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Chapter 1

Basic concepts

1.1 Variables

1.1.1 Definition

Emphasise that the first lecture, on variable construction (Section 1.1), may be the

most important of the whole course. Without valid construction of variables, nothing

else will be possible as far as statistical methods are concerned. Point out that this

is more generally true in any scientific endeavour and that the techniques for variable

construction that they are learning will be more widely applicable than just to statistics.

Non-statistical approaches often do not have such clearly defined means of specifying

their concepts.

For the beginning student, the biggest confusion is often between what is a vari-

able and what is a value of a variable. Students will call ‘male’ a variable — point

out to them that it is a value for a given individual, not something that varies across

individuals.

1.1.2 Characteristics of observations

Only rarely can students define the difference between accuracy and precision. Al-

though the thermometer is a useful introduction to the difference, the emphasis should

be on how answers to questions in a survey or experimental trial can be accurate and

precise, depending on the study design and the instruments used.

A good example is a question on income. If we ask for exact income in a question-

naire, we should obtain a very precise answer, possibly to the nearest cent. However,

if people lie, the answers will not be very accurate. On the other hand, at the opposite

extreme, if we construct the question such that people only have to indicate into which

of two income groups (high or low, appropriately defined) they belong, the answers

will not be precise, but lying will be much less frequent and the answers should be

much more accurate than in the first case.

1



2 CHAPTER 1. BASIC CONCEPTS

1.1.3 Several variables

The important point here is that, when there are several variables, they may play at

least two distinct roles. Some variables simply are used to divide up a population

deterministically to provide comparisons of interest whereas others have a random or

probability aspect. Here, the students begin to see, for the first time, a fundamental goal

of statistics: does the variability among individuals in some characteristic of interest

change among different subgroups?

A Student Survey

As emphasised in the text, from the beginning, the students must become involved in

the statistical approach. I find that the ideal way is to let the class choose a simple

question for research about themselves, involving three binary variables, one generally

being sex. This in-class project can be carried out as soon as the basic ideas about

variable construction have been introduced.

Even seemingly inappropriate choices of variables, such as whether each student

wears glasses or not (one does not expect a difference between the sexes) can lead

to useful discussion: the time they chose this, in defining their variable, my students

forgot about contact lenses. What should be done about this?

The next step after formulating the question and constructing the variables is to

collect the data from the class. This should be done in two ways.

First, the 2×2×2 table can be directly tabulated by going through the rows of the

class and ticking for each student in the appropriate box. Especially if one question

chosen involves opinion, point out that the order in which students are asked is im-

portant because earlier responses can influence the later ones. Normally, this will not

occur in the usual questionnaires because they are administered individually according

to some study design.

It should then be emphasised that things are not normally done by direct tabulation

because there are usually many more variables, often with more than two categories.

As well, a computer can do the tabulations more efficiently. Then, the students should

be shown how to set up the corresponding data matrix, as in Table 1.1 of the manual,

for their data in the cross-tabulated table. Generally, it is not necessary, or wise, to

repeat the complete data collection process twice, especially with large classes.

1.2 Summarising data

Uses of descriptive statistics, such as graphs and frequency tables, are very important

for an initial understanding of data. Only some are discussed here: frequency tables,

histograms, and scattergrams, all directly related to modelling. (For example, box-plots

are missing, but histograms convey more information and are central to the modelling

approach.) The important thing is that they understand how to interpret them correctly.
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1.2.1 Tables

The essential thing with a table is that it be clear to the reader what is being presented.

Thus, labelling is critical. Important points include:

• relationships among variables will only be available by cross-classifying vari-

ables;

• proportions or percentages will usually be most appropriate for a response vari-

able.

Indices and the sum notation should be introduced in great detail, with patience.

All students can handle them if they see practically what it means that they are to do.

Writing a sum out algebraically is often not enough. Examples of sums with numbers

should be presented and the calculations performed by all students with a calculator.

1.2.2 Measuring size and variability

If the students are already familiar with these descriptive statistics, the weighting by ni

can cause confusion. Its role for grouped or tied data should be clearly explained.

The calculations using variances may be too advanced for some classes.

1.2.3 Graphics

Complex graphics should be avoided. As with tables, labelling is critical. Histograms

and scatter plots seem to be most easy to understand intuitively. It is better that students

become well acquainted with them than superficially with a wide range of graphical

methods.

1.2.4 Detecting possible dependencies

The critical point here is that the student see that we are studying variability. His-

tograms describe one kind of variability, that for response variables. But the form

of this variability may change in different segments of the population, defined by the

explanatory variables.

1.3 Probability

1.3.1 Definition

Students generally have great fear of ‘probability’, often because of its reputation aris-

ing from being presented in such a dull and abstract way in terms of coins and dice.

Never mention either. Talk instead about some question with binary or multiple re-

sponse that you will ask to a group of people—the students in the class. When appro-

priate, use the answers to the three questions already collected. Then, the probabilities

are just the proportions in the class who answer each way. Ideas of population and

sample follow, depending on whether you are looking at everyone concerned or only
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a subgroup. This concrete frequency interpretation of probability generally is easily

grasped.

One of the most important messages to get across near the beginning of the course

is that statistics is about groups of individuals, and the relationships among them, and

has little to say about specific individuals themselves, except as typical members of the

groups. More technically, statistical models are marginal, making the assumption that

differences among individuals within groups are random; for a response variable, these

differences can be assumed to obey some probability distribution.

Two extremes of reactions to this idea come from sociology, where students are

trained in terms of relationships among groups, and economics, based on individual

rational decision-making. Obviously, the message will be more difficult to commu-

nicate in the latter case. Medicine might be intermediate, in that patients are treated

individually by a doctor, but they are nevertheless classified into groups according to

symptoms, and sufficiently similar patients treated identically, with varying success.

Point out to the students that, for the first two chapters, we shall ignore this distinc-

tion between sample and population. Data from groups will provisionally be analysed

as if they made up the whole population.

If the criteria of exhaustiveness and mutual exclusiveness for variable construction

are clearly presented, then the ideas of probability will follow naturally and easily.

Make clear that, if these two criteria are not fulfilled, construction of a probability

model will be impossible. It is also useful to point out that this formalisation of variable

and model construction is in fact the basis of all scientific work in their discipline. In

other approaches, where it is not explicitly attended to, fundamental errors can easily

occur. Ways in which this can happen should be discussed.

1.3.2 Probability laws

Conditional probability is the foundation of all modelling. Thus, its definition was

chosen as a basic axiom of probability. From this, important concepts such as inde-

pendence follow naturally, in contrast to the product of margins definition. Use the

data collected from the students to introduce this definition of conditional probability:

condition on sex and compare the results to the marginal probability. The multiplica-

tive and additive laws can then be calculated in this way, before introducing them more

formally. ‘And’ events lead to multiplication; ‘or’ events to addition. The students can

even see who in the table is counted twice in the additive law for nonexclusive events,

if the joint probability is not subtracted.

The material on expected value may be too advanced for some classes.

1.3.3 Plotting probabilities

The important point here is that probabilities are represented by areas in a histogram.

The concept of density is useful for calculating the sizes of the bars in a histogram.

This is an occasion to introduce the concept that will be of importance later.
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1.3.4 Multinomial distribution

The material on the multinomial and binomial distributions can be skipped at this stage

if students are already reaching their limit with the rest of the concepts in this chapter.

If it is used, build up the complete probability of observing all responses to the question

obtained from the class. If the students’ responses are independent (but are they, be-

cause of listening to previous answers?), the individual probabilities can be multiplied

together: these are ‘and’ events (the probability of the first response and the second

and so on). Then, this can be simplified by using powers on the probabilities. Finally,

we might have asked students in some other order. All orders are mutually exclusive

‘or’ events because we can only use one. Without entering into details, state that the

combinatorial counts the total number of possible orders in which the students could

have been asked so that this also has to be included in the binomial probability.

Notice how the idea of density function can be introduced gradually, first in terms

of calculating the size of the bars of a histogram (p. 30), then as a line linking the

tops of the bars together (p. 33). When discussing histograms, show one with a vari-

able having unequally spaced intervals. Illustrate how interpretation is distorted if the

height, instead of the area, of each rectangle represents the probability.

The cumulative distribution function is really only introduced here in preparation

for the survivor function in Chapter ??.

1.4 Planning a study

1.4.1 Protocols

Protocols are widely used in medicine but rarely elsewhere. However, they are indis-

pensable in any area of research.

1.4.2 Observational surveys and experiments

The basic questions of inference are raised for the first time here, only to be answered

in Chapter 3.

The problem of representativity is difficult and should be discussed with the class.

To illustrate it, randomly choose ten students from the class and ask them the (response)

question from your student survey. The proportions giving the two answers will usually

be different than for the whole class previously obtained.

The results of a statistical analysis must be convincing. The best, often the only,

way to ensure that biases have not influenced the results is by randomising.

An fundamental question of study design is what is causality and how can it be

studied? Students in every field must be brought to realise that, after graduation, they

will be faced with these questions in virtually every study in which they are involved.

For this reason, an operational definition of causality seems essential. Decision-makers

will want to know what will happen if things are changed—even if the study providing

the information does not involve change. Statistical honesty requires that students be

aware of the limitations of observational studies.
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After the demonstration that only experiments can provide direct information about

causality, some students should, for at least the second time in the course, be on the

point of abandoning a scientific career.

The difficulty of studying causality involving human beings and the importance of

the questions being asked must be equally stressed. For me, the smoking and lung

cancer question is the ideal example. Only experimentation can directly and unam-

biguously answer the question but this is impossible. Nevertheless, the question has

been answered, after many observational studies, and long and acrimonious debate.

Two of the very special problems with studying human beings is that people may

refuse to participate and that they may be influenced by what they know about the

study. Ways of overcoming these should be discussed.

1.4.3 Study designs

Most introductory statistics courses spend little time on design of a study. Here, try

to get across a few fundamental concepts, including the time orientation of the study

(retrospective, cross-sectional, or prospective), whether or not there are repeated mea-

surements (it is longitudinal or clustered), and the difference between observation and

experimentation. Point out the similarity of repeated measurements to the question of

dependence among answers to the class questionnaire.

1.5 Solutions to the exercises

Question (1)

Give two examples of each of the types of variables described in Section ??, nominal,

ordinal, integral, and continuous.

(a) How many possible different values does each have?

(b) For each variable, give the unit of measurement.

(c) Which may present problems in obtaining accurate results?

(d) Which do you think can be observed most precisely?

(e) For each, what will be the most appropriate way of summarising some observed

data?

Answer

The answers here will depend on the choices made by the student.

Question (2)

What are the standard errors of the empirical variance and of the empirical standard

deviation of a set of n• observations?
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Answer

This question is too difficult for this text and should not have been included.

The empirical variance is s2 = ∑y2
i /n•− ȳ2

•. The theoretical variance of yi is σ2
T so

that that of ȳ• is σ2
T/n•. Assume that the theoretical variance of y2

i is τ2. Then, that of

∑y2
i /n• will be τ2/n•. It is reasonable to suspect that the variance of ȳ2

• will also be

τ2/n• so that the theoretical variance of s2 is 2τ2/n•. For a normal distribution, τ = σ2

so that the standard error of the empirical variance can be estimated by s2
√

2/n•.

It is much more difficult to show that the variance of
√

∑(yi − ȳ•)2 is σ2
T/2. Then,

the standard error of the empirical standard deviation can be estimated by s/
√

2n•.

Question (3)

(a) Show that the theoretical variance of n1 in the binomial distribution is equal to

n•π1(1−π1).

(b) Derive the theoretical mean n•πi and variance n•πi(1−πi) of ni for the multino-

mial distribution.

Answer

These questions are also difficult, but feasible for advanced students.

(a)

E

[
(n1 −n•π1)

2

n•

]
= ∑

n1

Pr(n1,n2)
(n1 −n•π1)

2

n•

= ∑
n1

n•!

n1!(n•−n1)!
π

n1
1 (1−π1)

n•−n1
n2

1 −2n1n•π1 +n2
•π2

1

n•

= ∑
n1

n•!

n1!(n•−n1)!
π

n1
1 (1−π1)

n•−n1
n2

1

n•

−2π1 ∑
n1

n•!

n1!(n•−n1)!
π

n1
1 (1−π1)

n•−n1n1 +n•π2
1

= ∑
n1

(n•−1)!

(n1 −1)!(n•−n1)!
π

n1
1 (1−π1)

n•−n1n1 −n•π2
1

= n•π1(1−π1)

(b)

E(ni) = ∑
n1

. . .∑
nI

Pr(n1, . . . ,nI)ni

= ∑
n1

. . .∑
nI

n•!

∏ j n j!
∏

j

π
n j

j ni
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Table 1.1: Weights (kg) of people before and after a diet. (Dobson, 1990, p. 24)

Before 64 71 64 69 76 53 52 72 79 68

After 61 72 63 67 72 49 54 72 74 66

= ∑
n1

. . .∑
nI

n•
(n•−1)!

(ni −1)!∏ j 6=i n j!
∏

j

π
n j

j

= n•πi ∑
n1

. . .∑
nI

(n•−1)!

(ni −1)!∏ j 6=i n j!
πni−1

i ∏
j 6=i

π
n j

j

= n•πi

That for the variance is similar to the two above.

Question (4)

In Table ??, calculate

(a) the means and

(b) the standard deviations

before and after diet.

Answer

(a) The means are, respectively, 66.8 and 65, before and after diet.

(b) The standard deviations are, respectively, 8.42 and 7.94, before and after diet.

Notice that the definition of the empirical variance in the text is the maximum likeli-

hood estimate so that it uses division by the number of observations, not n•−1. Auto-

matic calculation using a calculator or most software will use the latter, yielding 8.88

and 8.37.

Question (5)

Calculate appropriate cross-classified percentages for the following data:

(a) the migration data of Table ??;

(b) the car accident data of Table ??;

(c) the myocardial infarction data of Table ??.

In each case, discuss any relationships which may be apparent.
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Table 1.2: Geographical migration among areas of Britain between 1966 and 1971.

(Fingleton, 1984, p. 142)

1971

Central Lancashire West Greater Total

1966 Clydesdale & Yorkshire Midlands London

Central

Clydesdale 118 12 7 23 160

Lancashire

& Yorkshire 14 2127 86 130 2357

West

Midlands 8 69 2548 107 2732

Greater

London 12 110 88 7712 7922

Total 152 2318 2729 7972 13171

Table 1.3: Car accidents in Florida in 1988, classified by whether or not a seat belt was

worn. (Agresti, 1990, p. 30)

Injury

Seat belt Fatal Non-fatal Total

No 1601 162527 164128

Yes 510 412368 412878

Total 2111 574895 577006

Table 1.4: Retrospective study of myocardial infarction as depending on contraceptive

use. (Agresti, 1990, p. 12)

Myocardial infarction

Contraceptive Yes No Total

Yes 23 34 57

No 35 132 167

Total 58 166 224
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Table 1.5: Percentage of people in four geographical areas of Britain in 1966, given

their place of residence in 1971. (from Fingleton, 1984, p. 142)

1971

Central Lancashire West Greater Total

1966 Clydesdale & Yorkshire Midlands London

Central

Clydesdale 73.8 7.5 4.4 14.4 100

Lancashire

& Yorkshire 0.6 90.2 3.6 5.5 100

West

Midlands 0.3 2.5 93.3 3.9 100

Greater

London 0.2 1.4 1.1 97.3 100

Table 1.6: Percentages of car accidents with fatal injuries in Florida in 1988, classified

by whether or not a seat belt was worn. (from Agresti, 1990, p. 30)

Injury

Seat belt Fatal Non-fatal Total

No 0.98 99.02 100

Yes 0.12 99.88 100

Answer

(a) For the migration data of Table ??, residence in 1971 may be expected to depend

on that in 1966, so that percentages by row are appropriate. They correspond to condi-

tional probabilities of being in a region in 1971 given one’s location in 1966. These are

given in Table ??. It is evident that the vast majority of people are stable in their resi-

dence, having the same one the two years. This does not exclude their having moved

within the region or having moved out and back in within the five year period. Some

of the people may also have moved before or after this period. We may also note that

the degree of stability increases as we move from the north to the south of the country.

(b) For the car accident data of Table ??, the occurrence of a fatal injury may be

expected to depend on whether or not a seat belt was worn, so that percentages by row

are appropriate. They correspond to conditional probabilities of having a fatal injury

given whether a seat belt was worn or not. These are given in Table ??. Because

of the high percentage of non-fatal accidents, these percentages might appear to be

very similar. However, ratios are most informative: among those having accidents, the

probability of having a fatal one is almost eight times as great without a seat belt as

with one.

Care must be taken in interpreting this conclusion. We do not know why each

person chose to wear a seat belt. Perhaps, careful people wear their seat belts and also

have less serious accidents so that there is little direct link between wearing a seat belt

and having a fatal accident. More generally, one cannot draw causal conclusions from

such retrospective studies.
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Table 1.7: Percentages of women with myocardial infarction as depending on contra-

ceptive use. (from Agresti, 1990, p. 12)

Myocardial infarction

Contraceptive Yes No Total

Yes 40.4 59.6 100

No 21.0 79.0 100

Table 1.8: Percentages of women having taken contraceptive as depending on whether

they had a myocardial infarction. (from Agresti, 1990, p. 12)

Myocardial infarction

Contraceptive Yes No

Yes 39.7 20.5

No 60.3 79.5

Total 100 100

The best way to attempt to establish a causal link is to consider some design like a

clinical trial where the drivers would randomly be forced to wear or not to wear a seat-

belt. However obvious ethical problems arise in the present setting as there is a strong

feeling that wearing a seat-belt reduces the risk of a fatal issue in a car accident (the

main goal of the study probably being to quantify the risk reduction). More generally,

such a study design is not usually realistic in practice, even when the ‘direction’ of

the association between the response and one or several explanatory variables is totally

unknown a priori, as one cannot, for example, assign a person to a social class.

In summary, knowledge of the study design is fundamental to ensure correct inter-

pretation of a data analysis.

(c) For the myocardial infarction data of Table ??, the occurrence of a myocardial

infarction may be expected to depend on whether or not a contraceptive was taken,

so that percentages by row would appear to be appropriate. They would correspond

to conditional probabilities of having an infarction given whether a contraceptive was

taken or not. These are given in Table ??. However, the study was retrospective, with

fixed numbers of women with and without an infarction, so that this table can be very

misleading: it simply reflects the study design and not any new results obtained.

The only percentage table that can be legitimately calculated is that by columns

and this is not too useful. It is given in Table ?? Almost twice as many of those women

having an infarction had been taking a contraceptive as those without. We shall study

ways of circumventing this kind of problem in the next chapter.

Question (6)

Data were collected in a study of the relationship between life stresses and illnesses.

One randomly chosen member of each randomly chosen household in a sample from

Oakland, California, U.S.A., was interviewed. In a list of 41 events, respondents were

asked to note which had occurred within the last 18 months. The results given are for
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Figure 1.1: Histogram of the numbers of people having a stressful event in each of the

18 months before an interview (from Haberman, 1978, p. 3).

those recalling only one such stressful event. Our classification variable is the number

of months prior to an interview that subjects remember a stressful event. Thus, the

following table gives the frequency of recall of one stressful event in each of the 18

months preceding an interview (Haberman, 1978, p. 3).

