

Thus, the ranges are not symmetric, being (1,00) above unity and (0, 1)
below.

However, the odds ratio is symmetric in the variables, as can be seen from
its definition in terms of joint probabilities.

Often, it is more convenient to use the log odds ratio,
Oijsirjr = log(Nijsirjr)

which can take any real value and is symmetric in measuring dependence on
each side of independence (at 0).

Example

In the car accident example, the estimated odds ratio is

1601/162527

= 7.96
510/412368

and the corresponding log odds ratio, 2.075.

Both indicate a positive dependence between fatal injuries and not wearing
a seat belt, i.e. that there is a much greater chance of a fatal accident without
a seat belt. O

However, one major problem with any ratio of probabilities, such as relative
risk and odds, is that its estimate is not defined if a denominator probability is
estimated as zero.

The log odds is not defined if any probability is estimated as zero.

Sampling Distributions

16



In cohort and cross-sectional studies, the total number of observations to
be made is usually fixed.

Thus, a multinomial distribution over all combinations of categories is ap-
propriate. This is known as multinomial sampling.

In a clinical trial, the marginal distribution of the treatments is fixed.

Thus, the frequencies for each fixed value of the explanatory variables will
have a multinomial distribution.

This is known as independent or product multinomial sampling.

However, when a distinction is to be made between response and explana-
tory variables, it usually makes sense to treat all sampling schemes as if they
were product multinomial.

2.3 Characteristics of the Odds Ratio

2.3.1 Retrospective Studies

As we have seen, the odds ratio is symmetric in the variables and its estimation
does not involve the marginal frequencies.

Due to these characteristics, it has a further useful property.

It can measure dependence even when the study is performed “backwards”,
as in a retrospective or case-control study.

There, the marginal distribution of the response variable is fixed by the
design.

Example

In the myocardial infarction example, the marginal distribution of myocar-
dial infarction is fixed by the design of the study.

The dependence of infarction on contraceptive use, as measured by the log
odds ratio, is

23 x 132
—F— | =0.937
o8 ( 34 x 35 )
indicating a strong positive relationship between them. O

2.3.2 Relation to Relative Risk

For a 2 x 2 table, we have

T T2)2
A2 = —— X ——
T2 T2t
11 1- 1|2
_ X _

12 1- 11
The first factor is the relative risk.
If the conditional probability of response one, my;, is small for both groups,

the second factor will be close to unity and the relative risk and odds ratio will
be very similar.

17



Example

In the car accident example, the conditional probabilities of fatal injury are
0.0099 for nonseat belt wearers and 0.0012 for seat belt wearers.

The odds ratio was found to be 7.96 while the relative risk of a fatal accident
is 7.90. O

This result is especially important in retrospective studies where the appro-
priate conditional probability estimates are not available, so that the relative
risk cannot be directly estimated.

2.3.3 [ x J Tables

In the 2 x 2 table, all four possible odds ratios are simply permutations of the
frequencies in the numerator and denominator.

For larger tables, a number of distinct odds ratios can be calculated.

The (I — 1)(J — 1) local odds ratios

A _ TiThit1,j+1

tji+l,j+1 =
T, +1Ti41,
1=1,...,1-1,53=1,...,J -1

between adjacent categories determine all possible odds ratios and contain all
of the information in them.
However, the construction of a minimal set of odds ratios is not unique.
Another possibility would be to make comparisons with the first category:
M1 T4

Aij = —4  i=2...1,j=2...,J
’ M550

2.4 Tests

2.4.1 Goodness of Fit

If the statistician has some specific model in mind for the data, its goodness of
fit can be tested.

Any of the statistics discussed in Chapter 1 might be used. The deviance
gives a likelihood ratio test and the score the Pearson Chi-squared test.

In the simplest cases, the complete model is known from theory, so that all
probabilities can be calculated without knowledge of the data.

Example
In a genetic experiment, with two gene types, G-g and H-h, a number of
Pharbitis plants were bred, yielding the table

G g
H| 123 27
h | 30 21
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The theoretical probabilities are (%, 13—6, %, 1—16)

The deviance, using the multinomial distribution, is

123 x 1 1
2 {12310g <M> + 301log <30 . 6)

9 % 201 3 % 201
27 x 16 21 x 16
271 211 — 10.61
+ 0g(3><201>Jr 0g<1x201>}

Since the total number of plants is fixed, there are three degrees of freedom,
corresponding to three of the four observed frequencies.

