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1. Simple Models

For a brief introdu
tion to logisti
 and log

linear models, 
onsider simple appli
ations to

modelling various forms of repeated

observations.

Observations over Time

Suppose some response variable with two

possible values, A and B, was re
orded at two

points in time.

A two-way table for 
hange over time.

Time 2

A B

Time A 45 13

1 B 12 54

1



A �rst 
hara
teristi
 is a relative stability over

time, indi
ated by the large frequen
ies on

the diagonal.

Suppose that the responses at time 2 have a

binomial distribution and that this distribution

depends on what response was given at time

1.

We might have the simple linear regression

model
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is the response at time 1;

�

ijj

is the 
onditional probability of response i

at time 2 given the observed value of x

j

at

time 1.

Then, if �

1

= 0, this indi
ates independen
e,

that is, that the se
ond response does not

depend on the �rst.
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This is a logisti
 regression model, with a

logit link, the logarithm of the ratio of

probabilities.

It is the dire
t analogue of 
lassi
al (normal

theory) linear regression.

On the other hand, if x

j

is 
oded (�1;1) or

(0;1), we may rewrite this as

log
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j

where �= �

0

, the dire
t analogue of an

analysis of varian
e model, with the

appropriate 
onstraints.

For our table, the parameter estimates are

^

�

0

= �̂ = 1:242 and

^

�

1
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1

= �2:746, when

x

j

is 
oded (0;1).

That with �

1

= �

1

= 0, that is, independen
e,

�ts the data mu
h more poorly.
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Clustered Observations

Suppose now that the same table are some

data on the two eyes of people.

A two-way table of 
lustered data.

Right eye

A B

Left A 45 13

eye B 12 54

We again have repeated observations on the

same individuals, but here they may be


onsidered as being made simultaneously

rather than sequentially.

Again, there will usually be a large number

with similar responses, resulting from the

dependen
e between the two similar eyes of

ea
h person.
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Here, we would be more in
lined to model the

responses simultaneously.

Take a multinomial distribution over the four

response 
ombinations, with joint probability

parameters, �

ij

.

In that way, we 
an look at the asso
iation

between them.

We might use a log link su
h that

log(�

ij

) = �+ �

i

+ �

j

+ �

ij

With the appropriate 
onstraints, this is again

an analogue of 
lassi
al analysis of varian
e.

It is 
alled a log linear model.

Here, the parameter estimates are

^

� = 2:565,

�

1

= 1:424, �̂

1

= 1:242, and �̂

11

= �2:746.
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The 
on
lusion is identi
al, that the

independen
e model is mu
h inferior to that

with dependen
e.

Log Linear and Logisti
 Models

The two models just des
ribed have a spe
ial

relationship to ea
h other.

With the same 
onstraints, the dependen
e

parameter, �, is identi
al in the two 
ases

be
ause

log
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Inferen
es are also identi
al:

the normed pro�le likelihoods for � = 0 are

also identi
al.

6



This is a general result:

in 
ases where both are appli
able, logisti


and log linear models yield the same


on
lusions.

The 
hoi
e is a matter of 
onvenien
e.

This is a very important property, be
ause it

means that su
h models 
an be used for

retrospe
tive sampling.

Common examples of this in
lude, in

medi
ine, 
ase-
ontrol studies, and, in the

so
ial s
ien
es, mobility studies.
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These results extend dire
tly to larger tables,

in
luding higher dimensional tables.

There, dire
t analogues of 
lassi
al regression

and ANOVA models are still appli
able.

Thus, 
omplex models of dependen
e among


ategori
al variables 
an be built up by means

of multiple regression.

Explanatory variables 
an be dis
rete or


ontinuous (at least if the data are not

aggregated in a 
ontingen
y table).
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2. An Appli
ation: Models of Change

One of the most important uses of log linear

models has been in sample survey data.

A parti
ularly interesting area of this �eld is

panel data.

The same survey questions are administered

at two or more points in time to the same

people.