Month 1 2 3 4 5 6 7 8 9

Respondents 15 11 14 17 5 11 10 4 8

Month 10 11 12 13 14 15 16 17 18

Respondents 10 7 9 11 3 6 1 1 4

Make a percentage table and a histogram of these results.

Answer

The percentages are given in Table ?? and and the corresponding histogram is shown

in Figure ??. Both show fairly clearly how the number of people recalling a stressful

event is decreasing, rather irregularly, as we go back in time. Have the students discuss

why both the decrease and the irregularity might have arisen.
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Table 1.9: Percentage of people having a stressful event in each of the 18 months before

an interview (from Haberman, 1978, p. 3).

Month 1 2 3 4 5 6

Per cent 10.2 7.5 9.5 11.6 3.4 7.5

Month 7 8 9 10 11 12

Per cent 6.8 2.7 5.4 6.8 4.8 6.1

Month 13 14 15 16 17 18 Total

Per cent 7.5 2.0 4.1 0.7 0.7 2.7 100.0

Question (7)

The following two tables give the observed frequencies of some (unfortunately) un-

specified type of accidents (Skellam, 1948, A probability distribution derived from the

binomial distribution by regarding the probability of success as variable between sets

of trials. Journal of the Royal Statistical Society B10, 257–261)

Accidents Frequency

0 447

1 132

2 42

3 21

4 3

5 2

and of car accidents in a year for 9461 Belgian drivers (Gelfand and Dalal, 1990, A

note on over-dispersed exponential families. Biometrika 77, 55–64, from Thyrion).

Accidents Frequency

0 7840

1 1317

2 239

3 42

4 14

5 4

6 4

7 1

(a) Calculate the percentage tables for the two sets of frequencies.

(b) Plot the histograms and compare them.

(c) Discuss whether the first table might also refer to car accidents, keeping in mind

the lapse of time between the publication of the two sets of data.
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Table 1.10: Percentages of people having different numbers of an unspecified type of

accident (from Skellam, 1948).
Accidents Per cent

0 69.1

1 20.4

2 6.5

3 3.2

4 0.5

5 0.3

Total 100

Table 1.11: Percentages of Belgians having different numbers of car accidents (from

Gelfand and Dalal, 1990).
Accidents Per cent

0 82.87

1 13.92

2 2.53

3 0.44

4 0.15

5 0.04

6 0.04

7 0.01

Total 100
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Figure 1.2: Histogram of the frequencies of an unspecified type of accident (from

Skellam, 1948).

Answer

(a) The percentages are given in Tables ?? and ??. Notice that one more decimal place

is provided in the second table because of the small frequencies.

(b) The histograms are plotted in Figures ?? and ??. We see that there are pro-

portionally more people with no accidents in the second case. On the other hand, the

presence of people with larger numbers of accidents in the second table may result

simply from the larger sample size.

(c) If both tables refer to car accidents, then the level of safety has increased be-

tween the two samples, as indicated by the larger proportion with no accidents in the

second case. There may also be differences between countries, because the first table

is not likely from Belgium. However, there is no real evidence that the first table refers

to car accidents.

Question (8)

The table below shows the numbers of units of two types of consumer goods pur-

chased by 2000 households over 26 weeks (Chatfield, Ehrenberg, and Goodhardt, 1966,

Progress on a simplified model of stationary purchasing behaviour. Journal of the

Royal Statistical Society B28, 317–367; the frequency for 21 units in the last column

refers to > 20). The two studies were separated in time by about seven years.
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Figure 1.3: Histogram of the frequencies of Belgian car accidents in one year (from

Gelfand and Dalal, 1990).
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Units Number of Units Number of

bought households buying bought households buying

Item A Item B Item A Item B

0 1612 1498 14 0 2

1 164 81 15 0 2

2 71 47 16 0 3

3 47 25 17 2 1

4 28 16 18 0 0

5 17 17 19 0 2

6 12 6 20 1 1

7 12 10 21 0 12

8 5 3 22 2

9 7 3 23 0

10 6 6 24 0

11 3 4 25 1

12 3 4 26 2

13 5 3

(a) Why might there seem to be a somewhat larger number of people buying about

13 or 26 items?

(b) Calculate the percentage tables for the two sets of frequencies.

(c) Plot the histograms and compare them.

Answer

(a) The survey was carried out over a period of 26 weeks. Some consumers might buy

the item regularly, say once a week or once fortnightly.

(b) The percentages of people buying different numbers of the items are shown in

Table ??. Notice that, in the second study, there are only 1746 households. Apparently,

some were lost in the seven years between the two phases. The students should discuss

how this might affect the comparison. Would it be reasonable to assume that those lost

were a random subgroup from the original sample?

(c) The two histograms are given in Figures ?? and ??. The main difference is for

the purchase of zero and one items. Item A is purchased once by almost 5% more

households than item B. Unfortunately, we do not know exactly what these items are.

This is characteristic of the anonymity of published data from consumer surveys.

Question (9)

(a) Plot the data in Exercise (??) above as points on a scattergram.

(b) Does this suggest any other interpretation for these data than that from the his-

togram produced in the exercise above?
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Table 1.12: Percentages of 2000 households buying different numbers of units of two

types of consumer goods over a 26 week period (Chatfield, Ehrenberg, and Goodhardt,

1966).
Units Per cent of

bought households buying

Item A Item B

0 80.60 85.80

1 8.20 4.64

2 3.55 2.69

3 2.35 1.43

4 1.40 0.92

5 0.85 0.97

6 0.60 0.34

7 0.60 0.57

8 0.25 0.17

9 0.35 0.17

10 0.30 0.34

11 0.15 0.23

12 0.15 0.23

13 0.25 0.17

14 0.00 0.11

15 0.00 0.11

16 0.00 0.17

17 0.10 0.06

18 0.00 0.00

19 0.00 0.11

20 0.05 0.06

21 0.00 0.69

22 0.10

23 0.00

24 0.00

25 0.05

26 0.10

Total 100 100
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Figure 1.4: Histogram of the frequencies of purchasing different numbers of units of

item A over a 26 week period (Chatfield, Ehrenberg, and Goodhardt, 1966).



20 CHAPTER 1. BASIC CONCEPTS

0 5 10 15 20

0
5

0
0

1
0

0
0

1
5

0
0

Number of purchases

F
re

q
u

e
n

c
y

Figure 1.5: Histogram of the frequencies of purchasing different numbers of units of

item B over a 26 week period (Chatfield, Ehrenberg, and Goodhardt, 1966). Note that

the last category represents 21 or more purchases.
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Figure 1.6: Scattergram of the numbers of people having a stressful event in each of

the 18 months before an interview (from Haberman, 1978, p. 3).
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Answer

(a) The scattergram of the data on stressful events is plotted in Figure ??. We can

clearly see how the number of people reporting an event decreases with time into the

past. This is not just an effect of distance in the past, say forgetting. These are only the

most recent events, so that all persons who give an event close in time are ineligible to

give one further back in time.

(b) In spite of the great variability in the scattergram, we might think that a straight

line could be traced through the points, showing how the number of events reported

decreases with time into the past.

Question (10)

Consider the following two study designs.

(a) A simple random sample is drawn from women visiting a birth control clinic for

the first time. They are asked whether or not they use contraceptives.

(b) A simple random sample is drawn from the list of all divorces granted in a large

city over a year’s time. For each couple, the length of marriage is recorded.

In each case,

(a) Describe carefully for what larger population inferences may be drawn.

(b) Give the major drawbacks of each design.

(c) Explain how you would improve the design.

Answer

(a) The birth control clinic was not chosen at random. The population could be assumed

to contains all women visiting that particular clinic for the first time over some specific

time period. For the divorce study, the population is all divorces in that particular city

in that particular year.

(b) Neither design allows one easily to draw conclusion outside the particular clinic

or city. In the first design, no information will be available about contraceptive use in

the larger population. For the divorce study, no information will be available about

length of marriage for people not seeking divorce. As well, the couples will have

married at very different times in the past so that they may not be easy to compare.

(c) If general conclusions are to be drawn about clinics, several should be studied,

drawn a random from a larger group of clinics. If conclusions are to be made about con-

traceptive use, information should be obtained from a population of non-clinic users,

either by also including such women in the study or from other sources.

If interest centres only on that city, random sampling of cities is not necessary.

However, it would be very useful to have information about lengths of marriage for a

similar set of married people not divorcing in that year. The problem of differences due

to dates of marriage can probably only be handled by obtained adequate explanatory

variables.



Chapter 2

Categorical data

Beginning the presentation of modelling by classical simple linear regression or ANOVA

has perhaps two advantages. Lecturers are very familiar with it because they were

taught that way and the mathematics are simpler (if one does not present the formula

for the normal distribution!). Its big drawback is that students will have no idea what

it could ever be used for (which is very little in many disciplines) and what it really

represents in terms of modelling (see Figure 5.1 of the manual).

Discrete data models can be related directly to the histograms and the frequency

concept of probability in Chapter 1. The models describe explicitly the probabilities

instead of involving some abstract parameter such as the mean of a normal distribution.

As an added bonus, for the saturated models, the calculations are simpler.

2.1 Measures of dependence

2.1.1 Estimation

The first of the traditional concepts of statistics, estimation, can ‘naturally’ be intro-

duced through the calculation of proportions, or relative frequencies, in a subgroup or

sample. This follows directly from the presentation of probability in the first chapter.

For doing the calculations of deterministic and independence relationships, replace the

tables in the text by one obtained previously by ‘interviewing’ the students. Discuss

what larger population they might reasonably represent (successive years?) in spite of

the fact that they are not a random sample.

Students can easily believe that this estimation approach will provide information

about the corresponding proportions, or probabilities, in the global population. Exam-

ples where a sample will not provide a reliable estimate can easily be constructed: the

proportion of women visiting a birth control clinic who use contraceptives will not pro-

vide a valid estimate for the whole population of women in the region. Will the table

constructed in class tell anything about students in other faculties?

A first go at introducing the important concept of degrees of freedom involves fill-

ing out a contingency table with fixed margins. Just as for the density in the first

23
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chapter, important ideas such as this should be introduced gently, in different contexts

at different times, with references back to show that it is still the same thing.

2.1.2 Independence

This is a review of material from the previous chapter. The only new element is the

notation. Use the results from the student questionnaire to illustrate the relationships.

2.1.3 Comparison of probabilities

The first passage through the steps of (1) differences of probabilities, (2) ratios, and (3)

odds is leading up to the similar passage to logistic models. Little time need be spent

on the first step here. The second, relative risk, will be of most interest to medically-

oriented students who, if you criticise it, will often be prepared to argue that it is natural.

Introduction of the odds ratio will bring out the sports students in the crowd.

Students should be strongly discouraged from using the term, correlation, to de-

scribe the relationship between variables. Point out that it is a technical term with spe-

cific meaning, only applicable in special circumstances. The (log) odds ratio performs

an analogous function for association between binary variables.

2.1.4 Characteristics of the odds ratio

The section on the characteristics of the odds ratio is fairly technical and may not be

necessary for all students. More specifically, the relationship between odds and relative

risk should be especially emphasised to medical students.

2.1.5 Simpson’s paradox

The manner in which Simpson’s paradox is presented is very important. Basically you

must show that you have nothing up your sleeves when you derive the two subtables

from the global results. First, convince the students of the validity of your conclusions

from the global table. Then, begin presenting the two subtables, demonstrating that

they indeed add to give the original table. Draw the opposing conclusions and ask the

students to explain why. This will take a bit of time because many students will want

to check and recheck the calculations to verify that there is not a trick.

Emphasise that exactly the same thing can happen no matter how complex is the

table, containing many variables. Introduction of a further one, that was forgotten and

not even available, might drastically alter the results. On the other hand, show that each

marginal table, even the two-way one is a valid average representation of the population

under study (if the sampling is valid). For example, introduction of a new drug may be

permitted because it will help the population on average, even although it may not be

known that some people may be allergic to it. After this exercise, some students should

be on the point of abandoning a scientific career.
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2.2 Models for binary response variables

Finally, we get to models. Make it clear that the goal is to develop a more rigorous

means of describing how histograms vary among subpopulations. Draw up simple

histograms showing how they change for subgroups in the class. Later in the chapter, if

the students appear to be overwhelmed by the complexity, refer back to this basic idea.

2.2.1 Models based on linear functions

Here, we go through the linear, ratio, and odds sequence for the second time. This

time, emphasise the linear approach. Present the linear model as if it is the real thing.

Convince them that it is the only natural way to do things: a mean probability in the

population and differences from it for subgroups. Clearly show the differences, and

similarity of conclusions, for the various constraints on the parameters. Then announce

that this is all wrong and no one should do it this way.

If you have not been lynched, you can reassure them that, in fact, much of the

technique will be used in what follows. Start into the model based on products of

probabilities and show how complicated it is. Then, the students will be prepared to

accept logarithms as a means of simplifying life. Of course, they should have caught

on by now and will not believe that this is the correct way either. The better students

will have related it all back to the sequence in the previous section.

2.2.2 Logistic models

Finally, we are ready to introduce the logistic model, which we must agree is rather

complicated and does require this lead up to it. The sequence has an additional benefit

of allowing the students to see that the specification of the linear part of a model,

with its mean or baseline constraint, does not depend on the way this is related to the

probabilities themselves.

Here it is essential that all students follow the calculations with their own calcula-

tors. Many may never have handled log (ln) and exp before and they need to see how

they are actually calculated, even if they do not grasp the basis of them.

Work through the calculation of the parameter estimates, then calculate back to

obtain the conditional probabilities, showing that they are the same as obtained by

direct calculation. I have had students in the back row convinced that this was magic

and would not be reproducible on another table!

An essential point with applying the logistic model to such simple tables is to show

that it provides the same conclusions as can be obtained directly by inspecting the table.

Emphasise that we start here with simple cases so that the students can understand

exactly what is going on, but that they will soon have tables where direct understanding

is not possible.

Social science students are fascinated by the sequence of tables on untouchables

in India, probably partly because I can fill in details, having lived there for a year.

These tables may have to be replaced by a set more appropriate to the instructor and

the students. Before being asked to do a lot of calculations, the students should be
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given this opportunity to see results already calculated and the conclusions that can be

drawn.

2.2.3 One polytomous explanatory variable

Obviously, the students will feel that 2× 2 tables are not really too useful. (In many

situations, they are wrong.) Luckily, the first steps in the move to larger tables are

simple. The first point to get across with a polytomous explanatory variable is how

to solve a system of equations. Again, the key is numerical calculation, not algebra.

The second point is how the parameters describe relationships among the categories of

the variable. The conclusions from the parameters can still be related back to the data

through histograms.

Here, we can already look for simple patterns in the set of parameter estimates.

Thus, we discover the contrast, from Table 2.9 in the manual, between completely

free access to water (IA) and the other three categories. A second example, directly

pertinent to the subject speciality of the students, might indicate a linear trend among

categories. These will start the students interpreting the parameters fairly intuitively,

without feeling the need to back calculate to probabilities every time.

Reasoning directly in terms of log odds can seem natural if started early enough!

Emphasise that, when categorical variables have several nominal categories, no sin-

gle number (like a correlation coefficient) can adequately summarise the relationships

among them.

2.2.4 Several explanatory variables

Things start to get more interesting when there is more than one explanatory variable.

Get the students to try to figure out which equations have to be added together to

eliminate parameters. They usually will find this to be a game. Then assure them that

things will really not get any more complicated than this for later models. By now, they

should have gained enough confidence in their mathematical abilities.

The difficult concept here is interaction. The example for classical music is chosen

especially for this, with the margin involving age showing no relationship. This is

the example that should convince the students that it is all worth the trouble, that the

logistic models can provide conclusions not directly visible in the table (although the

histograms are pretty clear).

It is generally useful to work through the two separate conditional subtables to

demonstrate that this new model with interaction gives the same results, but differ-

ent for each subtable. This, and the histograms, makes the idea of interaction more

concrete.

Point out that it will not make much sense to simplify the model by eliminating

the parameter for age because listening habits do actually depend on age through the

interaction with education. Thus, there is a hierarchy of parameters such that one

should consider eliminating the more complex ones first.

Unless the class is fairly strong, the example, and exercises, with three explanatory

variables may be omitted.
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2.2.5 Logistic regression

Logistic regression provides the occasion to show how this type of model guarantees

that the probabilities stay between zero and one. It is unfortunate that the calculations

are complex. However, the algorithmic procedure (for the first iteration) generally is

manageable. In strong classes, it may be interesting to explain that this is just a least

squares procedure, with appropriately chosen weights. (For a general introduction to

iterative weighted least squares, see Dobson, 1990, pp. 39–41.)

Here is a good opportunity to emphasise the advantage of computers. More computer-

literate classes may be interested in seeing in more detail how this iterative weighted

least squares procedure works. The utility of computers for repetitive tasks should be

clear.

The other important point is how a model can smooth the data. The raw data on

malformed children seem to indicate that a small amount of alcohol is better than none

whereas the model seems to show that this could be random fluctuation. We shall have

to wait until the next chapter for confirmation one way or the other.

In some classes, such as economics, now may be the time to show how dummy

variables work. The Greek letters of the preceding models can be replaced by β regres-

sion coefficients multiplied by appropriately coded dummy variables, yielding models

identical to those previously fitted. Thus, Equation (2.4),

log

(
π1| j
π2| j

)
= µ+α j j = 1,2

is identical to

log

(
π1| j
π2| j

)
= β0 +β1x j j = 1,2

if x j is coded (0,1) for a baseline constraint or (−1,1) for a mean constraint.

2.3 Polytomous response variables

2.3.1 Polytomous logistic models

Many of the students should now be impatient to get to more ‘realistic’ cases where the

response is not restricted two categories. Here, the detail of explanation will depend on

the mathematical abilities of the class. For weak students, one can get by with the basic

ideas and calculations using the algorithmic procedure. If, on the other hand, students

now feel relatively at ease with manipulating logarithms and powers, a full explana-

tion can be given. In either case, graphical presentation of changes in histograms is

important.

In all cases, the algorithmic solution should be presented, because it will provide

the link with multivariate analysis through log linear models below.

A series of complete analyses should be used to show how parameter values can

be interpreted. The students should be instructed as to how to look for simple patterns

in the matrix of α parameters. They should now feel at ease interpreting the values
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directly, although transformation back to ratios of probabilities is important. Here,

we come back to the theme of simplifying models, again by eliminating unnecessary

interactions.

2.3.2 Log linear models

Up until now, in this chapter, a single response, and a corresponding regression, have

been emphasised. With log linear models, the ideas of multiple responses, and of

multivariate models, are introduced. This links back to the relationships between joint

and conditional probabilities in the first chapter.

The good news is that the calculations are essentially the same and that the param-

eter estimates are identical. However, it is important to point out that this is a unique,

and valuable, property of these logistic and log linear models that will not be found in

other models later in the course.