Then, the Chi-squared value is large enough to indicate significant departure
from the model.

The Pearson statistic is

(123 . 9x2601)2 (30 . 3x1%01)2

1
9% 201 3% 201
16 16

3x201 )2 1x201 )2

27 — 25=== 21 — ===

16 16 1114
+ 3% 201 + 1x201 -
16 16
giving the same conclusion. O

2.4.2 Independence

Independence is a special model which very often is of interest.
Recall that it is defined by

Tij = M. T j Vi, j

Although the probabilities are not completely defined by the theory, as
they were in the previous section, this relationship among them is specified and
places a constraint on their values.

We can proceed by estimating the required marginal probabilities from the
data and using them in our deviance or Pearson statistic.

However, the degrees of freedom must be adjusted to allow for each proba-
bility estimated.

Example

For the car accident example, the deviance is 2041 and the Pearson statistic
2338.

For the death penalty and gun registration example, they are respectively
5.32 and 5.15.

For the myocardial infarction example, they are respectively 7.87 and 8.33.

In each case, two marginal probabilities are estimated so that the degrees
of freedom equal one.

In all cases, the hypothesis of independence is rejected. O
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2.4.3 Fisher’s Exact Test

The preceding Chi-squared tests require the asymptotic assumption that the
sample size is very large.

In many situations, especially where it is very costly to obtain observations
or where the phenomenon under study is very rare, only small frequencies will
be available in a table.

In such cases, it is often even more important to make an accurate inference
about the meaning of the results.

Under the null hypothesis of independence, an exact distribution of the ob-
servations can be obtained by conditioning on both sets of marginal frequencies.

The result is a hypergeometric distribution, which, for the 2 x 2 table, may
be written

ni. na.
(nll) (n.lfnll)
n.
(n.l)
Here, the only random element is ni; which, when the margins are fixed, de-
termines all frequencies in the table
To obtain a test, all possible tables with the given marginal frequencies must
be enumerated.

Those with probabilities at least as small as for that observed are retained
and those probabilities summed to give a P-value.

Example

For the myocardial infarction example, the P-value for Fisher’s exact test
can be calculated to be 0.0052.

This compares with an asymptotic P-value of 0.0050 for the deviance and
0.0039 for the Pearson statistic.

The similarity among the values is not surprising, given the relatively large
number of observations in this table. O
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Chapter 3

Log Linear and Logistic
Models

The logistic and log linear models for categorical data use respectively the
binomial and Poisson distributions for regression analysis.

Hence, they are generalized linear models, using respectively the logit and
the log links.

In fact, logistic regression is just a special case of a log linear model and all
logistic models can be fitted as log linear models.

3.1 Log Linear Models

3.1.1 Poisson Regression

To introduce log linear models, we shall first look at the simplest case, when
there is only one variable, a one-dimensional table of frequencies or counts.

Poisson regression, as the name implies, uses the Poisson distribution.
With the log link, this can be written

log(pi) = ) Brik
P

where p; = E[V;] is the mean of the Poisson distribution.

In the special case of an ANOVA type situation, the x;; will be indicator or
factor variables.

If the values of the variable are numerical quantities, three simple models
are possible.

The simplest, or null, model, with only z;p0 = 1, fits a common mean to all
categories.

The most complex, or saturated, fits a different parameter value to each
category using a factor variable, or, equivalently, a series of indicator variables.

In between are situated the usual regression models, of which the most
common is a simple linear Poisson regression:

log(p:) = Bo + Brz;
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Note that, in terms of the mean values, this is an exponential curve:

pi = e

where g} = e%.

Since, in all models, the total number of observations is fixed, Poisson re-
gression is equivalent to fitting a multinomial distribution.

Comparison of models is customarily performed using the deviance.

Example

Consider a study where subjects were asked to recall one recent stressful
event.

The number of months prior to the study when the event occurred was
recorded:

Months 1 2 3 4 5 6 7 8 9
Subjects | 15 11 14 17 5 11 10 4 8
Months |10 11 12 13 14 15 16 17 18
Subjects |10 7 9 11 3 6 1 1 4

The model with a common mean for all 18 months has a deviance of 50.84 and
17 d.f., indicating a poor fit.
The log mean is estimated as 2.100 with s.e. 0.08248.

