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1. Simple Models

For a brief introduction to logistic and log
linear models, consider simple applications to
modelling various forms of repeated
observations.

Observations over Time
Suppose some response variable with two
possible values, A and B, was recorded at two

points in time.

A two-way table for change over time.

Time 2

A B

Time | A |45 13
1 B| 12 54




A first characteristic is a relative stability over
time, indicated by the large frequencies on
the diagonal.

Suppose that the responses at time 2 have a
binomial distribution and that this distribution
depends on what response was given at time
1.

We might have the simple linear regression
model
Tl

log () = Bo + Bz,

m2|j
T IS the response at time 1;

m;; 1S the conditional probability of response ¢
at time 2 given the observed value of z; at
time 1.

Then, if 81 = 0, this indicates independence,
that is, that the second response does not
depend on the first.



This is a logistic regression model, with a
logit link, the logarithm of the ratio of
probabilities.

It is the direct analogue of classical (normal
theory) linear regression.

On the other hand, if z; is coded (—1,1) or
(0,1), we may rewrite this as

7'(' .
09 (Y ) = u+a
m2l;

where u = (3p, the direct analogue of an
analysis of variance model, with the
appropriate constraints.

For our table, the parameter estimates are
Bo=f=1.242 and 1 = a1 = —2.746, when
r; is coded (0,1).

That with a1 = 81 = 0, that is, independence,
fits the data much more poorly.
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Clustered Observations

Suppose now that the same table are some
data on the two eyes of people.

A two-way table of clustered data.

Right eye
A B
Left | A | 45 13
eye | B |12 54

We again have repeated observations on the
same individuals, but here they may be
considered as being made simultaneously
rather than sequentially.

Again, there will usually be a large number
with similar responses, resulting from the
dependence between the two similar eyes of
each person.



Here, we would be more inclined to model the
responses simultaneously.

Take a multinomial distribution over the four
response combinations, with joint probability
parameters, m;;.

In that way, we can look at the association
between them.

We might use a log link such that
l0g(mij) = ¢+ p; + vj +

With the appropriate constraints, this is again
an analogue of classical analysis of variance.

It is called a log linear model.

Here, the parameter estimates are ¢ = 2.565,
v1 = 1.424, 11 = 1.242, and a11 = —2.746.
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The conclusion is identical, that the
independence model is much inferior to that
with dependence.

Log Linear and Logistic Models

The two models just described have a special
relationship to each other.

With the same constraints, the dependence
parameter, o, is identical in the two cases
because

0 111722 — 10g <7T117T22>
T11272|1 m12721

Inferences are also identical:

the normed profile likelihoods for a« = 0 are
also identical.



This is a general result:

In cases where both are applicable, logistic
and log linear models yield the same
conclusions.

The choice is a matter of convenience.

This is a very important property, because it
means that such models can be used for
retrospective sampling.

Common examples of this include, in
medicine, case-control studies, and, in the
social sciences, mobility studies.



These results extend directly to larger tables,
including higher dimensional tables.

There, direct analogues of classical regression
and ANOVA models are still applicable.

Thus, complex models of dependence among
categorical variables can be built up by means
of multiple regression.

Explanatory variables can be discrete or
continuous (at least if the data are not
aggregated in a contingency table).



2. An Application: Models of Change

One of the most important uses of log linear
models has been in sample survey data.

A particularly interesting area of this field is
panel data.

The same survey questions are administered
at two or more points in time to the same
people.

Let us restrict attention to the observation of
responses at only two points in time.

Suppose that the response has I categories,
called the states.

We have a I x I table and are studying
changes in state over time.
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The dependence parameter, o, will be a I x I
matrix.

Because of the need for constraints, there will
beonly (I —1) x (I —1) independent values.

When I > 2, the idea is to reduce this
number of parameters by structuring the
values in some informative way.

The minimal model will be independence,
that is, when m;; = m;eme; OF, €quivalently,
g — 0 \V/i,j.

The maximal model is the saturated or
“nonparametric’ one.

Most interesting models are based on Markov
chains:

the current response simply is made to
depend on the previous one.
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These are models describing the transition
probabilities of changing from one state to
another between two points in time.

Mover—Stayer Model

We have noticed that there is often a rather
large number of individuals who will give the
same response the two times.

Let us first see how to model this.

Suppose that we have a mixture of two
subpopulations or latent groups.

One is susceptible to change while the other
IS not.

This is called a mover—stayer model.
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We know that individuals recorded off the
main diagonal will all belong to the first
subpopulation, the movers, because they have
changed.

The main diagonal frequencies are more
complex:

they will contain both the stayers and any
movers who did not happen to change within
the observation period.

et us assume that the locations of the
movers at the two points in time are
independent.

If we ignore the mixture on the diagonal, we
can model the rest of the table by

quasi-independence.
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With this independence assumption, we can
obtain estimates of the number of movers on
the diagonal and, hence, of the number of
stayers.

Example

Place of residence in Britain in 1966 and
1971.

1971
1966 CC ULYy WM GL
Central Clydesdale 118 12 7 23
Urban Lancs. & Yorks. 14 2127 86 130
West Midlands 3 69 2548 107
Greater London 12 110 88 7712
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The deviance for independence is 19,884 with
nine d.f., a strong indication of dependence.