The link between the two types of models comes from the algorithmic calcula-

tions for the two-way table used above, not from some mathematical demonstration of

identity of parameters. However, the demonstration is not difficult. Take the simple

two-variable log linear model,

log
(πi j

π̇

)
= µi +φ j +αi j

Suppose that the variable indexed by i is binary. Take this equation with i = 1 and

subtract from it that for i = 2 to give

log

(
π1 j

π2 j

)
= (µ1 −µ2)+(α1 j −α2 j)

This can be directly related to Equation (2.4) reproduced above (if µ1 =−µ2 and α1 j =
−α2 j, a factor of one half is involved).

In areas where retrospective studies are important, such as sociology and epidemi-

ology, extra time should be spent on this valuable property of symmetry or reversibility

of the model. No matter which variable is taken as the random response in the table, the

parameters relating variables together are identical. More generally, the weight given

to this material may depend on the importance of study design in your presentation.

If, for example, you stress that some conditional probabilities of interest cannot be

computed under retrospective designs, then careful students will already wonder why

logistic and log-linear models can be estimated as if the study design was not relevant.

In the context of analysing data from such a study, you could first use a logistic model

and directly estimate (and interpret) the parameters in the model. Then, using the pre-

text that you want to check the model conclusions directly with the data, you might ask

the students to compute the conditional probabilities of interest, hoping that they will

remember that these are not computable with a retrospective design. You should then

convince the students that the odds ratio in ‘invariant’ and interpretable.

This may also be an appropriate time to introduce the idea that the same types of

models can be used for different kinds of prospective studies. Only the strength of con-

clusions will differ (causality or not) depending on whether the study was experimental

(e.g. a clinical trial) or not.
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Discussion of the different possible types of dependence, if it is to be presented

convincingly, will require examination of subject matter tables (or perhaps the table for

classical music). Again, the students should see the importance of trying to simplify a

model.

2.3.3 Log linear regression

In my view, log linear (or Poisson) regression is the most important single model in

all of statistics and should not be skipped. After the preceding work in this chapter,

it is relatively simple and one should not expect the students to see how important

it is. The calculations provide another example of weighted least squares. For very

sophisticated students, it may now be possible to point out that the weights being used

are just the variances for the binomial (logistic regression) and Poisson (log linear

regression) distributions, although, of course, these are not actually presented until

Chapter ??.

2.3.4 Ordinal response

Ordinal models may be an optional section for many classes. However, in disciplines,

such as sociology, marketing, or psychology, where such variables are central, they

should be presented. The only new idea here is the reconstruction of the table, group-

ing categories to the left and right of various cut-points. Then, this becomes a simple

application of logistic regression (although the results are approximate for the propor-

tional odds model).

2.4 Solutions to the exercises

Question (1)

Find a study in the literature for which results are reported in the form of a contingency

table.

(a) Describe the measures taken by the research workers to avoid Simpson’s paradox

occurring.

(b) List ways in which Simpson’s paradox might have made the authors’ results

questionable.

(c) Invent a binary variable not used in the study and subdivide the published table

in such a way that Simpson’s paradox occurs.

Answer

The answers will depend on the study chosen by the student.
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Table 2.1: Opinions on gun registration and the death penalty. (Agresti, 1990, p. 29)

Death penalty

Gun Registration Favour Oppose Total

Favour 784 236 1020

Oppose 311 66 377

Total 1095 302 1397

Question (2)

Fit a logistic model to the following data:

(a) the data on injuries in car accidents and wearing seat belts of Table ??;

(b) the data on myocardial infarction and contraceptive use of Table ??;

(c) the data on opinions about the death penalty and gun registration of Table ??.

In each case, discuss the meaning of the results.

Answer

(a) For the data on injuries in car accidents and wearing a seat belt of Table ??, the

logistic model is

log

(
π1| j
π2| j

)
=−5.658−1.038x j

when x j, for wearing a seat belt, takes the values (−1,1), corresponding respectively

to no and yes, the mean constraint, and

log

(
π1| j
π2| j

)
=−4.620−2.075x j

when x j takes the values (0,1), the baseline constraint. In both cases, we see that the

(log) odds, and the probability, of a fatal accident is considerably lower when a seat

belt is worn, as indicated by the negative parameter estimate. For both models, the

difference is 2.075 on the logit scale, which corresponds to an odds ratio of about one

eighth (0.125 = e−2.075).
(b) For the data on myocardial infarction and contraceptive use of Table ??, the

logistic model is

log

(
π1| j
π2| j

)
=−0.859−0.468x j

when x j takes, for contraceptive use, the values (−1,1), corresponding respectively to

yes and no, the mean constraint, and

log

(
π1| j
π2| j

)
=−0.391−0.936x j
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Table 2.2: Percentage distribution of opinions on gun registration and the death penalty.

(from Agresti, 1990, p. 29)

Death penalty

Gun Registration Favour Oppose Total

Favour 56.1 16.9 73.0

Oppose 22.3 4.7 27.0

Total 78.4 21.6 100.0

when x j takes the values (0,1), the baseline constraint. In both cases, we see that the

probability of a myocardial infarction is considerably lower when contraceptives were

not taken. For both models, the difference is 0.936 on the logit scale, i.e. an odds ratio

of 2.55.

This estimate provides a valid measure of the relationship between infarction and

contraceptives although the study was performed retrospectively. The conditional prob-

abilities of myocardial infarction (on contraceptive use) cannot be computed here, be-

cause the ratio of cases to controls was fixed in the study. This is reflected by the

estimate of the constant (−0.859 or −0.391) in the model which is of little use. The

interpretability of the model parameters contrasts with the difficulty of interpretation

of the percentages in Tables ?? and ??.

(c) For the data on opinions about the death penalty and gun registration of Table ??,

there is no clear relationship of order between the two variables whereby one would be

thought to depend on the other. Hence, it may be more useful to fit a log linear model.

This is

log
(πi j

π̇

)
=−0.550x1i −0.688x2 j −0.087x1ix2 j

when x1i, for opinion on gun registration, and x2 j, for opinion about the death penalty,

take the values (−1,1), the mean constraint. The value of −0.087 (= γ̂11) is the same

as we would have obtained from the logistic model with the same constraints. In other

words, conflicting opinions appear more often together (and agreement less often) than

would be expected if the two opinions were independent. This is in agreement with

what one would expect from a such a study: being in favour of gun registration means

being against wide use of guns and that this is associated with being against the death

penalty.

These conclusions are not obvious from the percentages, as given in Table ??. From

this table, the estimated marginal probabilities are π̂1• = 0.730 and π̂•1 = 0.784 of

having favourable opinions on the two questions. Multiplying them together, we obtain

π̃11 = 0.57 as the estimated probability of having both opinions favourable, if answers

to the two questions were independent. The observed value, π̂11 = 0.56, is slightly less,

confirming our analysis with the model.

Some care must be taken with judgements as to whether a parameter (such as the

association parameter γ11 above) is small or not. Several questions should be asked:

• Is the parameter really different from zero or is the estimate only randomly dif-

ferent, a result of sampling? This will be covered in Chapter ??.
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• If the parameter is indeed different from zero,

– is the estimate relatively smaller than estimates of other similar parameters

in the model?

– is the estimate large enough to have any substantive meaning in the field of

study?

Of course, small values can be very important, if a large value was expected. So-called

‘negative’ results, where a parameter can be eliminated from a model (because it is

non-significant), may lead to scientific discoveries as easily as large estimates.

Question (3)

(a) Fit a log linear model to the migration data of Table ??.

(b) Explain how residence in 1971 is related to that in 1966.

(c) Notice that the four areas are ordered from the north to the south of Britain. Can

a better model be constructed using this information?

Answer

(a) For a log linear model with mean constraints, the parameter estimates for these data

have (−1.378,0.443,0.245,0.690) for the 1966 margin, (−1.469,0.308,0.218,0.943)
for the 1971 margin, and




3.156 −0.907 −1.356 −0.893

−0.798 2.449 −0.669 −0.982

−1.159 −0.781 2.918 −0.978

−1.199 −0.761 −0.893 2.853




for the α parameters relating the two dates together.

(b) It is clear that there is a very high probability of a person being in the same

region on the two dates. Most of the off-diagonal values are fairly similar, close to

−1.0. (Moves from Central Clydesdale to the West Midlands are relatively somewhat

less frequent and those from Lancashire and Yorkshire to the West Midlands slightly

more frequent.) There is no indication that the probabilities decrease in value with dis-

tance between regions, i.e. with distance from the main diagonal. Thus, the estimated

probability of moving between any pair of regions is about constant.

(c) Because the regions are ordered, we might want to use a model for ordinal data.

However, the ones that we have studied only apply to an ordinal response, here the

place of residence in 1971, and would not take into account the symmetry between the

two dates.

Question (4)

The following table (Fienberg, 1977, p. 16) gives data on the choice of piano by soloists

playing for selected major American orchestras during the 1973–1974 concert season

in the U.S.A.
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Piano

Orchestra Steinway Other

Boston 4 2

Chicago 13 1

Cleveland 11 2

Minnesota 2 2

New York 9 2

Philadelphia 6 0

(a) Study the relationship between the two variables.

(b) Might a log linear model be more appropriate than a logistic model?

(c) The same soloist may have appeared with different orchestras. Discuss what

difficulties this may create for the models which you have used.

Answer

(a) Because of the zero in the table, we shall approximate it by 1/2 in the calculation

of the parameter estimates. With the mean constraint in a logistic model, we obtain

µ̂ = 1.492, α̂1 = −0.799, α̂2 = 1.073, α̂3 = 0.213, α̂4 = −1.492, α̂5 = 0.012, and

α̂6 = 0.993. As is evident from the table (without the approximation), Chicago and

Philadelphia (π̂1 = 1) have the highest probabilities of using a Steinway and Minnesota

the lowest (although the latter is still estimated as 0.5).

(b) The choice of piano might not be thought really to depend on the orchestra

(except indirectly through choice of soloists) so that we would then be interested simply

in the association between type of piano and orchestra. In this case, a log linear model

would be more appropriate, but of course the results will be identical.

(c) One of the hypotheses behind the use of logistic and log linear models is that the

frequencies in a table are composed of independent events. If the same soloist played

several times, whether for the same or different orchestras, he or she would probably

use the same type of piano and the events would not be independent.

Question (5)

The table below gives the frequency of coronary heart disease by age group (Hosmer

and Lemeshow, 1989, p. 4). The latter was originally measured in years, but larger

groupings were then created.
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Coronary heart

disease

Age Yes No

20–29 9 1

30–34 13 2

35–39 9 3

40–44 10 5

45–49 7 6

50–54 3 5

55–59 4 13

60–69 2 8

(a) Fit a logistic regression model to these data.

(b) Plot and interpret the results.

(c) What difficulties would you have encountered in making the plot if you had used

the original raw data with the actual ages, in years, of the 100 people involved?

Answer

(a) The age classification (20,29),(30,34), . . . ,(60,69) given in this exercise stands for

the age intervals (19.5,29.5),(29.5,34.5), . . . ,(59.5, 69.5). Hence the interval mid-

points for the ages are (24.5,32,37, 42,47,52, 57,64.5). Note that these values are

simply the average of the originally given bounds. There are situations where this rule

does not apply: these will be mentioned when appropriate.

The approximate estimates for the logistic regression are β̂0
.
= 4.984 and β̂1

.
=

−0.104 and the exact maximum likelihood estimates are β̂0 = 5.038 and β̂1 =−0.105.

The negative slope indicates that the probability of coronary heart disease is decreasing

with age.

(b) The estimated proportions of people having coronary heart disease and the fitted

logistic regression line are plotted in Figure ??. As expected, we see how the proba-

bility of heart disease decreases with age. The proportion with the disease decreases

from about 90% at age 25 to about 20% at age 60. The fitted curve is reasonably close

to the observed proportions. This is obviously not a random sample from an ordinary

population.

(c) With the raw data, there would likely be few people at any given age so that

the estimated proportions would often be zero or one and would jump rather erratically

between these two values. However, the estimation of the logistic regression curve

would be more accurate if the exact ages could be used.

As a general comment, it would be interesting to know how this sample was chosen.

It seems doubtful that this model could represent some typical population.

Question (6)

In Section 2.2.4, we studied data on listeners to classical music radio programmes

(Table ??). The table below gives similar data on listening to religious and to discussion

programmes on the radio (Lazarsfeld, 1955).
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Figure 2.1: Scattergram of the estimated proportions of people having coronary heart

disease at different ages (from Hosmer and Lemeshow, 1989), with the fitted logistic

regression line.

Table 2.3: Classification of classical music listeners by age and education. (Lazarsfeld,

1955)
Education

High Low

Listen to classical music

Age Yes No Yes No

Old 210 190 170 730

Young 194 406 110 290
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Education

High Low High Low

Listen to

religious programmes discussion programmes

Age Yes No Yes No Yes No Yes No

Old 45 355 285 615 210 180 360 540

Young 55 545 115 285 240 360 100 300

The definitions of the age and education variables are the same as stated in the text

above. The rounded values in the tables result because of the stylised nature of the

data, already mentioned above in the text.

(a) Check that the joint distribution of age and education is the same in all three

tables.

(b) Fit an appropriate logistic model to each half of the table (each type of pro-

gramme).

(c) Are the results similar to those given above for classical music?

(d) Can you explain why?

Answer

(a) For all three types of programmes, the marginal table for age and education is

Education

Age High Low

Old 400 900

Young 600 400

showing that the joint distribution is the same in all three cases. This would be expected

if all three tables arise from the same study (unless there were missing values in some

of the response variables).

(b) We shall use the same definitions of the variables as for classical music in the

text: age indexed by j (α j) and education by k (βk). For religious programmes, the

parameter estimates are µ̂ = −1.509, α̂1 = 0.092 = −α̂2, β̂1 = −0.671 = −β̂2, and

γ̂11 = 0.022 = −γ̂12 = −γ̂21 = γ̂22. For discussion programmes, they are µ̂ = −0.439,

α̂1 = 0.313 =−α̂2, β̂1 = 0.313 =−β̂2, and γ̂11 =−0.033 =−γ̂12 =−γ̂21 = γ̂22.

(c) The results are quite different in the three cases. In the two just studied, there

is little evidence of interaction between age and education. For religious programmes,

there is little difference with age, whereas more highly educated people listen less. For

discussion programmes, both older and more highly educated people listen more, the

effect being cumulative.

(d) Thus, there seems to be a change in listening habits with age, in respect to

education level, for classical music but not for the other two types of programmes. But

the age effect could also arise from a difference in education when the two age groups

were young.
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Question (7)

Consider data on the relationship among delinquency, socioeconomic status (SES), and

being a boy scout, given below (Agresti, 1990, p. 157).

Delinquent

SES Scout Yes No

Low Yes 10 40

Low No 40 160

Medium Yes 18 132

Medium No 18 132

High Yes 8 192

High No 2 48

(a) Fit a logistic model to explore the relationships among the variables.

(b) What is peculiar about these data? Look at models for the marginal tables, when

delinquency depends on only one of the explanatory variables.

(c) Relate your conclusions to the difficulties in drawing causal conclusions from

sample survey data.

Answer

(a) For the logistic model, the parameter estimates are µ̂ =−2.186, α̂1 = 0.000 =−α̂2,

β̂1 = 0.799, β̂2 = 0.193, β̂3 = −0.992, γ̂11 = 0.000 = −γ̂21, γ̂12 = 0.000 = γ̂22, and

γ̂13 = 0.000= γ̂23, where j indexes being a scout or not and k indexes SES. Delinquency

depends only on SES and not on whether the boy was a scout or not. The probability

of being a delinquent decreases in the higher SES.

(b) We might already suspect something strange with this table because the two

rows for medium SES are identical. The marginal table for delinquency and scout is

Delinquent

Scout Yes No

Yes 36 364

No 60 340

and the logistic model has estimates, µ̂ =−2.024 and α̂1 =−0.290 =−α̂2. When the

effect of SES is ignored, we find that delinquency depends on being a scout.

The marginal table for delinquency and SES is

Delinquent

SES Yes No

Low 50 200

Medium 36 264

High 10 240

with estimates, µ̂ = −2.186, β̂1 = 0.799, β̂2 = 0.193, and β̂3 = −0.992. These are

identical to those in the full model above.
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If we look back at the original table, we see that the proportion of delinquent boys

is exactly the same, within each level of SES, whether the boys are scouts or not.

Thus, participation in the scouts is associated with SES, explaining the misleading

relationship. This relationship can be studied by constructing the appropriate marginal

table.

(c) If we only had the variable, being a scout, available, we would have concluded

that the probability of delinquency depended on this variable. However, the introduc-

tion of SES shows this not to be the case.

In sample survey data, some crucial explanatory variable may always be missing,

making any ‘causal’ conclusions misleading. This is a form of Simpson’s paradox.

Conclusions can change drastically when a key explanatory variable is introduced.

Question (8)

In Section 2.2.4, we looked at a study of knowledge of cancer, given in Table ??. The

table below reproduces the data, but with the ‘lectures’ variable replaced by ‘serious

reading’ (Lombard and Doering, 1947).

Radio

Yes No

Knowledge

Newspaper Reading Good Poor Good Poor

Yes Yes 125 75 228 195

No 43 63 82 162

No Yes 17 19 70 91

No 17 53 86 403

(a) Fit a logistic model and interpret the results.

(b) Compare them with those given above and explain any differences.

(c) If you have appropriate computer software available, look at models for all four

explanatory variables simultaneously.

Table 2.4: Sources of knowledge of cancer. (Lombard and Doering, 1947)

Radio

Yes No

Knowledge

Newspaper Lectures Good Poor Good Poor

Yes Yes 31 12 34 24

No 137 126 276 333

No Yes 5 6 5 18

No 29 66 151 476
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Reading

Yes No

Knowledge

Radio Newspaper Lectures Good Poor Good Poor

Yes Yes Yes 23 8 8 4

Yes Yes No 102 67 35 59

Yes No Yes 1 3 4 3

Yes No No 16 16 13 50

No Yes Yes 27 18 7 6

No Yes No 201 177 75 156

No No Yes 3 8 2 10

No No No 67 83 84 393

(d) Again, compare the results with those from the simpler tables and explain any

differences.

Answer

(a) Let j index radio, k reading, and l newspapers. The parameter estimates are µ̂ =
−0.431, α̂1 = 0.152, β̂1 = 0.505, δ̂1 = 0.332, γ̂111 = −0.025, γ̂211 = 0.012, γ̂311 =
−0.072, and γ̂4111 = 0.039. Here, good knowledge of cancer is most strongly positively

associated with reading. This is one and a half times stronger than that for newspapers,

which is, in turn, about twice as strong as that for radio. There is little indication of

interactions among the sources of knowledge.

(b) The parameters for dependence of cancer knowledge on radio and newspapers

are about one half the size in the previous model in the text. However, that for newspa-

pers is still about twice as large as for radio. In that model, lectures were most weakly

linked with knowledge. The variable that replaces it, reading, is the most strongly asso-

ciated. Apparently, people who obtain knowledge from reading also do so from radio

and newspapers, explaining the reduction in the latter relationships when the former is

introduced into the model.