As always, the saturated model has zero deviance and zero d.f., since it fits
perfectly, having a different mean for each category.

The linear regression model, where z; is the number of months, has a de-
viance of 24.57 with 16 d.f., indicating a reasonable fit and a very significant
improvement over the null model.

The parameters are estimated as Bg = 2.803 and Bl = —0.08377 showing
that the number of subjects recalling an event decreases over time. O

3.1.2 Two-way Tables

In a two-way table, we have two categorical variables which must be related to
the mean.

Thus, the saturated log linear model for a two-way table may be written as
a Poisson regression:

log(ij) = p + i + Bj + ij

in the familiar ANOVA-style notation.

As usual, some arbitrary constraints must be placed on the parameters for
them to be identifiable.

The “conventional” constraints are >, o; = 0, etc., although very few sta-
tistical computer packages use them.

Here, we choose to set the first element to zero: oy = 0, etc.

If there is no interaction between the variables, they are independent, as
discussed in the previous chapter.
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Thus, when v;; =0 V4,7, we obtain the independence model.

The deviance of this model is that given in the previous chapter.

The estimates of 7;; in the saturated model are a minimal set of log odds
ratios, the set produced depending on the constraints chosen.

This implies that log linear models may be fitted to data from any of the
study designs described in the previous chapter, and, in particular, to retro-
spective studies.

The choice of which variable (or both) is the response does not affect the
estimate of the interaction log odds ratio parameter.

Example

For the myocardial infarction example of the previous chapter, the saturated
model yields parameter estimates, i = 3.135 (s.e. 0.2085), &y = 0.4199, (s.e.
0.2684), B2 = 0.3909, (s.e. 0.2700), 422 = 0.9366, (s.c. 0.3302).

As expected, the value of 499 is identical to the log odds ratio calculated in
the previous chapter.

The deviance of 7.8676 with 1 d.f. for the independence model is also iden-
tical to that obtained there. O

If one or more of the variables in the table refer to measurements, as in
the event recall example above, the categorical variables can be replaced by
continuous ones in the interactions in the log linear model.

However, in order to fix the marginal totals, factor variables should be used
for the main effects.

Example
Consider data on the number of albinos in families of different sizes.

Number of | Size of family
Albinos 4 5 6 T
1 22 25 18 16

2 21 23 13 10

3 7 10 18 14

4 o 1 3 5

5 -1 0 1

6 - — 1 0

This is a 4 x 6 table, but of a special form since three categories are impossible.
These are called structural zeroes and should not be included in the data
set when the models are fitted.
The other zeroes in the table are called sampling zeroes since, in another,
perhaps larger, sample positive frequencies might be observed.

If we fit the independence model,
log(pij) = p+ ai + B;

the deviance is 24.326 with 12 d.f., which gives a P-value of 0.01836, so that we
reject the hypothesis of independence.
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If we use a linear interaction between family size and number of albinos, the
model is

log(pij) = p + i + B + ¥x1i%2;

where z1; refers to the number of albinos and 2, to the family size.

For this model, the deviance is 15.774 with 11 d.f. for a P-value of 0.1497
so that the model fits acceptable well.

The interaction parameter is estimated as v = 0.2076 (s.e. 0.07283), reveal-
ing a positive relationship between family size and albinism. O

3.1.3 Multi-way Tables

The extension to higher dimensional tables is direct, as in the classical ANOVA
case.

Here, it is useful to introduce a different notation. In addition to the ‘4,
the symbols ‘. and **’ will be used.

The ‘4’ has the usual meaning, while the ‘.’ signifies an interaction.

The “*’ is a more complex operator, with the following meaning:

WHX=W+X+W.X

’

This will indicate a saturated model, with interaction, for a two-way table, such
as that used in the previous section.

Thus,
WH*X*Z=W+X+Z+W.X+W.Z+X.Z+W .X.Z

is the saturated model for a three-way table, and so on.

This is known as the Wilkinson and Rogers notation.

With an increased number of variables indexing the table, the ways of choos-
ing the response variables becomes more complex.

Thus, all variables might be taken to be responses, with no explanatory
variables, as in the gun registration and death penalty example, or any smaller
number down to only one response variable.

Usually, all marginal totals for the explanatory variables are taken to be
fixed, so that a minimal model would be

R1+R2+R3+- - -+ X1*X2*X3*. ..

where Rn indicates a response variable and Xn an explanatory variable.