Let us restri
t attention to the observation of

responses at only two points in time.

Suppose that the response has I 
ategories,


alled the states.

We have a I � I table and are studying


hanges in state over time.
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The dependen
e parameter, �, will be a I � I

matrix.

Be
ause of the need for 
onstraints, there will

be only (I � 1)� (I � 1) independent values.

When I > 2, the idea is to redu
e this

number of parameters by stru
turing the

values in some informative way.

The minimal model will be independen
e,

that is, when �

ij

= �

i�

�

�j

or, equivalently,

�

ij

= 0 8i; j.

The maximal model is the saturated or

\nonparametri
" one.

Most interesting models are based on Markov


hains:

the 
urrent response simply is made to

depend on the previous one.
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These are models des
ribing the transition

probabilities of 
hanging from one state to

another between two points in time.

Mover{Stayer Model

We have noti
ed that there is often a rather

large number of individuals who will give the

same response the two times.

Let us �rst see how to model this.

Suppose that we have a mixture of two

subpopulations or latent groups.

One is sus
eptible to 
hange while the other

is not.

This is 
alled a mover{stayer model.

11



We know that individuals re
orded o� the

main diagonal will all belong to the �rst

subpopulation, the movers, be
ause they have


hanged.

The main diagonal frequen
ies are more


omplex:

they will 
ontain both the stayers and any

movers who did not happen to 
hange within

the observation period.

Let us assume that the lo
ations of the

movers at the two points in time are

independent.

If we ignore the mixture on the diagonal, we


an model the rest of the table by

quasi-independen
e.
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With this independen
e assumption, we 
an

obtain estimates of the number of movers on

the diagonal and, hen
e, of the number of

stayers.

Example

Pla
e of residen
e in Britain in 1966 and

1971.

1971

1966 CC ULY WM GL

Central Clydesdale 118 12 7 23

Urban Lan
s. & Yorks. 14 2127 86 130

West Midlands 8 69 2548 107

Greater London 12 110 88 7712
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The devian
e for independen
e is 19,884 with

nine d.f., a strong indi
ation of dependen
e.

That for the mover{stayer model

(quasi-independen
e), �tted in the same way

but to the table without the main diagonal, is

4.4 with 5 d.f.

The dependen
e arises almost entirely from

stayers being in the same pla
e at the two

time points.

The numbers of movers on the diagonal are

estimated to be only 1.6, 95.2, 60.3, and

154.6, respe
tively.

Most people in the table 
an have their 1971

pla
e of residen
e exa
tly predi
ted by that of

1966:

they will be in the same pla
e.
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Symmetry

Be
ause, in panel data, the same response

variables are being re
orded two (or more)

times, we might expe
t some symmetry

among them.

Complete Symmetry

Suppose that the probability of 
hanging

between any pair of 
ategories is the same in

both dire
tions:

�

ijj

= �

jji

8i; j

a model of 
omplete symmetry. In terms of

Markov 
hains, this is equivalent to the


ombination of two 
hara
teristi
s,

reversibility and equilibrium.
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Equilibrium

Here, the marginal probabilities are the same

at the two time points,

�

i�

= �

�i

8i

The marginal distribution of the states

remains the same at the di�erent time points.

In the analysis of 
ontingen
y tables, this is


alled marginal homogeneity.

Reversibility

Reversibility implies (more or less) equal

transition probabilities both ways between

pairs of response 
ategories, within the


onstraints of the marginal probabilities being

those values observed.

In terms of log linear models, this is 
alled

quasi-symmetry.
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Combining quasi-symmetry with marginal

homogeneity yields 
omplete symmetry

(about the main diagonal) in the table.

Example

Sweden ele
tion votes in 1968 and 1970.