(c) Let j index reading, k lectures, l newspapers, and m radio. The parameter esti-

mates are µ̂=−0.306, α̂1 = 0.243, β̂1 = 0.271, δ̂1 = 0.507, τ̂1 = 0.170, γ̂111 =−0.113,

γ̂211 =−0.031, γ̂311 = 0.031, γ̂411 = 0.128, γ̂511 =−0.289, γ̂611 = 0.207, λ̂1111 = 0.137,

λ̂2111 = −0.125, λ̂3111 = −0.043, λ̂4111 = 0.140, and λ̂51111 = 0.129. Now, good

knowledge of cancer is most strongly positively associated with newspapers. Lectures

are now second with reading a close third. However, there are many large interactions

which make interpretations very difficult. (Fortunately, many of them are unnecessary.

After simplifying the model using the AIC, as in the next chapter, those left are between

newspapers and lectures, newspapers and reading, and lectures and reading.)

(d) The existence of so many interactions shows that any interpretations of the

smaller tables can be misleading.

Question (9)

A study was conducted to determine factors which might influence shopping behaviour.

The sample was taken at random from the population of the town of Dukinfield, Greater
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Manchester, England. In the following table, we present the variables, choice of shop-

ping centre, age, income, and car ownership (Fingleton, 1984, p. 25).

Car owner

Yes No

Shopping centre

Age Income Near Other Near Other

Young Low 12 57 17 48

High 3 24 2 3

Old Low 18 53 51 105

High 2 11 1 0

Unfortunately, the author does not state how the categories for the variables were con-

structed.

(a) Fit a logistic model.

(b) Interpret the results.

Answer

(a) The shopping behaviour under study is the distance to the shopping centre and

the factors that might determine this, car ownership, income, and age. To calculate

the parameters, we approximate the (sampling) zero in the table by 1/2. Let j index

car ownership, k income, and l age. Then, the parameter estimates are µ̂ = −0.987,

α̂1 = −0.619, β̂1 = −0.113, δ̂1 = −0.283, γ̂111 = 0.399, γ̂211 = 0.070, γ̂311 = 0.085,

and γ̂4111 =−0.111.

(b) All of the interactions, except that between car ownership and income, are rea-

sonably small, as is the estimate for income itself. The younger age group tends to shop

further away. However, car ownership gives the strongest relationship. On average car

owners shop further away (−0.619). This is much less true of the low income (−0.220)

than the high income (−1.018) group.

Question (10)

The following table shows the numbers of household burglaries in Detroit, U.S.A.,

1974–1975, obtained from the National Crime Survey (Nelson, 1980).

Number Number

of of

burglaries households

0 8385

1 976

2 183

3 35

4 5

5 2

(a) Fit a log linear regression model to these data.
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Figure 2.2: Scattergram of the estimated numbers of households having burglaries

(Nelson, 1980), with the fitted log linear regression line.

(b) Plot and interpret the results.

Answer

(a) The goal here is to see if we can find a simple smooth relationship between the

number of burglaries and their frequency. (We shall study more reasonable ways in

Chapter ??.) The approximate estimates for the log linear regression are β̂0
.
= 9.024

and β̂1
.
=−1.993. (The exact maximum likelihood estimates are β̂0 = 9.025 and β̂1 =

−2.013.) The negative slope indicates that the probability decreases as the number of

burglaries increases.

(b) The estimated frequencies of households having burglaries and the fitted log

linear regression line are plotted in Figure ??. The model fits the data very closely.

Households with several burglaries are much rarer than those with few. Even the zero

category fits well, showing that they are not a special group.

Question (11)

The table in Exercise (??) gave the frequency of recall of a stressful event over an 18

month period.

(a) Study how recall depends on time by fitting a log linear regression model.
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Figure 2.3: Scattergram of the estimated numbers of events recalled each month in the

past (from Haberman, 1978, p. 3), with the fitted log linear regression line.

(b) Plot and interpret the results.

Answer

(a) The approximate estimates for the log linear regression are β̂0
.
= 2.789 and β̂1

.
=

−0.070. (The exact maximum likelihood estimates are β̂0 = 2.803 and β̂1 =−0.084.)

The negative slope indicates that the frequency of events remembered decreases with

the number of months in the past.

(b) The estimated frequencies of recall of stressful events over time and the fitted

log linear regression line are plotted in Figure ??. These data are rather scattered so

that the fitted line only goes more or less through the middle of them. As we saw and

discussed in Exercise (??), the frequency of events decreases with time into the past.

The log linear model describes this well.

Question (12)

People involved in a driver education study were followed over a four-year period.

Traffic violations each year among male subjects in the control group were recorded as

shown in the following table (Davis, 2002, p. 228).
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Year

1 2 3 4

No No No No 731

No No No Yes 310

No No Yes No 256

No No Yes Yes 196

No Yes No No 156

No Yes No Yes 121

No Yes Yes No 114

No Yes Yes Yes 152

Yes No No No 61

Yes No No Yes 40

Yes No Yes No 45

Yes No Yes Yes 39

Yes Yes No No 47

Yes Yes No Yes 42

Yes Yes Yes No 46

Yes Yes Yes Yes 53

(a) Develop a log linear model to describe the association between violations in the

various years.

(b) Is the association stronger for years closer together in time?

(c) Is it reasonable to simplify the model by only including associations between

adjacent years?

Answer

(a) After eliminating unnecessary interactions, the following relationships remain: be-

tween years 1 and 2: 0.236; between years 1 and 3: 0.100; between years 2 and 3:

0.118; between years 2 and 4: 0.138; between years 3 and 4: 0.134; among years 1, 2,

and 3: 0.063.

(b) The strongest association is between years 1 and 2. That between years 1 and 4

is unnecessary. That between 2 and 4 is somewhat larger than those between 2 and 3

or 3 and 4.

(c) No, it is not possible to simplify the model in this way. There are long term

dependencies.

Question (13)

The following table gives the results of a social survey of income and job satisfaction in

the U.S.A. (Agresti, 1990, p. 21). They are taken from the 1984 General Social Survey

of the National Data Program.
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Satisfaction

Very Little Moderately Very

Income dissatisfied dissatisfied satisfied satisfied

< $6000 20 24 80 82

$6000–14999 22 38 104 125

$15000–24999 13 28 81 113

≥ $25000 7 18 54 92

(a) Fit a polytomous logistic model to these data and interpret the results.

(b) What might be a more appropriate model?

Answer

(a) For a log linear model with mean constraints, the parameter estimates for these data

have (0.020,0.330,0.034,−0.384) for the income margin, (−1.071,−0.461,0.632,0.900)
for the satisfaction margin, and




0.326 −0.102 0.010 −0.234

0.112 0.048 −0.038 −0.122

−0.119 0.039 0.008 0.072

−0.319 0.015 0.020 0.284




for the α parameters relating the two together. Only the four extreme values of the

associate matrix are large. The concordant corners, for example low income and very

dissatisfied, have higher probability and the discordant ones, such as high income and

very dissatisfied, have lower probability.

(b) Both variables are ordered. The models for ordinal variables might be used

but they only handle an ordinal response variable. (In fact, for these data, a linear

interaction fits very well and has eight fewer parameters than the model fitted above.)

Question (14)

The table below shows party affiliation and political ideology of a sample of voters

during the 1976 Wisconsin, U.S.A., presidential primary election (Agresti, 1984, p.

87).

Political ideology

Party Liberal Moderate Conservative

Democrat 143 156 100

Independent 119 210 141

Republican 15 72 127

(a) Fit the continuation ratio and the (approximate) proportional odds models to

these data.

(b) Compare and interpret the results.
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Answer

(a) The reconstructed table for the continuation ratio models is

Ideology

Party Left Right

Democrat 143 156

Independent 119 210

Republican 15 72

Democrat 299 100

Independent 329 141

Republican 87 127

The parameters of interest in the logistic model are α̂ = (0.614,0.250,−0.864).
The reconstructed table for the proportional odds model is

Ideology

Party Left Right

Democrat 143 256

Independent 119 351

Republican 15 199

Democrat 299 100

Independent 329 141

Republican 87 127

The parameters of interest in the approximate logistic model are α̂ = (0.704,0.330,
−1.034).

(b) Democrats have a higher probability of being to the left of the political spec-

trum. Independents are also somewhat left of centre whereas Republicans have a

high probability of being to the right. The results are for the two models are sim-

ilar but the second is somewhat more extreme. The interaction parameters, which

should be close to zero if the model is acceptable, are γ̂ = (0.040,−0.076,0.036) and

γ̂ = (0.130,0.004,−0.135) respectively. The latter are larger, indicating that the former

model, the continuation ratio, may be preferable.

Question (15)

The following table gives ratings of the performance of radio and television, by the

person’s colour for samples taken in two different years (Agresti, 1984, p. 103).

Rating

Year Colour Poor Fair Good

1959 White 54 253 325

Black 4 23 81

1971 White 158 636 600

Black 24 144 224

(a) Fit the continuation ratio and the (approximate) proportional odds models to

these data.
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(b) Compare and interpret the results.

Answer

(a) The reconstructed table for the continuation ratio models is

Rating

Year Colour Poor Good

1959 White 54 253

Black 4 23

1971 White 158 600

Black 24 224

1959 White 307 325

Black 27 81

1971 White 794 600

Black 168 224

The parameters of interest in the logistic model are α̂1 = 0.277 for colour, β̂1 =−0.157

for year, and γ̂11 = 0.035 for the interaction between the two.

The reconstructed table for the proportion odds model is

Rating

Year Colour Poor Good

1959 White 54 578

Black 4 104

1971 White 158 1236

Black 24 368

1959 White 307 325

Black 27 81

1971 White 794 600

Black 168 224

The parameters of interest in the approximate logistic model are α̂1 = 0.396 for colour,

β̂1 =−0.249 for year, and γ̂11 = 0.086 for the interaction between the two.

(b) White people tend to give a poorer rating of the performance of radio and tele-

vision. There is some indication that ratings have improved between the two years.

The interaction is small indicating that it has improved in about the same way for

both blacks and whites. As in the previous exercise, the latter model gives larger

estimates than the former. The interactions of these variables with the two subta-

bles are (−0.126,0.130,−0.084) for the continuation ratio whereas they are (−0.006,
0.038,−0.032) for the proportional odds. In this case, the latter model seems to fit

slightly better.



Chapter 3

Inference

In this chapter, we finally reach what many statisticians believe to be the core of statis-

tical thinking: inference. We now must face the problem of how to draw conclusions in

the presence of random variability of the observations in a sample drawn from a popu-

lation. When the likelihood function is used, this becomes a relatively trivial problem.

Students in traditional introductory statistics courses are fed a stream of hypothesis

testing procedures, based on the Chi-squared, Student t, and F distributions. When

they face a problem in the real world, they can never figure out which one should be

applied. (I recall vividly being in that situation during my first job.) The unlucky ones

cannot even remember if it is the Chi-squared value or the P-value that is supposed to

be small!

Many statisticians seem to think that likelihood is a complex and difficult concept.

For new, unindoctrinated, students, likelihood can be simple and intuitive, whereas

testing is confusing and contradictory. No wonder that statistics has such a bad name.

3.1 Goals of inference

In fact, the basic inference problems have already appeared in the presentations of prob-

ability and models in the previous chapters. When a model smooths the observed data,

how do we know if the differences between the model probabilities and the observed

relative frequencies are random or indicative of missed structure in the data? How can

we judge if a model can be simplified, say by eliminating an interaction?

3.1.1 Discovery and decisions

The orientation of the course will depend on the type of students. Students heading

for research will require the emphasis in the book. Those in engineering and perhaps

economics and finance, will require primarily hypothesis testing. Students in medicine

should be familiar both with model selection based on the likelihood and with testing.

47
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3.1.2 Types of model selection

The basic point to transmit is that, in scientific research, all of these model selection

problems are closely related aspects of the same problem. This is completely hidden in

classical statistics.

3.2 Likelihood

3.2.1 Likelihood function

The necessity for inference procedures must proceed from the demonstration that prob-

abilities calculated from a sample will not necessarily be identical to those in the global

population. Simple examples of questionnaires, with binary response to a question,

usually suffice. Thus, draw a random sample of ten students from the class and ask

again the question from the survey of Chapter ??. (I already suggested this for Section

??, but it will not hurt to do it again.) Discuss the chances of getting the same result

as in the original survey. Then, make the exact probability calculations (results are in

Table 3.1!

Then, the question arises as to what we can do with the fixed information in the

sample that we have obtained. The contrast must be made between a clearly speci-

fied model, before data collection, that allows us to predict what might happen, and

fixed observations after, that allow us to infer what model might have produced them.

Reading Table 3.1 in the two directions should get this across. In this binomial case,

contrast the difference between the small number of different possible observations

with the infinite number of different models.

The definition of likelihood follows intuitively. It should be repeated slowly several

times so that the students can think about it. Stress that this is a fundamental key to

the basic philosophical question of trying to draw general conclusions from specific

observations.

3.2.2 Maximum likelihood estimate

The idea that the likelihood function has a maximum will generally be presented em-

pirically, from Table 3.1, or other examples. Few non-mathematics students can be

expected to understand derivatives, so that this should be omitted.

3.2.3 Normed likelihood and deviance

Several important points need to be emphasised. Likelihood only allows a relative

comparison of models, hence the use of norming. Once again, logarithms can simplify

life by making things additive, yielding the deviance. The likelihood function can be

plotted, but often summaries, such as some sort of likelihood interval, are sufficient. As

the sample size increases, we would expect to have more information available, i.e. the

parameters of interest will be known more precisely, and indeed the likelihood function

does become narrower.
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Students must clearly understand that deviance provides a metric for measuring the

distance between models. They must see that they have to know what two models are

being compared in any given instance. Then the larger is the deviance, the further apart

are the two models. Because the more complex model will be closer to the data, a large

deviance will be an indication that the simpler model is unacceptable—it makes the

data too much less probable than the more complex model.

We can now refer back to one of our problems of the previous chapter. When

can a parameter, such as an interaction, reasonably be set to zero? Here, it must be

demonstrated that this does not really depend on how small the parameter is, but rather

on the width of the likelihood function, i.e. on how uncertain, from the data, we are

about its value, how much information we have about it (Figure 3.2 in the text).

3.2.4 Standard errors

Approximations have been important in statistics, although their role is finally decreas-

ing with the growing power of computers. However, the standard error really cannot

be skipped. Such a difficult concept to explain! It really must be taken on faith that the

normal approximation in the middle of p. 123 will approximate a likelihood function.

The dangers of this approximation, especially with small samples, should be stressed.

Intervals obtained from the normal approximation to the likelihood, based on standard

errors, can contain impossible values, such as probabilities that are negative or greater

than one!

3.3 Two special models

3.3.1 Saturated models

Although a saturated model of some sort will always exist, their primary use is for

logistic and log linear models with contingency tables. There, a unique saturated model

exists, with deviance 0.

3.3.2 Null models

We can now finally address a more realistic question of model simplification: can

certain parameters in a logistic or log linear model reasonably be set to zero? Because

the problem is multidimensional, the explanation is really only feasible in terms of the

underlying probabilities and the question of independence. Students should be walked

through the calculations involved in the fundamental formula of Equation (3.6).

Note that it does not make sense to set just any parameter to zero. We have already

seen, in the example with classical music in Chapter ??, that a main effect, such as

age, would not be set to zero if an interaction of age with another explanatory variable,

there education, is required in the model. This is the idea of hierarchical models.

A more difficult idea is that the parameters for margins corresponding to explana-

tory variables in logistic and log linear models must not be set to zero. For example,

for log linear models, the minimal model is Equation (2.16) if all three variables are
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responses or only one is explanatory, whereas it is Equation (2.15) if those indexed by i

and j are explanatory and that by k the response. None of the parameters in the appro-

priate one of these equations can be set to zero. For a logistic model, such as Equation

(2.6), only µ could generally not be set to zero.

3.4 Calibrating the likelihood

Ways of calibrating the likelihood function are one of the hottest areas of debate in

modern statistics. Students should probably be told up front that different statisticians

they meet may give them conflicting advice on this subject.

3.4.1 Degrees of freedom

Here, we come back to the idea of degrees of freedom, the students discovering that

the number of parameters in a model for dependence in a two-way table corresponds

to the number of arbitrary entries when the margins are fixed.

Goodness of fit is a difficult concept that should be clearly shown to involve two

conflicting criteria. A model should be close to the observed data. But, at the same

time, it should not be too complicated. The incommensurability of complexity and

measures of closeness to the data should be emphasised, leading into the problem of

calibrating the likelihood function.

3.4.2 Model selection criteria

In contrast to significance tests, to be presented next, students rightly love the AIC.

This simple weighting of closeness to the data, the deviance, with complexity of the

model, the degrees of freedom, is intuitively appealing and easily applicable. However,

it is probably a good idea to mention that the weighting of two times the number of pa-

rameters is arbitrary, although standard. To obtain simpler models, the penalty should

be increased; this must be decided before starting to analyse the data.

Thus, in my experience, once students have seen the simplicity of the AIC, they

prefer it to any other method, no matter how hard I try to push the other approaches.

No tables required!

3.4.3 Significance tests

Trying to explain the rationale of significance tests is probably the most difficult task of

the course. The students already know that a large deviance indicates that the simpler

model is considerably less acceptable in the light of the data, strictly in terms of how

close it is to those data. Now, they learn that large deviances will be rare if the simpler

model is ‘correct’. (Correct is in quotes because this is a fiction; no model is ever

correct, but only a rough simplification of reality.) Because the probability of large

deviances is usually difficult to calculate, an approximation is called for: the Chi-

squared distribution. (It was a sociology student who asked me why, if the preceding

argument was correct, small deviances are rare.)
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3.4.4 Prior probability

The idea of prior probabilities is also easy to get across. However, in realistic prob-

lems, it is much more difficult to implement. How can prior probabilities for all of the

parameters of even a simple logistic model be derived, especially to be coherent under

different constraints?

3.5 Goodness of fit

3.5.1 Global fit

Up until now, goodness of fit has been a very relative characteristic of a model, only

being in comparison to another model. The existence of a saturated model yields a

more absolute criterion because it fits the data exactly. Slipping in the comparison of

the smooth density function to an empirical histogram is an important lead up to the

next chapter. Here, the relationship between model smoothing and simplification can

be clearly brought out. The conclusions for the logistic model fitted to the malformed

children data confirm that the smoothing of these data is useful: there is little or no

evidence in these data of a beneficial affect of a little alcohol!

3.5.2 Residuals and diagnostics

For the decomposition of goodness of fit, the well-known Pearson residuals were cho-

sen, instead of the more logical deviance residuals. The former allow the Pearson

goodness of fit statistic to be introduced. The latter can also be presented to more

sophisticated classes.