This is a model for independence among all responses and of responses on
explanatory variables.

Association among responses can be introduced as R1.R2, etc., and depen-
dence of responses on explanatory variables as R1.X1, etc.

Any necessary degree of interaction can be included.

Example
Counsider a study of the dependence of delinquency on socioeconomic status
and on whether the person concerned had been a boy scout.
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Socioeconomic | Boy Delinquent
Status Scout | Yes No
Low Yes 10 40
No 40 160
Medium Yes 18 132
No 18 132
High Yes 8 192
No 2 48

This is a 2 X 2 x 3 contingency table.

If we let D, BS, and SS signify, respectively, the variables delinquent, boy
scout, and socioeconomic status, the minimal model is

D+BS*SS

which has a deviance of 32.752 with 5 d.f.

Thus, we reject the hypothesis that delinquency is simultaneously indepen-
dent of socioeconomic status and having been a boy scout.

If we introduce the dependence of delinquency on boy scout,

D+BS*SS+D.BS

the deviance is reduced by 6.882 with 1 d.f.
The parameter estimate of -0.579, corresponding to D.BS, indicates that
delinquency is lower among former boy scouts.

If, instead, we introduce the dependence on socioeconomic status,
D+BS*SS+D.SS

it is reduced by 32.75 to about zero with 3 d.f.

Thus, the boy scout variable is no longer needed in the model when socioe-
conomic status is present. By itself, it explains differences in delinquency, but
this is because it is linked with socioeconomic status.

The parameter estimates for dependence of delinquency on socioeconomic
status, corresponding to D.SS, are (0.000,0.6061, 1.792), showing that nondelin-
quency is higher in the higher statuses. O

3.2 Logistic Models

The logistic model is a special case of log linear models when there is only one
response variable, and that variable has only two categories.
The binomial distribution is used with the logit link.

3.2.1 Binary Data

This model can be more easily applied to individual data which have not been
grouped into the frequencies of a contingency table than can a log linear model.
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Such data are known as binary data.

If there are continuous variables available, having many distinct values, this
individual approach will be the only one available to analyze such data, unless
the values of those variables are grouped into a small number of categories.

The general logistic regression model is now
Lo
1 = ;
0g (1 — m) Ek Brik

and the special cases are as for log linear models.

However, in distinction to log linear models, the response variable is not
included among the ;.

As we shall see, all terms included in the model are, in fact, ‘interactions’
with the binary response variable.

Example
Let us look at a small data set with 7 individuals, which will illustrate the
relationships among the various approaches.

X1 X2

Y
0
1
0
0
1
1
1

== N DN =
_— NN =N N =

These are individual data, not grouped into a contingency table.
For the response variable, Y, a one indicates the occurrence of the event of
interest.

When we fit the independence model

(i25)
log =p
1—m

we obtain a deviance of 9.561 with 6 d.f.

However, in contrast to the case of frequency data in a contingency table,
here, for binary data, the deviance gives no indication of goodness of fit.

Adding X1 reduces this deviance by 0.058, and X2 by 1.185, each with 1
d.f.

As an example, the parameter value for X2 is 1.792.

These differences in deviances are interpretable in the usual way.

The saturated model has a deviance of 6.592 with 3 d.f., in contrast to the
zero deviance of saturated models in contingency tables.

The difference in deviance between the saturated and the null model is 2.969
with 3 d.f. O
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3.2.2 Grouped Binomial Data

Logistic models can also be applied to the frequency data of contingency tables
when there is one response variable and it is binary.

The same procedures are used as for individual binary data and the results
will be identical in cases where the data could be classified into a contingency
table.

Example
Our binary data example can be grouped into the following 2 x 2 x 2 con-
tingency table:

Y
X1 X2|0 1
1 1 |1 1
1 2 |1 2
2 1 ]/1 0
2 2 |0 1

The deviance for the null model is now 2.969 with 3 d.f., which was our difference
in deviance above.

This may here be interpreted as a goodness of fit.

The same reductions in deviance are found as previously and the parameter
value for X2 is again 1.792, so that all of our results are identical.