That for the mover—stayer model
(quasi-independence), fitted in the same way
but to the table without the main diagonal, is
4.4 with 5 d.f.

The dependence arises almost entirely from
stayers being in the same place at the two
time points.

The numbers of movers on the diagonal are
estimated to be only 1.6, 95.2, 60.3, and
154.6, respectively.

Most people in the table can have their 1971
place of residence exactly predicted by that of
1966:

they will be in the same place.
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Symmetry

Because, in panel data, the same response
variables are being recorded two (or more)
times, we might expect some symmetry
among them.

Complete Symmetry

Suppose that the probability of changing
between any pair of categories is the same in
both directions:

il — T4l
a model of complete symmetry. In terms of
Markov chains, this is equivalent to the
combination of two characteristics,

Vi,

reversibility and equilibrium.
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Equilibrium

Here, the marginal probabilities are the same
at the two time points,

Tie — Tej Vi

The marginal distribution of the states
remains the same at the different time points.

In the analysis of contingency tables, this is
called marginal homogeneity.

Reversibility

Reversibility implies (more or less) equal
transition probabilities both ways between
pairs of response categories, within the
constraints of the marginal probabilities being
those values observed.

In terms of log linear models, this is called
quasi-symmetry.
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Combining quasi-symmetry with marginal
homogeneity vields complete symmetry
(about the main diagonal) in the table.

Example

Sweden election votes in 1968 and 1970.

1970
1968 | SD C P Con | Total
SD 850 35 25 6 016
C ) 286 21 6 322
P 3 26 185 5 219
Con 3 26 27 138 194
Total | 865 373 258 155 | 1651

SD - Social Democrat C - Centre
P - People’s Con - Conservative

Besides the relatively large diagonal values,
there also appears to be a “distance” effect:

a defecting voter seems more likely to switch
to a nearby party on the left—right scale.
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The equilibrium or marginal homogeneity
model has a deviance of 65.2 with 3 d.f.

The reversibility or quasi-symmetry model has
2.5 with 3 d.f.

The overall election results changed, but,
given this, the transfers between parties were
equal in both directions.

They are highest between adjacent parties.
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3. Overdispersion

Models based on the binomial, multinomial,
and Poisson distributions involve strong
assumptions.

The variance has a fixed relationship to the
mean.

For example, for a Poisson distribution, the
mean equals the variance.

In certain circumstances, such a relationship
will be found not to hold.

Generally, this occurs when the events being
counted are not independent.

Usually, the empirically calculated variance
will be found to be too large as compared to
the theoretical one.

This is called overdispersion.
19



The usual model for overdispersed binomial
data is the beta-binomial distribution.

One way that this can be derived is by
assuming that the binomial probability varies
in @ heterogeneous population according to a
beta distribution.

This is then integrated to obtain the marginal
beta-binomial distribution of the counts.

The negative binomial distribution can be
obtained for Poisson count data in a similar
way.

These distributions have an extra parameter
measuring dispersion.

However, there is no reason that this remains
constant under all conditions.
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Example

Consider a study using a response surface
design for fish eggs hatching under various
conditions of temperature and salinity.

Four sets of eggs were kept in separate cells
of each tank corresponding to a point of the
design chosen.

There is more variability among among cells
within a tank, all under the same controlled
conditions, than would be expected under a
binomial distribution.
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Contours for the response surfaces for the
probability of sole eggs hatching (left) and for
the correlation among the eggs (right), along
with the design points where observations
were made. Probability contours range from
0.1 to 0.9 in steps of 0.1, correlation contours
range from 0.04 to 0.32 in steps of 0.02.

22



4. Serial Dependence
Consider counts of events over time.
These will follow some profile of change.

For example, this might be a growth curve,
having perhaps the logistic

yy = 2V exp(Bo + f1z)
"7 14 exp(Bo + B12)
or Gompertz

pt = N{1 — exp[—exp(Bo + B12)]}

form where N is the asymptotic maximum
number of events.
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Suppose that this common underlying profile
exists for all individuals under the same
conditions.

However, a given individual may deviate
momentarily from the curve.

Obtain individual profiles by predicting the
result at time ¢t + 1 from the previously
available information.

Use the common profile corrected by how far
that individual (¢) was from it at the previous
time point:

Pit41 = Met1 T p2t(ng — pe)
with 0 < p <1 and n;g = uo.
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Example

16 laboratory animals were tested for learning
in a 2 x 2 factorial experiment with training or
not and light or bell stimulus.

Each animal was allowed 20 attempts to
complete a task in each of a series of trials.

Trials for an animal stopped when a perfect
score was reached.

The counts are overdispersed but there is

also correlation of the numbers of successes
over time.
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5. Conclusions

Over the last 30 years, models for frequency
and count data have become the most
important area of applied statistics.

Many good textbooks are available.

The standard (logistic and log linear ) models
are relatively simple and easy to understand.

Close relationships exist to analysis of time to
event (survival, failure time) data.

Many new and more complex models for
realistic modelling of dependent events have
appeared in the last 5 to 10 years.

However, many important areas still require
further exciting research.
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