3.6 Sample size calculations

Sample size calculations should be an essential part of the planning of any study. Power

calculations are far too complex for this level of course, and impossible to justify. In

addition, they are only approximate for categorical data models whereas the approach

used here is exact (although the formula given involves a slight approximation). For

most classes, it may be sufficient to present the reasoning based on Figure 3.5 .

3.7 Solutions to the exercises

Question (1)

The Poisson distribution (Section 4.2.3) is given by

Pr(yi) =
e−µµyi

yi!
yi = 0,1,2, . . .

The maximum likelihood estimate of the mean is µ̂ = 1
N ∑yi. Suppose that this is

calculated to be µ̂ = 10 with N = 20 observations.
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Figure 3.1: Normed likelihood functions for the mean of a Poisson distribution with

µ̂ = 10 and N = 20 (solid), 50 (dashed), and 100 (dotted).

(a) Plot the normed likelihood function.

(b) Repeat for the same estimate but N = 50 and N = 100.

Answer

(a) and (b) The normed likelihood functions are plotted in Figure ??. We see how the

graph becomes narrower as the sample size increases and we obtain more information.

For example, the 10% likelihood intervals for µ are (8.55, 11.6) for N = 20, (9.05, 11.0)

for N = 50, and (9.35, 10.7) for N = 100.

Question (2)

Calculate the AICs under independence for the logistic models which were fitted to the

following data in the Exercises of Chapter ??:

(a) the data on injuries in car accidents and wearing a seat belt of Table ??;

(b) the data on myocardial infarction and contraceptive use of Table ??;

(c) the data on opinions about the death penalty and gun registration of Table ??.

In each case,
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Figure 3.2: Normed likelihood functions for the dependence of a fatal accident on

wearing a seat belt.

(a) plot the normed likelihood function for the dependence parameter and choose an

interval of precision;

(b) discuss the conclusions which can be drawn;

(c) note whether they change anything which you concluded in Chapter ??.

Can we conclude

(a) that making seat belts compulsory will reduce the fatal accident rate?

(b) that using contraceptives is a cause of myocardial infarction?

Answer

(a) For the car accident data, the AIC for independence is 2043.2 as compared to 4.0

for the saturated model. The normed likelihood function is plotted in Figure ??. A 0.2

normed likelihood interval is rather narrow, about (1.00,1.08), with maximum likeli-

hood estimate 1.038.

We can clearly conclude that the probability of a fatal accident is greatly increased

when a seat belt is not worn. However, this does not mean that we can also conclude

from these data that wearing a seat belt protects the person concerned. For example,



54 CHAPTER 3. INFERENCE

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

α1

R
(α

1
)

Figure 3.3: Normed likelihood functions for the dependence of a myocardial infarction

on contraceptive use.

as mentioned in Chapter ??, more careful drivers may wear a seat belt, but have less

serious accidents simply because of their care.

(b) For the myocardial infarction data, the AIC for independence is 9.9 as compared

to 4.0 for the saturated model. The normed likelihood function is plotted in Figure

??. A 0.2 normed likelihood interval is here much wider, about (0.17,0.77), with

maximum likelihood estimate 0.468. However, it does not cover 0.

We can conclude that the higher rate of myocardial infarction when contraceptives

have been taken is unlikely actually to be the same as without them. Again, this does

not mean that we can draw a causal conclusion. The women who decide to take con-

traceptives might have more inherent susceptibility to such attacks.

(c) For the death penalty and gun registration data, the AIC for independence is 7.3

as compared to 4.0 for the saturated model. The normed likelihood function is plotted

in Figure ??. A 0.2 normed likelihood interval is wider still, about (−0.08,−0.01),
with maximum likelihood estimate −0.087. It is close to covering 0.

Again, we reject independence, but somewhat less strongly than before. Appar-

ently, there is a non-zero association between being in favour of the death penalty and

against gun registration.

Notice that the AIC for the saturated logistic model, allowing for dependence, is 4

in all cases. For saturated models, the deviance is 0.
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Figure 3.4: Normed likelihood functions for the association between the death penalty

and gun registration.
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Question (3)

Calculate the AICs under independence for the logistic models which were fitted to the

following data in the Exercises of Chapter ??:

(a) the data on soloists’ choice of piano in Exercise (??.??);

(b) the British migration data of Table ??.

In each case,

(a) discuss the conclusions that can be drawn;

(b) note whether they change anything which you concluded in Chapter ??.

Answer

(a) For the soloists’ choice of piano, the AIC is 8.7 as compared to 12.0 for the satu-

rated model. Although the probabilities of using a Steinway in the various orchestras

appeared to be different in Exercise (??.??), this indicates that there is no evidence of

them actually being different

(b) For the migration data, the AIC is 19888.1 as compared to 32.0 for the saturated

model. Here, with this extremely large value, there is clear evidence that the place of

residence in 1971 is not independent of that in 1966. As we saw in the previous chapter,

almost all of this dependence is due to the people who are in the same place at the two

dates. Another way to tackle this data set would be to study the relationship between

the origin and the destination only of the observed movers, ignoring the diagonal.

Question (4)

Calculate the AICs for independence of the response from the explanatory variables

for the logistic or log linear models which were fitted to the following data in Chapter

??:

(a) the tables of Exercise (??.??) concerning listening to the radio;

(b) the delinquency data of Exercise (??.??);

(c) the data on factors influencing knowledge of cancer in Table ?? and Exercise

(??.??);

(d) the shopping data of Exercise (??.??).

In each case,

(a) select one or more parameters in which you are especially interested, plot their

normed profile likelihood function(s), and choose appropriate intervals of preci-

sion;

(b) discuss the conclusions which can be drawn;

(c) note whether they change anything which you concluded in Chapter ??.
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Answer

(a) The AIC for independence of listening to religious programmes from age and ed-

ucation is 157.8 whereas that for discussion programmes is 72.2, as compared to 8.0

for both saturated models. In both cases, there is strong evidence that listening to these

programmes depends on age and/or education. The AICs when listening depends only

on age are respectively 136.0 and 76.3, whereas those with only education are 6.3 and

50.5. Thus, listening to religious programmes appears to depend only on education

whereas listening to discussion programmes depends on both. In the latter case, the

interaction is not necessary.

Lower educated people listen more to religious programmes (α̂2 = 0.693). Higher

educated and older people listen to discussion programmes (α̂1 = 0.313 and β̂1 =
0.308). The normed likelihood functions are plotted in Figure ??. For religious pro-

grammes, a 0.2 normed likelihood interval for the education parameter is about (0.59,0.81)
and for age (−0.02,0.18). The latter contains 0. For discussion programmes, they are

respectively (0.23,0.39) and (0.23,0.40).
(b) For the delinquency data, the AIC for independence from SES and being a boy

scout is 34.8 as compared to 12.0 for the saturated model. However, we can also fit

for the marginal table with only SES, where we find the same deviance as the saturated

model, but an AIC of 6.0. The normed likelihood function for the boy scout parameter

is plotted in Figure ??. A 0.2 normed likelihood interval is about (−0.22,0.22) clearly

covering 0. This indicates that there is no evidence that delinquency depends on being

a boy scout, but only on SES.

(c) The AIC for independence of knowledge of cancer from the three sources in Ta-

ble ?? is 127.8, whereas, when lectures are replaced by reading, as in Exercise (??.??),

it is 203.0, both as compared to 16.0 for the saturated models. This reflects the fact

that reading is much more strongly related to such knowledge than are lectures. In this

case, the problem illustrated by Figure 3.2 of the text does not occur. The estimate for

the effect of reading is further from zero than that for lectures, but the likelihood curve

must not be much wider (if at all).

For the complete table with all four explanatory variables, the AIC for indepen-

dence is 218.3 as compared to 32.0 for the saturated model. After simplification, with

three interactions left, the AIC is 20.3. Because of the interactions, there is no particu-

lar parameter of special interest for which a likelihood function might be plotted.

(d) For the shopping data, the AIC for independence is 16.1 as compared to 16.0

for the saturated model. Not much to choose between! Likelihood functions might be

plotted for any of the dependence parameters. All will easily include 0.

Question (5)

As in the previous question, calculate the AICs for independence of the response from

the explanatory variables for the polytomous logistic model for the following data from

Chapter ??:

(a) the political ideology data of Exercise (??.??);

(b) the media rating data of Exercise (??.??).
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Figure 3.5: Normed likelihood functions for the dependence of listening to religious

(top) and discussion (bottom) programmes on education (α1) and age (β1).
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Figure 3.6: Normed likelihood functions for the dependence of a delinquency on being

a boy scout.
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In each case,

(a) redo the AIC calculations for the reconstructed table for the two ordinal variable

models;

(b) compare the results and discuss the meaning of any differences.

Answer

(a) For the political ideology data, the AIC for independence of party from ideology in

the original table, not allowing for an ordinal response variable, is 115.7 as compared to

18.0 for the saturated model. With the table for the continuation ratio model, the AIC is

238.1, whereas with that for the proportional odds model, it is 515.5, both as compared

to 12.0 for the saturated models. The models without interaction have respectively

AICs of 9.2 and 11.0. Note that only AICs for the same table are comparable!

The conclusion is clear: the model with independence between ideology and party

is not supported.

(b) For the media rating data, the AIC for independence of the rating from both

colour and year in the original table is 77.7 as compared to 24.0 for the saturated

model. The deviances for the two reconstructed tables are 475.9 and 1201.3, both as

compared to 16.0 for the saturated models. The models without interaction between the

subtables and the other two variables have respectively AICs of 13.3 and 10.3. When

the interaction between colour and year is removed, the AIC increases in both cases.

We have evidence that rating depends both on colour and on year.

Question (6)

Suppose that the shopping data of Exercise (??.??) were collected by a firm considering

the construction of a new shopping centre in the same region.

(a) Specify an appropriate null hypothesis for making such a decision. (Try to do

this without using what you already know about these data!)

(b) Calculate the corresponding test of significance.

(c) Describe what subsequent action you would advise should be taken.

Answer

(a) Three possibilities are that choice of shopping centre does not depend on availability

of a car, that it does not depend on age, and that it does not depend on income. In the

first case, if people with a car come more often, a large parking lot should be planned.

In the second case, if say young people are to be attracted, suitable shops should be

made available. In the third, if high income people are more frequent, high class shops

should be located in the centre.

(b) The corresponding deviances are respectively 8.34, 3.99, and 3.91, all with 4

degrees of freedom. The respective P-values are 0.08, 0.41, and 0.42 from a Chi-

squared test. Hence, none of the null hypotheses are rejected at the 5% level.
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(c) People in the area do not seem to have specific habits as to shopping so that a

generalised shopping centre might be more suitable than a specialised one.

Question (7)

Suppose that the study on myocardial infarction and contraceptive use reported Table

?? was conducted to decide whether or not to withdraw contraceptives from the market.

(a) Based on the normed likelihood function that you plotted in Exercise (??.??)

above, calculate an appropriate confidence interval for the dependence of my-

ocardial infarction on contraceptive use.

(b) What recommendations would you make to the policy deciders?

(c) Suppose now that you believe that only two values of the dependence parameter

could reasonably be true, one of them being that for independence and the other

being a log odds ratio of one.

i Assign your prior probabilities to these two possibilities. (Try to do this

without using what you already know about these data!)

ii Obtain the updated posterior probabilities.

iii Has your opinion on the subject now changed and, if so, in what way?

Answer

(a) A 95% interval will have a deviance of 3.84 or a normed likelihood of exp(−3.84/2)=
0.14. From the graph, this interval is about (0.96,1.09) with maximum likelihood es-

timate 1.038.

(b) The model without dependence is clearly rejected. The dependence of myocar-

dial infarction on contraceptive use should clearly be investigated further.

(c) If I believe that either is equally possible, my prior probabilities are both 0.5.

The probabilities of the observed data under the two hypotheses are 0.000492 under

independence and 0.002218 with log odds ratio of unity. The posterior probabilities

are then 0.18 for independence and 0.82 for the unit log odds ratio.

(d) Thus, my indifference changes to a marked preference for the latter.

Question (8)

(a) What size of sample would be required to detect that a log odds ratio was 1.0

as opposed to zero, with a deviance of at least 5? Assume, as in the example

above, that you can choose a sample with equal numbers in each category of the

explanatory variable.

(b) Plot the required sample size for several values of the mean probability of re-

sponse.
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Figure 3.7: Sample size calculations to detect a log odds ratio of one as opposed to

zero, for different values of the mean parameter.

Answer

(a) The value of α1 for a log odds ratio of 1.0 is 0.25. If the mean parameter, µ is

assumed to be zero, the required sample size is N = 129. We require a larger sample

than for the example in the text because the difference in log odds ratio is smaller.

(b) For various other values of the mean parameter, the required sample size is

plotted in Figure ??. We see how the required sample grows as the mean moves away

from zero.



Chapter 4

Probability distributions

Here we come to the second chapter (after Chapter ??) that is meant to convince stu-

dents that statistics can really have some practical use. When the course is finished,

mine generally judge this to be the most interesting chapter. The basic idea is simple

and can become repetitive: choose some distribution that might appropriately describe

the data generating mechanism, calculate the estimated probabilities from its function,

compare them to the relative frequencies, and draw the relevant conclusions.

4.1 Constructing probability distributions

4.1.1 Multinomial distribution

This is just a review of material from Chapter ??.

4.1.2 Density functions

Density functions were briefly discussed at previous points in the course. Here, we

really get down to business. One of the main jobs of statistics is smoothing random

variation to find interesting patterns in it. This is what density functions do for response

variables.

The basic idea in constructing discrete probability functions is simple: normalise

any set of positive values by dividing by their sum so that the members of the series

fulfil the two criteria of a probability. Most classes will have to accept on faith that

infinite series can be summed.

Here, the width of histogram bars in Chapter ??, ∆i, becomes the unit of mea-

surement. This can be confusing because it is not necessarily the units in which the

measurements are expressed, but their precision. Thus, a measurement may be in me-

tres, but given to the nearest five metres or to one tenth of a metre. In the first case,

∆i = 5 and, in the second, ∆i = 0.1.

For the calculation of parameter estimates, generally the centres of intervals can

be used. Problems can occur with open intervals for the extreme values of a variable.

63
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No simple solution is possible at this level (i.e. without using censoring), so that some

reasonable value must be chosen.

Students easily acquire the idea that there is a correct distribution for every data set

and that their job is to find it. This illusion should be dispelled as quickly as possible.

Distributions, and all models, are simplified scientific representations of reality. The

ones chosen for inspection for a given data set will depend on the questions being asked,

and should, ideally, be chosen for theoretical reasons related to the suspected data

generating mechanism, although such theories are not always available. In addition, the

fact that no distribution is found to fit to the data can be very informative: those tried

as reasonable possibilities and rejected indicate that the corresponding mechanisms are

likely not to be working.

I have divided distributions into a few main classes according to their primary do-

mains of application. Students should be shown how this provides a first criterion for

reduction of the number of possible distributions under consideration for modelling a

given data set. Obviously, the classification is not inviolable. Days can be counted,

although they are divisible, so that, in certain contexts, one can reasonably argue that

count distributions can be applied to a response measured in days.

4.2 Distributions for ordinal variables

4.2.1 Uniform distribution

The uniform distribution provides a gentle but useful introduction to the fundamental

ideas of the chapter. The basic assumption, constant probability, is simple. Make sure

that the students understand how to calculate the AIC for the saturated multinomial

model: 2× (I −1). This will provide the basis of comparison throughout the chapter.

4.2.2 Zeta distribution

The zeta distribution is interesting in itself for its applications in linguistics. The exam-

ple is rather artificial, but provides the opportunity to introduce the idea of a truncated

distribution. In this way, the students should understand more clearly how probability

distributions are constructed.

4.3 Distributions for counts

4.3.1 Poisson distribution

The Poisson distribution is traditionally introduced as representing rare events. This is

not very useful for modelling. On the other hand, randomness is an important charac-

teristic beneath all statistics. This distribution allows us to detect it, or, more often, to

conclude that it is not likely present. The underlying concept is the Poisson process

which should be discussed. Counts are generally aggregations of events over time.

How much and what type of information is lost by aggregation?
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The fact that the variability of a distribution can change with the mean is an im-

portant relationship. Unfortunately, it is often ignored in classical statistics because the

normal distribution does not have this relationship. The Poisson distribution provides a

good opportunity to emphasise its importance. A graph of several Poisson distributions

with different means readily shows that those with means closer to zero must pile up,

because of the restriction that values cannot be negative, hence have less variability.

The coefficient of dispersion provides a simple indicator of lack of randomness.

However, its limitations, especially when close to one, should be presented. The fact

that the variance is similar in size to the mean does not imply a Poisson distribution.

Other distributions might have this characteristic (e.g. normal). One really must look

at the whole shape of the distribution in order to learn the most about the phenomenon

under study.

The example of ages of children in Bombay is meant to provide a realistic (and

true) case of model building, starting from the first lesson of the course: construction

of an appropriate variable. The result is a rather complex model, although the math-

ematics are minimal. The shape of the distribution and the mean parameter, as each

varies among the classes, provide different aspects of a possible answer to what is going

on. The need for data on the individual trajectories of children (a point process, possi-

bly Poisson) in order to check such hypotheses should be discussed in detail with the

students. Why is such information necessary to verify what we expect is happening?

The relationship between the Poisson and multinomial distributions is only really

useful if the students will be continuing on to a more advanced categorical data course

where it will be used. Otherwise, it can be skipped.

4.3.2 Geometric distribution

The geometric distribution provides the first opportunity to introduce the Markov prop-

erty. Like the randomness of the Poisson distribution, this ‘lack of memory’ model

provides a valuable ‘null’ model that will most often be rejected.

The first example introduces a first approach to duration data.

The second example for this distribution provides a new occasion to show that the

obvious variables are not necessarily the best. If the students have not read ahead,

they should be asked to try to figure out how the variable recording the number of

occupants of vehicles could be adapted to make a variable appropriate for the geometric

distribution.

4.3.3 Binomial distribution

The binomial distribution presents a good occasion to examine what modelling as-

sumptions can really imply. Is the probability of a boy the same in all families? Does

it remain the same in successive births in the same family? This may be usefully com-

pared to applying the same model to students correctly answering successive questions

on a test: questions are more variable (in difficulty) than children, at least as far as the

probabilities involved are concerned.

Before introducing the formula for the maximum likelihood estimate of ν1, get the

students to figure out intuitively what the estimate of the probability of a boy should be
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for Table 4.8. They almost certainly will come up with the correct formula, although

not necessarily in mathematical terms.

This example provides an extremely clear case for the usefulness of residuals. This

first introduction of overdispersion is meant to lead to the search for reasons for its

presence. Thus, possible explanations for the excess of families with the majority of

children of one sex should be discussed with the students. Point out that this cannot

even be detected without the underlying assumptions of the binomial model. Simple

models can provide useful results, even when they are wrong.

4.3.4 Negative binomial distribution

This common distribution for overdispersion with the Poisson distribution, the negative

binomial, is also useful in its own right. It is another distribution for which maximum

likelihood estimates cannot easily be obtained so that an approximation is used if the

course is not based on computers. Note that the ratio of gamma functions can be

simplified by calculation so that a table of values is not necessary.