However, we can also fit this table as a log linear model.
The independence model

Y+X1*X2

gives a deviance of 2.969, as might be expected.
The parameter estimate for the term, Y.X2, in the model

Y+X1*X2+Y.X2

is 1.792 as previously.
Thus, all three approaches give absolutely identical results. O

3.2.3 Alternative Link Functions

Binary models can sometimes be interpreted as arising when some underlying
continuous stimulus is present which only gives a positive response after some
critical level is reached.

If this underlying continuous variable has a logistic distribution, the result-
ing binary response will follow a logistic regression.

The underlying continuous distribution can be altered by specifying a dif-
ferent link function.

The two most commonly used are the probit, corresponding to a normal
distribution, and the complementary log log, for an extreme value distribution.
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3.3 Ordinal Variables

3.3.1 Fixed Scales

All of the models so far presented in this chapter impose no structure on the
values of the variables.
The categories can be reordered in any way without changing the results.
If a variable does have an ordering, this will lead to a loss of information.
If reasonable, the simplest approach is to assign numerical values to the
categories, often just a linear scale involving the consecutive integers.
If such a scale can be derived, the methods already described can be used
directly, since the variable has been promoted to being continuous.

Example

Counsider the classification of schizophrenic patients in a London institution,
where the types of visit are (A) goes home or visited regularly, (B) visited less
than once a month and does not go home, and (C) never visited and never goes
home.

Length | Type of Visit
of Stay | A B C
2-10 43 6 9
10-20 | 16 11 18
>20 3 10 16

Here, both variables might be taken to be ordinal.

The independence model has a deviance of 38.353 with 4 d.f.

The model with a linear scale for visit and nominal for length has deviance
6.46 while that with a linear scale for length and nominal for visit has 0.02,
both with 2 d.f.

This indicates that the linear scale is acceptable for length of stay, but not
for type of visits allowed. O

3.3.2 The Log Multiplicative Model

The logical extension of the fixed scale model is to estimate the position of the
categories on an arbitrary scale.
This model will have the form

log(pij) = p+ i + Bj + ywid;

where d; is an unknown scale for the ordinal variable indexed by j.

The last term of this model contains a product of two unknown parameters,
hence the name, log multiplicative model, so that it is not a log linear model
and cannot be estimated by standard software.

Example
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When this model is applied to the schizophrenic data, the estimated scale
is 5} = (0.00,0.98,1.00), with deviance 0.02 on 2 d.f., when length has a linear
scale as above.

This indicates that the second and third categories of patients, who never
go home, are similar and might be classed together.

The regression coefficient is ¥ = 1.63, showing that the longer is the length,
the more chance there is of the patient being higher on the visit scale. O

3.3.3 The Continuation Ratio Model

A second type of approach to ordinal variables regroups the categories of re-
sponse instead of creating a scale.

It is only applicable to a response variable.

In the continuation ratio model, each successive category is considered in
turn and the frequency of response at least up to that point is compared to that
for the next higher category.

In this way, the original contingency table, with a J category ordinal scale
is converted into a series of J — 1 subtables, each with a binary categorization,
lower /higher than that given point.

Since this is only a reparametrization of the multinomial distribution for
the table, a standard logistic model can be applied to the reconstructed table.

Example
For the schizophrenic data, the reconstructed table is

Length | Type of Visit
of Stay A B
2-10 43 6
10-20 16 11
>20 3 10
A+B C
2-10 49 9
10-20 27 18
>20 13 16

The logistic model

log <1 b >:M+Ol$i+,6j

— mjj

gives a deviance of 2.69 with 3 d.f.
The parameter for length of stay is & = —2.36, indicating less chance of
being in the lower category as the length of stay increases. O

3.3.4 The Proportional Odds Model

The proportional odds model, the continuation ratio model, except that the
frequency up to a given point is compared to that for all points higher.
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Again, a new table is constructed, but, this time, it is not a simple re-
parametrization of the multinomial distribution, so that the logistic model can-
not be applied. Special software is required.

Example
For the schizophrenic data, the reconstructed table is

Length | Type of Visit
of Stay A B+C
2-10 43 15
10-20 16 29
>20 3 26

A+B C
2-10 49 9
10-20 27 18
>20 13 16

This model gives a deviance of 3.55 with 6 d.f.
The parameter for length of stay is —3.05, again indicating less chance of
being in the lower category as the length of stay increases. O

3.4 Square Tables

One special type of table which is frequently encountered is the square table of
two or more dimensions.

This may arise, for example, in panel studies, where the same question is
asked to the same people at two or more different points in time.