1970

1968 SD C P Con Total

SD 850 35 25 6 916

C 9 286 21 6 322

P 3 26 185 5 219

Con 3 26 27 138 194

Total 865 373 258 155 1651

SD - So
ial Demo
rat C - Centre

P - People's Con - Conservative

Besides the relatively large diagonal values,

there also appears to be a \distan
e" e�e
t:

a defe
ting voter seems more likely to swit
h

to a nearby party on the left{right s
ale.
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The equilibrium or marginal homogeneity

model has a devian
e of 65.2 with 3 d.f.

The reversibility or quasi-symmetry model has

2.5 with 3 d.f.

The overall ele
tion results 
hanged, but,

given this, the transfers between parties were

equal in both dire
tions.

They are highest between adja
ent parties.
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3. Overdispersion

Models based on the binomial, multinomial,

and Poisson distributions involve strong

assumptions.

The varian
e has a �xed relationship to the

mean.

For example, for a Poisson distribution, the

mean equals the varian
e.

In 
ertain 
ir
umstan
es, su
h a relationship

will be found not to hold.

Generally, this o

urs when the events being


ounted are not independent.

Usually, the empiri
ally 
al
ulated varian
e

will be found to be too large as 
ompared to

the theoreti
al one.

This is 
alled overdispersion.
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The usual model for overdispersed binomial

data is the beta-binomial distribution.

One way that this 
an be derived is by

assuming that the binomial probability varies

in a heterogeneous population a

ording to a

beta distribution.

This is then integrated to obtain the marginal

beta-binomial distribution of the 
ounts.

The negative binomial distribution 
an be

obtained for Poisson 
ount data in a similar

way.

These distributions have an extra parameter

measuring dispersion.

However, there is no reason that this remains


onstant under all 
onditions.
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Example

Consider a study using a response surfa
e

design for �sh eggs hat
hing under various


onditions of temperature and salinity.

Four sets of eggs were kept in separate 
ells

of ea
h tank 
orresponding to a point of the

design 
hosen.

There is more variability among among 
ells

within a tank, all under the same 
ontrolled


onditions, than would be expe
ted under a

binomial distribution.
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Contours for the response surfa
es for the

probability of sole eggs hat
hing (left) and for

the 
orrelation among the eggs (right), along

with the design points where observations

were made. Probability 
ontours range from

0.1 to 0.9 in steps of 0.1; 
orrelation 
ontours

range from 0.04 to 0.32 in steps of 0.02.
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4. Serial Dependen
e

Consider 
ounts of events over time.

These will follow some pro�le of 
hange.

For example, this might be a growth 
urve,

having perhaps the logisti
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N exp(�
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1 + exp(�

0
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or Gompertz
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= Nf1� exp[� exp(�

0
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x)℄g

form where N is the asymptoti
 maximum

number of events.
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Suppose that this 
ommon underlying pro�le

exists for all individuals under the same


onditions.

However, a given individual may deviate

momentarily from the 
urve.

Obtain individual pro�les by predi
ting the

result at time t+1 from the previously

available information.

Use the 
ommon pro�le 
orre
ted by how far

that individual (i) was from it at the previous

time point:

�

i;t+1

= �

t+1

+ �

�t

(n

it

� �

t

)

with 0 < � < 1 and n

i0

= �

0

.
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Example

16 laboratory animals were tested for learning

in a 2� 2 fa
torial experiment with training or

not and light or bell stimulus.

Ea
h animal was allowed 20 attempts to


omplete a task in ea
h of a series of trials.

Trials for an animal stopped when a perfe
t

s
ore was rea
hed.

The 
ounts are overdispersed but there is

also 
orrelation of the numbers of su

esses

over time.
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5. Con
lusions

Over the last 30 years, models for frequen
y

and 
ount data have be
ome the most

important area of applied statisti
s.

Many good textbooks are available.

The standard (logisti
 and log linear ) models

are relatively simple and easy to understand.

Close relationships exist to analysis of time to

event (survival, failure time) data.

Many new and more 
omplex models for

realisti
 modelling of dependent events have

appeared in the last 5 to 10 years.

However, many important areas still require

further ex
iting resear
h.
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