Although there is an extreme number of people not buying any items in the exam-

ple, the negative binomial distribution manages to fit rather well.

4.3.5 Beta-binomial distribution

For the example with the binomial distribution, we discovered overdispersion. Unfortu-

nately, the common distribution to handle this, the beta-binomial, is relatively complex

and the lecturer may want to skip it.

4.4 Distributions for measurement errors

4.4.1 Normal distribution

The normal distribution is useful for having the students practise calculating probabili-

ties as the area under the density curve. Through the use of tables, they can see that this

is possible even if the distribution is not based on a variable with discrete categories.

Perhaps you will have more luck than I have in finding a realistic application of the

normal distribution.

4.4.2 Logistic distribution

The logistic distribution is introduced for two reasons. It provides a first model with

thicker tails than the normal and it provides one underlying justification for the logis-

tic models of Chapter ??. However, it, and the following three distributions, are not

fundamental, and can be omitted except in fairly advanced classes.

4.4.3 Laplace distribution

Although historically important, this distribution is remarkably underused. It has a

simple form, easily obtained estimates, and very often provides a better fit to data than
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the normal distribution.

4.4.4 Cauchy distribution

I included the Cauchy distribution in the 1970s version of this course, but omitted it

from the first edition of this book. However, it is worth presenting to students, among

other reasons, because it has no mean or variance!

4.4.5 Student t distribution

Because it has three parameters, this is one of the most complex distributions of the

chapter. But this also means that it is a flexible distribution for difficult data sets. For

those emphasising testing, it will useful be in Chapter ??.

4.5 Distributions for durations

I have called this group duration distributions because of their most important applica-

tion. However, it should be made clear to students that this does not mean that they can

only be applied to durations. They will be of interest for any response that can only

take positive values, especially so if many of the observed values are close to zero.

Duration distributions are one of the areas where the greatest advances have been

made in modern statistics. However, they have much wider application; in most cases

when continuous responses are recorded, one of these asymmetric distributions will be

more appropriate than the normal distribution traditionally used.

4.5.1 Intensity and survivor functions

The basic tools of survival analysis are too important not to be presented in an intro-

ductory statistics course.

The idea of the rate or intensity of events is essential to get across. If the intensity,

i.e. the mean number per unit time, is greater, then the average time between events

will be shorter. Thus, the two are reciprocally related.

4.5.2 Exponential distribution

Randomness of events is connected to the memorylessness Markov property as to when

the next will occur. I give the example of waiting for the bus to go to class on a cold

snowy day: no matter how long you wait, the probability of a bus arriving does not

increase!

4.5.3 Weibull distribution

The Weibull distribution is a flexible and widely used model with nice properties (the

cumulative distribution and intensity functions can be written down in closed form).

Thus, it is important for analysing censored survival data, being one of the proportional

hazards models.
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4.5.4 Gamma distribution

The gamma distribution is one of the most important duration distributions (with the

exponential, Weibull, log normal, and inverse Gauss). It is especially interesting when

α is close to being an integer so that it can be interpreted in terms of the sum of several

periods. Note that here, in contrast to the negative binomial distribution, if a computer

is not used, a table is necessary to obtain the value of the gamma function.

4.5.5 Inverse Gauss distribution

The inverse Gauss distribution is one of the most under-used in statistics. Its devel-

opment, as based on Brownian motion, can have many applications, limited only by

one’s imagination. This provides a further occasion to emphasise how most responses

evolve over time. Here, the whole theoretical system, as depicted in Figure 4.31, is

strictly theoretical, with only the final event, the border crossing being observed. Stu-

dents generally find this a realistic and interesting model and are ready to look for

applications.

4.6 Transforming the response

Transformations of variables had an important role before computer technology al-

lowed a wide choice of distributions. They played a number of roles, but the essential

one in realistic modelling is to change the shape of the response distribution, creating

a new distribution.

4.6.1 Log transformation

The log normal distribution may be the most widely used model for continuous positive

data. Most of the applications of the normal distribution, such as in economics, are in

fact log normal because a log transformation has been applied to the response variable.

The students may be induced to discuss when a large number of factors might multiply

or add together to give a response.

The Pareto distribution has historical interest in economics and sociology, but does

not have too many practical applications.

4.6.2 Exponential transformation

As its name indicates, the extreme value distribution is central to the study of extremes.

This should be developed further than in the text if your students will have such appli-

cations.

4.6.3 Power transformations

The Box–Cox model is only mentioned in passing for completeness. Generally, it will

only be discussed in fields such as economics where it is still used. In fact, it is not even

a real probability model because the function produced does not integrate to unity!



4.8. 4.7. SPECIAL FAMILIES 69

Table 4.1: Numbers of infants born with an illness each month of a year.

Month Number

January 8

February 19

March 11

April 12

May 16

June 8

July 7

August 5

September 8

October 3

November 8

December 8

Total 113

4.7 Special families

4.7.1 Location-scale family

This family shows the unity of the distributions presented in Section ?? on measure-

ment error.

4.7.2 Exponential family

The theory of the exponential family was one of the bases of modern parametric statis-

tics because of its role in inference. However, this section will be too advanced for

most students who do not have a fair bit of mathematics behind them. It is not essential

to modern statistical modelling.

4.8 Solutions to the exercises

Question (1)

In the text, I fitted a uniform distribution to the numbers of ill children born each

month, given in Table ??. My model did not take into account the fact that months

have different numbers of days.

(a) Construct a new model, based on the uniform distribution, using this information.

(b) Does it fit better than the previous model?

Answer

(a) The new model will have theoretical probabilities, not of 1/12 for each month, but

of the number of days in each month divided by 365: (31, 28, 31, 30, 31, 30, 31, 31,
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30, 31, 30, 31)/365. (We do not know what year it was so assume that it was not a leap

year.) We found a deviance of 22.47 for the first model. The second one has 24.42.

The AIC is the same as this because again there are no estimated parameters.

(b) Thus, this more accurate model fits more poorly. However, we must prefer it to

that using 1/12. If we look at the data, we see that the reason it fits more poorly arises

primarily from February, the shortest month which has the most ill children. Thus, this

better model provides more evidence that the probability of ill children is not constant

over the year.

Question (2)

The following table gives the frequency of occurrence of surnames from a study area of

Reading, Workingham, and Henley-on-Thames, England (Fox and Lasker, 1983). The

names for the complete study were those of all 2397 couples whose marriages were

registered in the study area during a twelve month period in 1972–1973. Those given

in the table are for one of eight districts of that area. Although the sample may have

been reasonably representative of surnames in that geographical area, it is clearly not

random with respect to age or other characteristics. As well, some of the people may

only have been in the area for the purpose of registering their marriage.

Number of Number of

occurrences surnames

1 329

2 43

3 11

4 1

5 0

6 1

7 0

8 0

9 1

(a) Choose an appropriate probability distribution and fit it.

(b) Calculate the AIC and check the residuals.

(c) Discuss how well the model fits.

(d) What general conclusions could be drawn, given the way in which the sample

was selected?

Answer

(a) An appropriate distribution might be the zeta. However, when we fit it as in the ex-

ample in the text, with ρ = 1, the most common name is extremely underestimated.

This indicates that we require a larger value of ρ. Without having an appropriate
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Table 4.2: Frequency of surnames, with fitted zeta distribution and standardised resid-

uals. (Fox and Lasker, 1983)
Occurrences Names Multinomial Zeta Residual

1 329 0.852 0.836 0.356

2 43 0.111 0.104 0.421

3 11 0.028 0.031 −0.274

4 1 0.003 0.013 −1.800

5 0 0.000 0.007 −1.606

6 1 0.003 0.004 −0.404

7 0 0.000 0.002 −0.970

8 0 0.000 0.002 −0.794

9 1 0.003 0.001 0.838

method to estimate it, we can try successive integers. We soon find that ρ = 3 pro-

vides a good fit. (The maximum likelihood estimate must be close to this value; in fact,

it is 3.29.) The results are shown in Table ??.

(b) The deviance is 14.23 and the AIC 16.23, as compared to 16 for the multino-

mial. The residuals show a systematic pattern, with underestimation of the first two

categories. This could be improved by taking a slightly larger value of ρ (i.e. the max-

imum likelihood estimate, which will have a smaller AIC).

(c) The zeta model is plotted in Figure ??. It can be seen to fit well, as indicated

by the AIC and residuals. The relatively larger value of ρ required indicates that the

distribution of surnames drops very quickly, i.e. that there is an extreme number of

surnames with one couple and few with more.

(d) The people in this sample will be primarily in the age group twenty to thirty-five

and the model may be useful to represent their distribution of surnames. However, fac-

tors such as differential birth rates over time, migration, and so on could greatly modify

the distribution in other age groups and even in this one. For example, if the region has

a number of single men who are migrant workers these will not be represented at all.

Question (3)

The table in Exercise (??) gave the frequency of burglaries in Detroit.

(a) Choose an appropriate probability distribution and explain your choice.

(b) Fit the distribution.

(c) Calculate the AIC and check the residuals.

(d) Discuss how well the model fits.

Answer

(a) We are interested to see if burglars strike randomly so we choose the Poisson dis-

tribution. The maximum likelihood estimate of the mean number of burglaries per
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Figure 4.1: Histogram for surnames, with fitted zeta distribution. (Fox and Lasker,

1983)
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Table 4.3: Frequency of burglaries in Detroit, with fitted Poisson and negative binomial

distributions and standardised residuals. (Nelson, 1980)
Multinomial Poisson Negative binomial

Burglaries Houses Fitted Residual Fitted Residual

0 8385 0.8747 0.8572 1.852 0.8741 0.064

1 976 0.1018 0.1321 −8.153 0.1033 −0.457

2 183 0.0191 0.0102 8.653 0.0181 0.694

3 35 0.0037 0.0005 13.399 0.0035 0.199

4 5 0.0005 0.0000 10.943 0.0007 −0.727

5 2 0.0002 0.0000 25.859 0.0002 0.456

household is µ̂ = 0.154. The results for the fit of this distribution are given in Table ??

and plotted in Figure ??.

(b) The deviance is 253.32 and the AIC 255.32, as compared to 10 for the multino-

mial distribution. The residuals were given in Table ??.

(c) The Poisson distribution fits very badly. The estimated variance is s2 = 0.20,

considerably larger than the mean (coefficient of dispersion, 1.3), indicating some

overdispersion. When we inspect the residuals, we see that households with one bur-

glary are under-represented. This explains the overdispersion. Thus, there appear to be

two groups of houses, those without burglaries, and those with multiple entries. If we

fit the negative binomial distribution, we obtain a major improvement, with an AIC of

6.29. The parameter estimates are ν̂1
.
= 0.77 and γ̂

.
= 0.51. The results are shown in

Table ??. There is now only a slight indication of too few observed one-time burglaries.

The negative binomial distribution can be derived from a Poisson distribution where

the mean varies in the population, following a gamma distribution. (There are many

other ways to describe overdispersed counts.) By allowing for the variability in the

mean, this model can account for the two main groups, no burglaries and multiple

burglaries (which have small and large means). Thus, much of the heterogeneity in the

population with respect to burglary can be so described.

Question (4)

Let us reconsider the accident data in the two tables of Exercise (??.??)

(a) Choose appropriate probability distributions for each, explaining why.

(b) Fit them.

(c) Calculate the AICs and check the residuals.

(d) Discuss how well the models fit to each table.

Answer

(a) A simple hypothesis is that accidents happen at random, following a Poisson dis-

tribution. This ignores the variability in a population whereby some people are much
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Figure 4.2: Histogram and fitted Poisson (solid) and negative binomial (dotted) distri-

butions for burglaries in Detroit. (Nelson, 1980)
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Table 4.4: Frequency of accidents, with fitted Poisson and negative binomial distribu-

tions and standardised residuals. (Skellam, 1948)
Multinomial Poisson Negative binomial

Accidents People Fitted Residual Fitted Residual

0 447 0.691 0.6280 2.019 0.684 0.201

1 132 0.204 0.2922 −4.148 0.214 −0.570

2 42 0.065 0.0680 −0.297 0.069 −0.357

3 21 0.032 0.0105 5.431 0.022 1.773

4 3 0.005 0.0012 2.478 0.007 −0.754

5 2 0.003 0.0001 7.091 0.002 0.411

Table 4.5: Frequency of car accidents in Belgium, with fitted Poisson and negative

binomial distributions and standardised residuals. (Gelfand and Dalal, 1990)
Multinomial Poisson Negative binomial

Accidents Cars Fitted Residual Fitted Residual

0 7840 0.8287 0.8071 2.33890 0.8320 −0.353

1 1317 0.1392 0.1730 −7.90290 0.1323 1.841

2 239 0.0253 0.0185 4.80054 0.0276 −1.366

3 42 0.0044 0.0013 8.32299 0.0062 −2.185

4 14 0.0015 0.0000 16.26287 0.0014 0.079

5 4 0.0004 0.0000 23.40256 0.0003 0.407

6 4 0.0004 0.0000 124.68080 0.0001 3.616

7 1 0.0001 0.0000 178.16450 0.0000 1.841

more careful than others. The average number of accidents is estimated to be µ̂ = 0.47

in the first table and µ̂ = 0.21 in the second. The results for the models are displayed

in Tables ?? and ??.

(b) The deviances (AICs) are, respectively, 55.10 (57.10) and 302.48 (304.48). The

latter compare with 10 and 14 for the multinomial AIC, indicating very poor fit. The

residuals are large, with underestimation of small and very large numbers of accidents,

confirming this impression. The estimated variances are slightly larger than the means,

respectively ȳ• = 0.47, s2 = 0.69 and ȳ• = 0.21, s2 = 0.29 (coefficients of dispersion,

1.47 and 1.38), indicating some overdispersion.

(c) The models fit poorly so we try the negative binomial distribution which will al-

low for heterogeneity of accident proneness in the population. The parameter estimates

are, respectively, ν̂1
.
= 0.67, γ̂

.
= 0.96 and ν̂1

.
= 0.74, γ̂

.
= 0.62. The results are shown

in Tables ?? and ??. The deviances and AICs are, respectively, 5.48 (9.48) and 19.22

(23.22) and the residuals are much smaller. The somewhat poorer fit for the second ta-

ble results, at least in part, from the large number of observations which would require

a more complex model to be described in a more adequate manner. The histograms,

with both Poisson and negative binomial models, are plotted in Figures ?? and ??. We

see how the negative binomial distributions fit the data more closely.
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Figure 4.3: Histogram and fitted Poisson (solid) and negative binomial (dotted) distri-

butions for the accident data. (Skellam, 1948)
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Figure 4.4: Histogram and fitted Poisson (solid) and negative binomial (dotted) distri-

butions for the Belgian car accident data. (Gelfand and Dalal, 1990)
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Table 4.6: Counts of accidents to men working in a soap factory over a five month

period. (Irwin, 1975, from Newbold)

Number Number Number Number

of accidents of men of accidents of men

0 239 7 1

1 98 8 0

2 57 9 4

3 33 10 1

4 9 11 0

5 2 12 0

6 2 13 1

Question (5)

Table ?? gave the frequency of accidents to men working in a soap factory over a five

month period.

(a) Choose an appropriate probability distribution, giving your reasons.

(b) Fit the distribution.

(c) Calculate the AIC and check the residuals.

(d) Discuss how well the model fits.

Answer

(a) Again, we wish to check if accidents are happening randomly, so that we use the

Poisson distribution. The estimated mean number of accidents is µ̂ = 0.97. The results

are given in Table ??.

(b) The deviance and AIC are 196.98 and 198.98, as compared to an AIC of 26

for the multinomial model. Some of the residuals are very large. The estimated mean

number of accidents is ȳ• = 0.97 as compared to the estimated variance of s2 = 2.48

(coefficient of dispersion, 2.56), clearly indicating overdispersion.

(c) Because the model fits poorly, we try the negative binomial. The parameter

estimates are ν̂1
.
= 0.39 and γ̂

.
= 0.63 and the results of model fitting are shown in Table

??. The deviance is reduced to 29.00 with an AIC of 33.00, but this is still somewhat

larger than that for the multinomial. The histogram, with both Poisson and negative

binomial models, is plotted in Figure ??. The sample size is not too large so that that is

not the problem. Apparently, heterogeneity of proneness to accidents (at least with this

model for overdispersion) is not sufficient to explain the overdispersion in these data.

This might be due to important missing explanatory variables such as the type of job

each worker is performing. For example, one could easily imagine a classification of

the tasks in the factory as ‘administrative’ or ‘manual’. Different possibilities would

arise then:
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Table 4.7: Frequency of accidents in a soap factory, with fitted Poisson and negative

binomial distributions and standardised residuals. (Irwin, 1975)
Multinomial Poisson Negative binomial

Accidents Workers Fitted Residual Fitted Residual

0 239 0.535 0.3779 5.392 0.5553 −0.586

1 98 0.219 0.3677 −5.178 0.2122 0.322

2 57 0.128 0.1789 −2.570 0.1050 1.469

3 33 0.074 0.0580 1.385 0.0559 1.605

4 9 0.020 0.0141 1.070 0.0308 −1.284

5 2 0.004 0.0027 0.070 0.0173 −2.063

6 2 0.004 0.0004 4.034 0.0099 −1.147

7 1 0.002 0.0001 5.842 0.0057 −0.965

8 0 0.000 0.0000 −0.058 0.0033 −1.212

9 4 0.009 0.0000 209.531 0.0019 3.401

10 1 0.002 0.0000 16.793 0.0011 0.707

11 0 0.000 0.0000 −0.002 0.0007 −0.542

12 0 0.000 0.0000 −0.001 0.0004 −0.416

13 1 0.002 0.0000 724.641 0.0002 2.813
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Figure 4.5: Histogram for the soap factory accident data, with fitted Poisson (solid)

and negative binomial (dotted) distributions. (Irwin, 1975)
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• A Poisson distribution with a different mean in each category gives a satisfactory

fit. We would conclude that accidents happen randomly in each category, though

with a different probability.

• the Poisson hypothesis is rejected in one or both categories, indicating further

heterogeneity in the groups. A possible alternative would be the negative bi-

nomial. But note that we might end up with different distributions in the two

categories, indicating that a different data generating mechanism is operating in

each group.

Some other distribution (than the Poisson and the negative binomial) could also be

used.

Question (6)

The table below gives the numbers of deaths by horse kicks in 10 Prussian army corps

over a 20 year period, that is, for 200 corps–years (Sokal and Rohlf, 1969, p. 94).

Deaths Corps

0 109

1 65

2 22

3 3

4 1

(a) What is a reasonable model to describe the way in which these deaths might have

occurred?

(b) Fit the model and explain your conclusions.

Answer

This is the classical data set for the Poisson distribution!

(a) The assumption is that soldiers are killed at random by such kicks. In fact, there

are ten distinct army corps observed over 20 years. Thus, there may be differences in

risk of such death among the corps and it may be changing over time.

(b) The mean of the Poisson distribution is estimated to be µ̂ = 0.61. The AIC is

2.87 as compared to 10 for the saturated model. It is unlikely that another model would

have an AIC much small than this. The fitted model is displayed in Figure ??, showing

the small residuals. It is also plotted in Figure ??.