It is often useful for mobility and migration studies, and for changes in voter
preferences.

3.4.1 Quasi-independence and the Mover-Stayer Model

One characteristic of such tables is that the frequencies on the main diagonal
are usually very large.

This arises because a large majority of individuals do not change categories
between time points.

In many cases, the responses would be independent at different time points
if it were not for these high frequencies.

Such a model fitted without the diagonal is known as quasi-independence.

Two type of people may be distinguished in a given population: those who
may potentially change (the movers) and those who will never change (the
stayers).

This is called the mover-stayer model.

However, between any two time points when observations are made, some
of the movers will not have changed and will be inextricable mixed up with the
stayers.
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Thus, we know that individuals off the main diagonal are movers. But,
movers and stayers are mixed up on the diagonal.

For this reason, we estimate the model from the off-diagonal frequencies
only.

The number of movers who did not move can then be estimated.

Example
A study was made of migration among four areas of Britain between 1966
and 1971. We immediately notice the large diagonal frequencies.

1971 Central Lancs. West Greater
1966 Clydes. | & Yorks. | Midlands | London
Central

Clydes. 118 12 7 23
Lancs.

& Yorks. 14 2127 86 130
West

Midlands 8 69 2548 107
Greater

London 12 110 88 7712

The usual independence model gives a deviance of 19884 with 9 d.f.

When we fit the same model, but without the main diagonal, the deviance
is only 4.37 with 5 d.f.

This result is somewhat surprising since it means that the arrival point is
independent of the origin, and thus of the distance travelled.

The number of potential movers who did not move between 1966 and 1971
is estimated to be (1.6,95.2,60.3,154.6). O

3.4.2 Symmetry

One may wish to know if the probability of change between two categories
between two time points is the same in both directions.
This is called the symmetry model.

log(pij) = vy with vij =5

It implies that the marginal distributions are identical, instead of being fixed
at the observed values, as is usually the case for log linear models.
A less demanding model is produced if the exchange is identical in both
directions within the limits imposed by the observed marginal distributions.
This is known as quasi-symmetry:

log(pij) = p+ i+ B+ with yij = 75

On the other hand, if the marginal distributions are identical but there is
not reciprocal exchange, we have marginal homogeneity.
This is not a log linear model, although the other two are.
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Example

For the migration example, the symmetry model gives a deviance of 9.13
with 6 d.f.

Since this is an acceptable fit, the quasi-symmetry model will also fit well:
2.67 with 5 d.f.

The parameter values (0.00,—0.55,0.30,1.79,2.22,2.01) indicate that the
highest migration is between Lancashire/Yorkshire and London, and the lowest
between Central Clydesdale and the West Midlands. O
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Chapter 4

Diagnostics

A first step, where possible, is always to plot the model along with the data.
Example
Throughout this chapter, we shall take as an example the Poisson regression
for the recall of events over 18 months.
We plot our fitted log linear regression model with the observations:

20

16 | .

Subjects

Months

a

Most of the standard diagnostic techniques for normal theory models can
easily be extended to generalized linear models, and, hence, to log linear and
logistic models.

4.1 Residuals

In the study of departures from a model, the role of residuals is essential.
Plots of residuals are very useful in detecting departures from the model.
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4.1.1 Raw Residuals

The raw residual for each observation is its difference from its estimated ex-
pected value:

eff = yi—E[Y]
= yi— [
= Yi— Ui

For categorical data, such residuals are of little use, since their variability de-
pends on E[Y;].

4.1.2 The Hat Matrix
We have

e =y
Yy

< T

= (In - H)y

so that H is called the hat matriz, since it puts the hat on y.
It is idempotent and symmetric.
For generalized linear models,

H=W:XX "WX) 'X"W?

where W is the diagonal of the information matrix for the linear predictor.
For the Poisson distribution, it contains the elements, u;, and for the bino-
mial distribution, n;m;(1 — m;).

4.1.3 Studentized Residuals

Since, in generalized linear models, the variance is a function of the mean, it is
useful to standardize the raw residuals by dividing them by the standard error
to obtain a standardized studentized residual:
E;s _ Yi — i
wii (1 — hi;)

where w;; and h;; are the i*P diagonal elements of the weight and hat matrices.