Although knowledge of the background makes this conclusion implausible, the

Poisson distribution does fit well, indicating randomness of the deaths.

Question (7)

The table below gives the number of fire losses per year from 1950 to 1973 for the

buildings in a major university (Aiuppa, 1988).
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Table 4.8: Frequency of deaths by horse kicks in the Prussian army with fitted Poisson

distribution and standardised residuals.
Deaths Years Multinomial Poisson Residual

0 109 0.545 0.543 0.032

1 65 0.325 0.331 −0.158

2 22 0.110 0.101 0.396

3 3 0.015 0.021 −0.548

4 1 0.005 0.003 0.471
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Figure 4.6: Histogram for the horse kicks data, with fitted Poisson distribution.
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Table 4.9: Frequency of fire losses in a major university, with fitted Poisson distribution

and standardised residuals. (Aiuppa, 1988)

Losses Years Multinomial Poisson Residual

0 0 0.000 0.031 −0.842

1 3 0.130 0.107 0.338

2 7 0.304 0.187 1.306

3 2 0.087 0.216 −1.335

4 5 0.217 0.188 0.323

5 1 0.043 0.131 −1.159

6 3 0.130 0.076 0.949

7 2 0.087 0.038 1.216

Number Number

of losses of years

0 0

1 3

2 7

3 2

4 5

5 1

6 3

7 2

(a) Choose an appropriate probability distribution and fit it.

(b) Calculate the deviance and check the residuals.

(c) Discuss how well the model fits.

(d) In fact, the number of buildings at the university evolved over the years con-

cerned, from 273 in 1950 to 312 in 1962. If such data were available for each

year, discuss how this could be taken into account.

Answer

(a) We may ask if fires are occurring at random in the university and hence fit a Poisson

distribution. The maximum likelihood estimate of the mean is µ̂= 3.48. The results are

given in Table ??. The model is plotted in Figure ??. We see that the model smooths

the data a great deal.

(b) The deviance is 10.19. The residuals in Table ?? show no particular pattern and

none are very large in spite of the large amount of smoothing.

(c) The AIC is 12.19. This compares with an AIC of 14 for the multinomial model,

indicating that the Poisson model does not fit too badly. Fires might be occurring at

random over the years. However, there are very few observations, so that this good fit

is not very strong evidence. We really require more observations; calculating a sample

size before the study will generally not be of too much use for fires in one university.
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Figure 4.7: Histogram and fitted Poisson distribution for fire losses in a university.

(Aiuppa, 1988)
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Other distributions will probably also fit well, as can be seen by the difference between

the histogram and fitted distribution in Figure ??. The estimated mean and variance are

almost identical: 3.49 and 3.55.

(c) In fact, we should be looking at the ratio of fires to buildings. If we were to

use a log linear regression model in log(µi) for the number of fires each year (say bi),

we could make it depend on the logarithm of the number of buildings, as a constant,

without an unknown regression parameter, β, multiplying it:

log(µi) = β0 + log(bi)

This is known as an offset.

Question (8)

Let us reconsider the consumer purchasing data of Exercise (??.??).

(a) Choose an appropriate probability distribution and fit it.

(b) Calculate the AIC and check the residuals.

(c) Discuss how well the model fits.

Answer

(a) For the purchase of consumer goods, we would suspect that the habits of all people

are not homogeneous so that the Poisson hypothesis of random buying would not be

applicable. The estimated means and variances are, respectively, ȳ• = 0.64, s2 = 4.50

and ȳ• = 0.68, s2 = 6.87 (coefficients of dispersion, 7.0 and 10.1), confirming this

suspicion. Thus, we can try fitting a negative binomial distribution. The results are

given in Table ??, with ν̂1
.
= 0.141 and γ̂

.
= 0.105, and Table ??, with ν̂1

.
= 0.098 and

γ̂
.
= 0.074.

(b) The deviances and AICs are, respectively, 36.25 (40.25) and 23.01 (27.01), as

compared to AICs of 54 and 42 for the multinomial, indicating a reasonable fit. The

residuals show no systematic pattern, although there might be some concern with zero

and small numbers of purchases, the pattern being reversed between the two tables.

(c) The Poisson and negative binomial models are plotted in Figures ?? and ??.

The latter appear to fit well, even surprisingly well, given the large numbers of zero

purchases, although the problems with zero and one purchases are visible.

Question (9)

During a cholera epidemic in India, the number of cases in each house was recorded

(Dahiya and Gross, 1973):

Cases Houses

0 168

1 32

2 16

3 6

4 1
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Table 4.10: Frequency of purchase of the first consumer good, with fitted negative bi-

nomial distribution and standardised residuals. (Chatfield, Ehrenberg, and Goodhardt,

1966)
Units Households Multinomial Negative binomial Residual

0 1612 0.8060 0.8148 −0.438

1 164 0.0820 0.0732 1.454

2 71 0.0355 0.0347 0.187

3 47 0.0235 0.0209 0.799

4 28 0.0140 0.0139 0.022

5 17 0.0085 0.0098 −0.599

6 12 0.0060 0.0072 −0.623

7 12 0.0060 0.0054 0.380

8 5 0.0025 0.0041 −1.118

9 7 0.0035 0.0032 0.261

10 6 0.0030 0.0025 0.467

11 3 0.0015 0.0020 −0.461

12 3 0.0015 0.0016 −0.062

13 5 0.0025 0.0012 1.595

14 0 0.0000 0.0010 −1.414

15 0 0.0000 0.0008 −1.270

16 0 0.0000 0.0007 −1.144

17 2 0.0010 0.0005 0.907

18 0 0.0000 0.0004 −0.932

19 0 0.0000 0.0004 −0.843

20 1 0.0005 0.0003 0.546

21 0 0.0000 0.0002 −0.692

22 2 0.0010 0.0002 2.555

23 0 0.0000 0.0002 −0.571

24 0 0.0000 0.0001 −0.519

25 1 0.0005 0.0001 1.645

26 2 0.0010 0.0001 4.221
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Table 4.11: Frequency of purchase of the second consumer good, with fitted negative

binomial distribution and standardised residuals. (Chatfield, Ehrenberg, and Good-

hardt, 1966)
Units Households Multinomial Negative binomial Residual

0 1498 0.8580 0.8429 0.688

1 81 0.0464 0.0560 −1.700

2 47 0.0269 0.0271 −0.050

3 25 0.0143 0.0169 −0.830

4 16 0.0092 0.0117 −0.983

5 17 0.0097 0.0086 0.511

6 6 0.0034 0.0066 −1.611

7 10 0.0057 0.0051 0.348

8 3 0.0017 0.0041 −1.550

9 3 0.0017 0.0033 −1.156

10 6 0.0034 0.0027 0.586

11 4 0.0023 0.0022 0.049

12 4 0.0023 0.0019 0.418

13 3 0.0017 0.0016 0.170

14 2 0.0011 0.0013 −0.192

15 2 0.0011 0.0011 0.045

16 3 0.0017 0.0009 1.056

17 1 0.0006 0.0008 −0.340

18 0 0.0000 0.0007 −1.095

19 2 0.0011 0.0006 0.957

20 1 0.0006 0.0005 0.122

21 12 0.0069 0.0034 2.492
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Figure 4.8: Histogram for purchases of the first consumer good, with fitted Poisson

(solid) and negative binomial (dotted) distributions. (Chatfield, Ehrenberg, and Good-

hardt, 1966)
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Figure 4.9: Histogram for purchases of the second consumer good, with fitted Pois-

son (solid) and negative binomial (dotted) distributions. (Chatfield, Ehrenberg, and

Goodhardt, 1966)
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Table 4.12: Frequency of cholera cases with fitted Poisson distribution and standardised

residuals.
Multinomial Poisson Negative binomial

Cases Houses Fitted Residual Fitted Residual

0 168 0.753 0.680 1.328 0.749 0.081

1 32 0.143 0.262 −3.463 0.167 −0.852

2 16 0.072 0.051 1.407 0.054 1.156

3 6 0.027 0.007 3.779 0.019 0.838

4 1 0.004 0.001 2.301 0.007 −0.468

(a) Fit an appropriate distribution to these data and draw your conclusions.

(b) Some of the houses which registered no cases were probably already infected.

Fit a model without using this category and use it to predict the number of such

houses among the 168.

Answer

This is data set looks similar to the Prussian horse kicks above. However, the results

are not!

(a) A simple assumption might be that cholera cases were distributed at random in

the population. However, this certainly should not be the case: cholera often results

from polluted water, creating clumping of cases in certain areas.

(b) The mean of the Poisson distribution is estimated to be µ̂ = 0.39. However, the

AIC is 30.0 as compared to 10 for the saturated model. The fitted model is displayed

in Figure ?? and plotted in Figure ??.

The ratio of the variance to the mean is 1.54, perhaps indicating a little overdisper-

sion. This is confirmed by fitting the negative binomial distribution, with an AIC of

8.9, a satisfactory fit. The results for this distribution are also shown in the table and

graph. Apparently, there is clumping of the disease, perhaps among neighbours with

the same water source.

Question (10)

In Table ??, I studied the distribution by sex in families of 12 children in Saxony. The

following table (Fisher, 1958, p. 67) gives the results from the same study for families

of 8 children.
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Figure 4.10: Histogram for the cholera data, with fitted Poisson (solid) and negative

binomial (dashed) distributions.

Table 4.13: Frequency of male children in 6115 families of size 12 in Saxony, with

fitted binomial distribution and standardised residuals. (Sokal and Rohlf, 1969, p. 80)

Males Families Multinomial Binomial Residual

0 3 0.000 0.000 2.140

1 24 0.004 0.002 3.423

2 104 0.017 0.012 3.793

3 286 0.047 0.042 1.708

4 670 0.110 0.103 1.676

5 1033 0.169 0.177 −1.591

6 1343 0.220 0.224 −0.658

7 1112 0.182 0.207 −4.323

8 829 0.136 0.140 −0.864

9 478 0.078 0.067 3.361

10 181 0.030 0.023 4.181

11 45 0.007 0.004 3.706

12 7 0.001 0.000 3.038
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Table 4.14: Frequency of male children in 53 680 families of size eight in Saxony, with

fitted binomial and beta binomial distributions and standardised residuals. (Fisher,

1958, p. 67)

Multinomial Binomial Beta binomial

Males Families Fitted Residual Fitted Residual

0 215 0.004 0.003 3.873 0.004 1.779

1 1485 0.028 0.026 2.225 0.028 −0.586

2 5331 0.099 0.097 1.779 0.099 0.105

3 10649 0.198 0.206 −3.671 0.204 −2.861

4 14959 0.279 0.272 2.740 0.267 5.117

5 11929 0.222 0.231 −4.317 0.228 −3.028

6 6678 0.124 0.123 1.205 0.124 −0.026

7 2092 0.039 0.037 2.200 0.039 −0.599

8 342 0.006 0.005 4.780 0.006 2.428

Males Families

0 215

1 1485

2 5331

3 10649

4 14959

5 11929

6 6678

7 2092

8 342

(a) Is a binomial distribution suitable in this case?

(b) Do the residuals indicate the same sort of departures from this model as for

families of 12 children?

(c) What conclusions can be drawn from the analysis of the two data sets?

Answer

(a) The results for the fit of the binomial distribution are given in Table ?? and plotted

in Figure ??. The probability of a male is estimated to be ν̂1 = 0.515. The deviance

is 88.7 and the AIC 90.7, as compared to 16 for the multinomial distribution. (b) The

mean and variance are estimated as ȳ• = 4.12 and s2 = 2.07, whereas the theoretical

variance is 8ν̂1(1− ν̂1) = 2.00 which is close. Although there are two large negative

residuals near the centre, there is no systematic pattern like that for families of 12

children. Thus, although the deviance is large, there appears to be no evidence here

of overdispersion. Nevertheless, the beta binomial distribution does fit better, with an

AIC of 56.7.

However, there are almost ten times as many families as for the table with 12 chil-

dren. As we have seen from sample size calculations, large samples allow us to detect
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Figure 4.11: Histogram and fitted binomial (solid) and beta binomial (dashed) distri-

butions for the male children in 53 680 families of size eight in Saxony. (Fisher, 1958,

p. 67).
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small departures from a model. That is probably what is happening here. If we had a

sample one tenth this large with the same observed relative frequencies, the deviance

would only be 8.87.

A more reasonable procedure, when the sample size is too large, is to increase

the factor by which the number of parameters is multiplied in the AIC. For example,

if we take ten for each parameter instead of two, the binomial AIC is 98.7 and the

beta binomial 72.7 as compared to 80 for the multinomial distribution, even the former

much closer. This is called the ‘smoothing factor’ because larger values yield a simpler

smoother model. Note that the size of this factor should be decided before obtaining

the data.

We may conclude that these models fits reasonably well, given the very large sam-

ple size.

(c) If families of 12 are overdispersed, but not those of 8, we may conclude that

the former may arise from some special characteristics of those families. One hypoth-

esis might be that parents with a large number of children of one sex continue having

children in the hope of having at least one of the opposite sex. This would explain the

over-representation of families with mostly males or mostly females in the table with

12 children.

Question (11)

The number of children ever born to a sample of mothers over 40 years of age was

collected by the East African Medical Survey in the Kwimba district of Tanganyika

(Brass, 1959):

Children 1 2 3 4 5 6 7 8 9 10 11 12

Mothers 49 56 73 41 43 23 18 18 7 7 3 2

(a) List the ways in which these data are different than those in Table ?? and in

Exercise (??.??)

(b) Try to fit a suitable distribution for these data. (A somewhat similar data set, the

postal survey, was given as an example in Section ??. Recall also the discussion

of truncated distributions in Section ??.)

Answer

(a) The sibship data are a complete census of births in Saxony in the 19th century

whereas this is a sample in Tanganyika in the 20th century. Those tables were each for

one fixed size of family, whereas here all families are included. There, mothers were

of all ages, whereas here they are all over 40 years old.

(b) One approach would be to follow up the hints in the question and try to fit

truncated distributions. However, the sample only contains mothers. Hence, they must

have at least one child. This is somewhat like the car occupant example in Section ??.

We can try using the number of children after the first as the response variable.

There is rather strong evidence for overdispersion: the ratio of variance to mean

is about 2. The results for the Poisson and negative binomial distributions are shown
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Table 4.15: Frequency of children in families in Tanganyika, with fitted Poisson and

negative binomial distributions and standardised residuals

Multinomial Poisson Negative binomial

Children Families Fitted Residual Fitted Residual

1 49 0.144 0.050 7.725 0.129 0.769

2 56 0.165 0.150 0.688 0.188 −0.981

3 73 0.215 0.225 −0.389 0.185 1.271

4 41 0.121 0.224 −4.030 0.153 −1.549

5 43 0.126 0.168 −1.850 0.115 0.605

6 23 0.068 0.100 −1.897 0.081 −0.880

7 18 0.053 0.050 0.245 0.055 −0.138

8 18 0.053 0.021 3.986 0.036 1.694

9 7 0.021 0.008 2.601 0.023 −0.245

10 7 0.021 0.003 6.420 0.014 1.021

11 3 0.009 0.001 5.256 0.009 0.051

12 2 0.006 0.000 7.113 0.005 0.185

in Table ?? and Figure ??. The AICs are 120.3 for the Poisson and 19.4 for the neg-

ative binomial, as compared to 24 for the saturated model. The power parameter of

the negative binomial is γ̂ = 2.81, considerably different than unity for the geometric

distribution.

There are more families with three children than predicted by the negative binomial

distribution and fewer with two and four. It might be interesting to investigate this

further.

Question (12)

For the divorce data of Table ??,

(a) How well does the inverse Gauss distribution fit to these data as compared with

those tried in the text?

(b) What is a possible interpretation of this model in this context?

(c) Does any transformation of the data yield a reasonable model for these data?

Answer

(a) The inverse Gauss distribution fits much more poorly than either the gamma or

Weibull, with an AIC of 157.8, as compared respectively to 51.8 and 86.1. The results

are shown in Table ?? and Figure ??. From the latter, we can see that the distribution

peaks too soon.

(b) One interpretation of marriage might be as a series of changing tensions be-

tween the two spouses that might eventually lead to divorce. These data do not support

the idea of such a theory with the tensions follow a random walk.
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Figure 4.12: Histogram and fitted Poisson (solid) and negative binomial (dashed) dis-

tributions for children (excluding the first) in Tanganyika.
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Table 4.16: Length of marriage (years) before divorce in Liège, 1984, with the fitted

Weibull distribution. (Lindsey, 1992, pp. 14–15)

Years Divorces Mult. Weibull Years Divorces Mult. Weibull

1 3 0.002 0.019 27 14 0.008 0.012

2 18 0.011 0.028 28 17 0.010 0.011

3 59 0.035 0.035 29 12 0.007 0.010

4 87 0.051 0.040 30 17 0.010 0.008

5 82 0.048 0.044 31 10 0.006 0.007

6 90 0.053 0.047 32 11 0.006 0.006

7 91 0.054 0.049 33 13 0.008 0.005

8 109 0.064 0.050 34 7 0.004 0.005

9 94 0.055 0.050 35 9 0.005 0.004

10 83 0.049 0.049 36 9 0.005 0.003

11 101 0.059 0.048 37 9 0.005 0.003

12 91 0.054 0.046 38 10 0.006 0.002

13 94 0.055 0.044 39 5 0.003 0.002

14 63 0.037 0.042 40 3 0.002 0.002

15 68 0.040 0.040 41 3 0.002 0.001

16 56 0.033 0.037 42 4 0.002 0.001

17 62 0.036 0.035 43 6 0.004 0.001

18 40 0.024 0.032 44 0 0.000 0.001

19 43 0.025 0.030 45 0 0.000 0.001

20 41 0.024 0.027 46 1 0.001 0.001

21 28 0.016 0.025 47 0 0.000 0.000

22 24 0.014 0.022 48 2 0.001 0.000

23 39 0.023 0.020 49 0 0.000 0.000

24 34 0.020 0.018 50 0 0.000 0.000

25 14 0.008 0.016 51 0 0.000 0.000

26 22 0.013 0.014 52 1 0.001 0.000
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Table 4.17: Length of marriage (years) before divorce in Liège, 1984, with the fitted

inverse Gauss distribution. (Lindsey, 1992, pp. 14–15)

Years Divorces Mult. Weibull Years Divorces Mult. Weibull

1 3 0.002 0.000 27 14 0.008 0.009

2 18 0.011 0.007 28 17 0.010 0.008

3 59 0.035 0.028 29 12 0.007 0.008

4 87 0.051 0.050 30 17 0.010 0.007

5 82 0.048 0.063 31 10 0.006 0.006

6 90 0.053 0.069 32 11 0.006 0.006

7 91 0.054 0.070 33 13 0.008 0.005

8 109 0.064 0.067 34 7 0.004 0.005

9 94 0.055 0.063 35 9 0.005 0.004

10 83 0.049 0.058 36 9 0.005 0.004

11 101 0.059 0.053 37 9 0.005 0.003

12 91 0.054 0.048 38 10 0.006 0.003

13 94 0.055 0.043 39 5 0.003 0.003

14 63 0.037 0.039 40 3 0.002 0.003

15 68 0.040 0.035 41 3 0.002 0.002

16 56 0.033 0.031 42 4 0.002 0.002

17 62 0.036 0.028 43 6 0.004 0.002

18 40 0.024 0.025 44 0 0.000 0.002

19 43 0.025 0.022 45 0 0.000 0.002

20 41 0.024 0.020 46 1 0.001 0.001

21 28 0.016 0.018 47 0 0.000 0.001

22 24 0.014 0.016 48 2 0.001 0.001

23 39 0.023 0.014 49 0 0.000 0.001

24 34 0.020 0.013 50 0 0.000 0.001

25 14 0.008 0.012 51 0 0.000 0.001

26 22 0.013 0.010 52 1 0.001 0.001
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Figure 4.13: Histogram and fitted inverse Gauss distribution for the divorce data.