This is also sometimes called the standardized Pearson residual because
(y;—1i)% /w; is the contribution of the i*" observation to the generalized Pearson
(score) statistic.
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4.1.4 Deviance Residuals

Standardized deviance residuals are defined as the contribution of the i obser-
vation to the (lack of fit) deviance:

o _ sign(d — 7)) V27 yi) — 2103 i)
where 7); is the value of the linear predictor, n, which maximizes the uncon-
strained likelihood for the data.

4.1.5 Likelihood Residuals

Another possibility is to compare the deviance for a fitted model for the com-
plete set of observations with that when each observation, in turn, is omitted.
Since this requires a great deal of calculation, it may be approximated by

el = sign(is — )y ha(e$)? + (1= hir) (e])?

a weighted average of the previous two.

4.1.6 Residual Plots

Residuals can be plotted against a variety of statistics, each providing different
information about departures from the model.

In an index plot, the residuals are shown against the corresponding obser-
vation number.

Ordering in this way may make identification of departures from the model
easier.

If the order has intrinsic meaning, for example, as the order of collection of
the data in time, the plot may indicate systematic variability in this sense.

Residuals can be plotted against the estimated means or estimated linear
predictor.

They may also be plotted against each of the explanatory variables.

Finally, a normal probability plot shows the residuals, arranged in ascending
order, against an approximation to their expected values, which is given by a
standard normal distribution, ®~'[(i — 2)/(n + 1)].

If the model fits well, this should yield a straight line at 45 degrees.

A half-normal plot uses the absolute values of the residuals against ®~1[(i +
n—1)/Cn+ )

Example

Let us compare the residual plots for the regression model with those for
the null model when 3; = 0.

The index plots of the studentized residuals are, for the null model,
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and, for the regression model,
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The null model shows positive residuals on the left and negative residuals

on the right.

With a constant mean, early values are underestimated and later values

overestimated.

The plot for the regression model shows no such trend.

The plots of residuals against the expected values are, for the null model,
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For the null model, all observations have the same estimated value. The
regression model shows no abnormalities. The residual plot against the ex-
planatory variable is identical to the index plot.

The normal probability plots are, for the null model,
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and, for the regression model,

4

Residual
o
T
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X
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Inverse Normal

The departure from a straight line for the null model indicates that it fits
poorly.

The regression model is much closer to the straight line, although it is still
curved. O

4.2 Isolated Departures from a Model

When only a very few observations do not fit the model, several possibilities
may be considered.

1. there may be some error in choosing certain members of the population
sampled or it may not be homogeneous for the factors considered,

2. there may be some error in recording the results, either on the part of
people doing the recording or transcribing it, or on the part of the re-
spondents, not understanding a question,

3. some rare occurrence may have been observed,

4. the model may not be sufficiently well specified to account for completely
acceptable observations, thus, pointing to unforeseen aspects of the phe-
nomenon under study.

If there is no error, one will eventually have to decide if the departure is impor-
tant enough to modify the model to take it into account. This will be covered
in the next section.

4.2.1 Outliers

Any individual observation which departs in some way from the main body of
the data is called an outlier.
It will not be well fitted by the model.
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Outliers may be due to extreme values of the random variable (the response)
or of one or more of the explanatory variables.

The likelihood that the i*" observation is an outlier is obtained by fitting
the model without that observation. This yields a reduction in deviance for the
possibility that it is an outlier, which can be approximated by

e = (L= hi) (eP)? o+ hia(e)?

However, in complex situations, it is rarely wise simply to eliminate an
outlier, unless it is known to be an error.

Eliminating one outlier and refitting the model will quite often result in a
second outlier appearing, and so on.

It is usually preferable, either to find out why the model cannot easily
accommodate the observation or to accept it as a rare value.

4.2.2 Influence

An influential observation is one which, when changed by a small amount or
omitted, will modify substantially the parameter estimates of the model.

It is an observation which may have undue impact on conclusions from the
model.

However, it may not be an outlier, in the sense that it may have a small
residual.

Leverage is an indication of how much influence an observation has.

A measure of leverage is the diagonal element of the hat matrix, h;, since
it is the effect of the observation, y;, in the determination of j;.

It is a measure of the distance of that observation from the remaining ones.

Example

The plots of residuals against leverage are, for the null model,
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and, for the regression model,

39



Residual
o
- : -
8%
X

(0] 0.2 0.4 0.6 0.8 1
Leverage

All points have the same leverage in the null model.
No points show large leverage in the regression model.
All of the residual plots seem to point to the regression model fitting well.O

Cook’s statistic is used to examine how each observation affects the complete
set of parameter estimates.

The parameter estimates, with and without each observation, are compared
using

Ci= %(5 — Ba)) " XTWX((B - b))

where B(i) is the parameter estimate without the i*" observation.

This statistic measures the squared distance between ﬁ and B(i).
This can be approximated by

o = hii(ef)?
"op(l = hy)
These are most usefully presented as a plot against index values.

Example
The index plots of Cook’s statistic are, for the null model,
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and, for the regression model,
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We see that observations 1, 16, and 17 influence most the parameter esti-
mates for the null model and 13 for the full model. O

4.3 Systematic Departures from a Model

Systematic departures from a model can often be detected from the residual
plots already described.

Certain patterns will appear when the residuals are plotted against some
other statistic.

Misspecification of a model may come about in a number of ways:
1. an incorrect probability distribution (for example, overdispersion),

2. an incorrect specification of the way in which the mean changes with the
explanatory variables,

e the systematic component may be misspecified,
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e the link function may not be appropriate,
3. missing variables,

4. incorrect functions of the explanatory variables in the model or not enough
such different functions,

5. dependence among the observations, for example over time.

These can be verified by fitting the appropriate models and comparing the
likelihoods.

Sometimes, the appropriate score statistics are checked or plotted, since
they do not involve actually fitting the new, more complex model.

For categorical data, two of the most important things to verify are overdis-
persion and the appropriateness of the link function.

42



Bibliography

Agresti, A. (1984) Analysis of Ordinal Categorical Data. New York:
John Wiley.

Agresti, A. (1990) Categorical Data Analysis. New York: John Wiley.

Aickin, M. (1983) Linear Statistical Analysis of Discrete Data. New
York: John Wiley.

Andersen, E.B. (1980) Discrete Statistical Models with Social Sci-
ence Applications. Amsterdam: North Holland.

Andersen, E.B. (1990) Statistical Analysis of Categorical Data.
Berlin: Springer Verlag.

Everitt, B.S. (1977) The Analysis of Contingency Tables. London:
Chapman & Hall.

Bishop, Y.M.M., Fienberg, S.E., & Holland, P.W. (1975) Discrete Mul-
tivariate Analysis: Theory and Practice. Cambridge: MIT Press.

Christensen, R. (1990) Log-Linear Models. Berlin: Springer Verlag.
Collett, D. (1991) Modelling Binary Data. London: Chapman & Hall.
Cox, D.R. (1970) The Analysis of Binary Data. London: Methuen.

Cox, D.R. & Snell, E.J. (1989) The Analysis of Binary Data. London:
Chapman & Hall.

Fienberg, S.E. (1977) The Analysis of Cross-Classified Categorical
Data. Cambridge: MIT Press.

Fingleton, B. (1984) Models of Category Counts. Cambridge: Cam-
bridge University Press.

Haberman, S.J. (1974) The Analysis of Frequency Data. Chicago:
University of Chicago Press.

Haberman, S.J. (1978) Analysis of Qualitative Data. Vol. I. Introduc-
tory Topics. New York: Academic Press.

Haberman, S.J. (1979) Analysis of Qualitative Data. Vol. II. New
Developments. New York: Academic Press.

43



Hosmer, D.W. & Lemeshow, S. (1989) Applied Logistic Regression.
New York: John Wiley.

Knoke, D. & Burke, P.J (1980) Log-linear Models. Beverly Hills: Sage.

Lindsey, J.K. (1973) Inferences from Sociological Survey Data: A
Unified Approach. Amsterdam: Elsevier.

Lindsey, J.K. (1989) The Analysis of Categorical Data Using GLIM.
Berlin: Springer Verlag.

Maxwell, A.E. (1961) Analysing Qualitative Data. London: Methuen.

Plackett, R.L. (1974) The Analysis of Categorical Data. London: Grif-
fin.

Reynolds, H.T. (1977) The Analysis of Cross-Classifications. New
York: Macmillan.

Santner, T.J. & Duffy, D.E. (1989) The Statistical Analysis of Dis-
crete Data. Berlin: Springer Verlag.

Upton, G.J.G. (1978) The Analysis of Cross-Tabulated Data. New
York: John Wiley.

44