(c) The log normal distribution fits almost as badly as the inverse Gauss (AIC

128.2). Other more ad hoc transformations might also be tried.

Question (13)

The table below shows the duration of strikes in the U.K. which began in 1965, as

recorded by the Ministry of Labour (Lancaster, 1972). Those given lasted more than

one day and involved at least 10 people; they are for metal manufacturing and for all

industries except transport and electrical machinery. One day strikes have not been

included because they often are of a different nature, being a token stoppage appearing

as a demonstration or threat. In the period considered, the majority of strikes in the

U.K. were not claims for wage increases, but about questions of discipline, hours of

work, sympathy, union recognition, and so on.
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Number of strikes Number of strikes

Duration Metal All Duration Metal All

2 43 203 10 3 23

3 37 149 11–15 16 61

4 21 100 16–20 4 27

5 19 71 21–25 4 17

6 11 49 26–30 3 16

7 8 33 31–40 3 16

8 8 29 41–50 5 12

9 9 26 > 50 4 8

(a) Choose appropriate probability distributions and fit them to each data set.

(b) Compare the results.

(c) Calculate the deviances and check the residuals.

(d) Discuss how well the models fit to each and what can be learnt about the process

by which a strike comes to a conclusion.

Answer

(a) From the description of the reasons for the strikes, we might think that the inverse

Gauss distribution would be appropriate, as a model for changing satisfaction. How-

ever, from the histograms in Figures ?? and ?? for metal and all industries, respectively,

we might be more inclined to choose the exponential distribution. We shall try both.

One problem with these data is that we do not have information about strikes lasting

only one day. The data are truncated on the left. We shall have to ignore this here

but, depending on whether there were a lot of one day strikes, compared with the other

short durations, this could greatly influence the results.

Note also that we could define the response in another way and study the number

of supplementary days as compared to one day strikes instead of the strike length; this

would eliminate the left truncation problem which, strictly speaking, would require us

to renormalised the probabilities (as the zero frequency corresponding to one day strike

is a structural zero).

(b) (c) The deviances (AIC) are 119.33 (121.33) and 511.49 (513.49) for the ex-

ponential and 43.57 (47.57) and 178.19 (182.19) for the inverse Gauss. The AIC for

the multinomial is 30 so that none fit well, although the inverse Gauss is considerably

better than the exponential. From Figures ?? and ??, we see that the exponential does

not drop fast enough. The Pareto distribution may be an alternative. It has deviances

and AICs of 38.77 (42.77) and 146.49 (150.49). This is somewhat better but does not

have a useful interpretation.

The estimated parameters are µ̂ = 8.71 and 7.84 days, respectively, for the expo-

nential distribution, µ̂ = 8.71 and 7.84, σ̂2 = 0.138 and 0.135 for the inverse Gauss,

and δ̂ = 1.5, α̂ = 0.792 and 0.826 for the Pareto.

The results for this inverse Gauss model are given in Tables ?? and ??. We see that

the model under-predicts the number of short strikes and over-predicts medium ones.

The graphs for all three models are plotted in Figures ?? and ??.
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Figure 4.14: Histogram for the strikes in the metal industries, with fitted exponential

(solid), Pareto (dashed), and inverse Gauss (dotted) distributions. (Lancaster, 1972)

Table 4.18: Frequency of different lengths of strikes in the metal industries, with fitted

inverse Gauss distribution and standardised residuals. (Lancaster, 1972)
Duration Strikes Multinomial Inverse Gauss Residual

2 43 0.217 0.130 3.412

3 37 0.187 0.123 2.563

4 21 0.106 0.103 0.138

5 19 0.096 0.084 0.575

6 11 0.056 0.069 −0.711

7 8 0.040 0.057 −0.965

8 8 0.040 0.047 −0.442

9 9 0.045 0.040 0.407

10 3 0.015 0.034 −1.418

11–15 16 0.081 0.107 −1.123

16–20 4 0.020 0.056 −2.124

21–25 4 0.020 0.032 −0.919

26–30 3 0.015 0.019 −0.414

31–40 3 0.015 0.019 −0.427

41–50 5 0.025 0.008 2.561

> 50 4 0.020 0.072 −2.728
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Figure 4.15: Histogram for the strikes in all industries, with fitted exponential (solid),

Pareto (dashed), and inverse Gauss (dotted) distributions. (Lancaster, 1972)

Table 4.19: Frequency of different lengths of strikes in all industries, with fitted inverse

Gauss distribution and standardised residuals. (Lancaster, 1972)
Duration Strikes Multinomial Inverse Gauss Residual

2 203 0.242 0.137 8.164

3 149 0.177 0.131 3.757

4 100 0.119 0.109 0.907

5 71 0.085 0.088 −0.356

6 49 0.058 0.071 −1.423

7 33 0.039 0.058 −2.283

8 29 0.035 0.048 −1.784

9 26 0.031 0.040 −1.296

10 23 0.027 0.033 −0.955

11–15 61 0.073 0.102 −2.699

16–20 27 0.032 0.050 −2.349

21–25 17 0.020 0.027 −1.184

26–30 16 0.019 0.015 0.886

31–40 16 0.019 0.014 1.239

41–50 12 0.014 0.005 3.508

> 50 8 0.010 0.070 −6.616
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(d) If the inverse Gauss distribution had been satisfactory, we might have thought

that the strikes tended to end either when the to and fro of negotiations resulted in

agreement or when the inconvenience to the strikers rose to a level that brought them

back to work. However, the poor fit seems to exclude such explanations.

On the other hand, different results might be obtained if we could distinguish dif-

ferent types of strikes and study them separately, even separating long and short strikes.

Question (14)

A survey was made of women having a bachelor’s but no higher degree and employed

as mathematicians or statisticians. Monthly salaries (dollars) of these female math-

ematics graduates involved in non-supervisory positions are given below (Zelterman,

1987).

Monthly Monthly Monthly

salary No. salary No. salary No.

1051–1150 1 2151–2250 11 3251–3350 1

1151–1250 1 2251–2350 6 3351–3450 4

1251–1350 6 2351–2450 11 3451–3550 1

1351–1450 3 2451–2550 3 3551–3650 2

1451–1550 4 2551–2650 4 3651–3750 0

1551–1650 3 2651–2750 5 3751–3850 2

1651–1750 9 2751–2850 6 3851–3950 0

1751–1850 6 2851–2950 4 3951–4050 0

1851–1950 5 2951–3050 4 4051–4150 1

1951–2050 16 3051–3150 5

2051–2150 4 3151–3250 1

(a) Choose an appropriate probability distribution and fit it.

(b) Calculate the deviance and check the residuals.

(c) Discuss how well the model fits.

Answer

(a) Often, the normal distribution would automatically be used for such data. We fit it

first and obtain a deviance of 46.65 with AIC 50.65, as compared to 60 for the multi-

nomial. This appears to be a good fit. However, if we look at the plot, in Figure ??,

we may have the impression that this distribution is too wide, especially because of the

large number of women with $2000 per month. Thus, we may want to try the logistic

distribution, which, however, has a deviance of 50.85 and AIC 54.85. As seen in the

plot, this is indeed narrower, but the fit is poorer.

Salaries are often skewed, with only a few high ones. We can check this for these

data by fitting the log normal distribution, with deviance of 39.65 and AIC 43.65. This

is considerably better than the previous models, although this may not be evident from

the plot, also in Figure ??. (The gamma and inverse Gauss distributions, with respective
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Figure 4.16: Histogram for women mathematicians’ salaries, with fitted normal (solid),

logistic (dashed), and log normal (dotted) distributions. (Zelterman, 1987)
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AICs of 43.23 and 43.38, also fit equally as well as the log normal, illustrating that there

may be no best model; this can be a useful exercise to convince students that there is

no correct model.) The parameter estimates are µ̂ = 7.70 and σ̂2 = 0.077. The former

is the mean of the log salaries. From this, the mean salary is estimated to be 2290.54,

from the formula near the bottom of page 117 in the text, which may be compared to

the usual average, ȳ• = 2289.15.

(b) Because of the size of the table, we only provide the fitted values for the log

normal distribution, in Table ??. There appears to be no pattern in the residuals.

(c) We have very few observations here, so that our conclusions above, for example

about skewness, must be provisional. It is interesting to note the high frequencies for

the categories centred on $2000, $2200, and $2400. If this tendency was confirmed in

a larger sample, it would be difficult to find any distribution to fit the data adequately.

As it is, the model smooths the data a great deal.

Question (15)

The following table gives the number of years since their first degree of the same sam-

ple of female mathematics graduates practising mathematics or statistics as described

in Exercise (??.??) above. (Zelterman, 1987).

Years Number Years Number Years Number

0 5 10 2 22–23 3

1 14 11 3 24–25 4

2 10 12 3 26–27 3

3 8 13 3 28–29 1

4 11 14 0 30–31 1

5 4 15 1 32–33 2

6 3 16 5 34–35 0

7 5 17 2 36–40 6

8 7 18–19 9

9 5 20–21 9

(a) Choose an appropriate probability distribution and fit it.

(b) Calculate the deviance and check the residuals.

(c) Discuss how well the model fits.

Answer

(a) These are duration data. Most distributions for such data cannot handle zero times,

so we shall ignore them for this analysis. This can be justified in that these women

do not yet have any experience and will be different than the others. The histogram,

in Figure ??, is more or less decreasing so that we may expect the exponential distri-

bution to fit well. This might arise if the number of women graduating, and finding

mathematics or statistics jobs, was a Poisson process over the years. The mean for this

distribution is estimated to be µ̂ = 11.94 years experience.
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Table 4.20: Frequency distribution of women mathematicians’ salaries, with fitted log

normal distribution and standardised residuals. (Zelterman, 1987)
Salary Women Multinomial Log normal Residual

1051–1150 1 0.008 0.006 0.306

1151–1250 1 0.008 0.011 −0.344

1251–1350 6 0.047 0.018 2.389

1351–1450 3 0.023 0.027 −0.260

1451–1550 4 0.031 0.037 −0.337

1551–1650 3 0.023 0.046 −1.212

1651–1750 9 0.070 0.055 0.738

1751–1850 6 0.047 0.061 −0.674

1851–1950 5 0.039 0.066 −1.188

1951–2050 16 0.124 0.068 2.468

2051–2150 4 0.031 0.067 −1.591

2151–2250 11 0.085 0.065 0.889

2251–2350 6 0.047 0.062 −0.695

2351–2450 11 0.085 0.057 1.340

2451–2550 3 0.023 0.052 −1.425

2551–2650 4 0.031 0.046 −0.806

2651–2750 5 0.039 0.041 −0.110

2751–2850 6 0.047 0.035 0.672

2851–2950 4 0.031 0.030 0.040

2951–3050 4 0.031 0.026 0.365

3051–3150 5 0.039 0.022 1.306

3151–3250 1 0.008 0.018 −0.881

3251–3350 1 0.008 0.015 −0.682

3351–3450 4 0.031 0.012 1.881

3451–3550 1 0.008 0.010 −0.281

3551–3650 2 0.016 0.008 0.884

3651–3750 0 0.000 0.007 −0.938

3751–3850 2 0.016 0.006 1.525

3851–3950 0 0.000 0.004 −0.759

3951–4050 0 0.000 0.004 −0.681

4051–4150 1 0.008 0.003 1.030



106 CHAPTER 4. PROBABILITY DISTRIBUTIONS

0 10 20 30 40

0
.0

0
0

.0
4

0
.0

8

Years

P
ro

b
a

b
ili

ty

Figure 4.17: Histogram for women mathematicians’ experience, with fitted exponential

(solid), Weibull (dashed), and gamma (dotted) distributions. (Zelterman, 1987)
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Note that, here, the choice of the yis representing each category of the response is

not as clear cut as one might expect. It was simply taken to be the recorded number

of years of experience for the first categories and the average of the lower and upper

bounds for the latter ones. However, the following argument should raise questions

about this choice. Assume that mathematicians with, say, twenty months of experi-

ence were recorded as one year because the second year was not yet completed. Then,

one could expect to have the category ‘one year’ stand for women with experience in

between twelve and twenty four months. Hence, a reasonable choice for the corre-

sponding yi could be 1.5. But this argument assumes that graduation occurs randomly

over the year, which is probably not the case in practice. Thus, the choice of yi depends

rather on the time at which the survey was performed. One could also argue that, if

graduation occur at a fixed time in the year, then a discrete structure for the response

should be assumed. Here, for simplicity, the first mentioned definition of yi will be

adopted. Note that our first argument would apply if the response was the number of

years the questioned women have worked as a whole since they graduated, because

unemployment can occur more or less randomly over a year. The midpoint for the

category (18,19) would then be 19.

This discussion really points out the care required to choose the yi’s and the lack of

information on published data sets in statistics journals.

(b) This exponential distribution has deviance 56.13 and AIC 58.13. The multino-

mial AIC is 52, so that this is not a very good fit. The low numbers with 5–7 and 14–15

years experience would explain this poor fit. No other simple smooth distribution will

correct this. The number of graduates over the years might be investigated to study

this phenomenon further. The fitted model is described in Table ??. The years that we

thought to be under-represented above do not have exceptionally large residuals. On

the other hand, the model under-estimates 18–21 and 36–40 years experience. This can

also be seen in Figure ??.

(c) The exponential distribution is a special case of both the gamma and Weibull

distributions, so it may be useful to fit them to see if we can obtain any improvement.

The gamma, with α̂
.
= 1.37 and µ̂

.
= 11.94, has an AIC of 59.74, whereas the Weibull,

with α̂
.
= 1.17 and µ̂

.
= 19.60, has an AIC of 58.26. Thus, neither is better. This

indicates that α can be unity in both of these distributions. Both are plotted in Figure

??. Note how the curve rises to a maximum on the left for both distributions, in contrast

to the exponential.

Question (16)

Let us look again at the event recall data of Exercise (??.??).

(a) What might be an appropriate probability distribution for these data?

(b) Fit the model.

(c) Calculate the AIC and check the residuals.

(d) Discuss how well the model fits.
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Table 4.21: Frequency distribution of women mathematicians’ experience, with fitted

exponential distribution and standardised residuals. (Zelterman, 1987)

Years Women Multinomial Exponential Residual

0 5 – – –

1 14 0.113 0.077 1.441

2 10 0.081 0.071 0.411

3 8 0.065 0.065 −0.027

4 11 0.089 0.060 1.311

5 4 0.032 0.055 −1.083

6 3 0.024 0.051 −1.310

7 5 0.040 0.047 −0.324

8 7 0.056 0.043 0.732

9 5 0.040 0.039 0.051

10 2 0.016 0.036 −1.177

11 3 0.024 0.033 −0.557

12 3 0.024 0.031 −0.411

13 3 0.024 0.028 −0.265

14 0 0.000 0.026 −1.793

15 1 0.008 0.024 −1.138

16 5 0.040 0.022 1.383

17 2 0.016 0.020 −0.317

18–19 9 0.073 0.036 2.184

20–21 9 0.073 0.030 2.727

22–23 3 0.024 0.025 −0.088

24–25 4 0.032 0.022 0.814

26–27 3 0.024 0.018 0.494

28–29 1 0.008 0.015 −0.658

30–31 1 0.008 0.013 −0.484

32–33 2 0.016 0.011 0.542

34–35 0 0.000 0.009 −1.075

36–40 6 0.048 0.017 2.619
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Table 4.22: Frequency of times of recall of stressful events, with fitted exponential

distribution and standardised residuals. (Haberman, 1978, p. 3)

Months Events Multinomial Exponential Residual

1 15 0.102 0.119 −0.599

2 11 0.075 0.104 −1.093

3 14 0.095 0.091 0.186

4 17 0.116 0.079 1.577

5 5 0.034 0.069 −1.614

6 11 0.075 0.060 0.724

7 10 0.068 0.053 0.822

8 4 0.027 0.046 −1.053

9 8 0.054 0.040 0.877

10 10 0.068 0.035 2.154

11 7 0.048 0.030 1.196

12 9 0.061 0.027 2.582

13 11 0.075 0.023 4.119

14 3 0.020 0.020 0.018

15 6 0.041 0.018 2.119

16 1 0.007 0.015 −0.838

17 1 0.007 0.013 −0.692

18 4 0.027 0.012 1.739

Answer

(a) The exponential distribution appears to be appropriate for these data, both because

stressful events should happen fairly randomly in time and because of the shape of the

histogram plotted in Figure ??.

(b) When we fit the model, we obtain the results shown in Table ??. The mean

length of recall is estimated to be µ̂ = 7.33 months. There are some large residuals,

with under-estimation in the middle range of times.

(c) We obtain a deviance of 80.58 and AIC of 82.58, as compared to 34 for the

multinomial AIC. One problem is that events are truncated after 18 months. From the

large number in the last month, we might think that certain people with older events

classified them there. If we take the last category to mean ≥ 18, the deviance is reduced

to 59.73 (61.73), still not a good fit.

(d) In Exercise ??, we fitted a log linear regression to these data. This was equiv-

alent to fitting a Poisson process. The rate or intensity of events per unit time for an

individual is given by negative of β1. The maximum likelihood estimate was −0.084,

so that the intensity is estimated to be 0.084 events per month. (We do not use the

approximate value calculated there, and plotted in Figure ??, because it distorts the

calculations to follow.) We know that the mean time between events, for an exponen-

tial distribution, is the reciprocal, i.e. 11.9 months. This is considerably longer than

the estimate given above because fitting by log linear regression carries the assumption

that observations were truncated at 18 months, more realistic than the above procedure.

We can also calculate the deviance for this approach, obtaining 24.57, an acceptable
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Figure 4.18: Histogram for the recall of stressful events, with fitted exponential (solid)

and truncated exponential (dotted) distributions. (Haberman, 1978, p. 3)

model. This indicates that there should be a considerable number of people having had

their last stressful event longer ago than 18 months. The models calculated by the two

methods are displayed in Figure ??. The graph confirms the superior fit of the truncated

exponential distribution, supporting the idea that stressful events may be happening at

random to individuals.

Notice the difference between censoring and truncation in this example. Censoring

means that we have observed all events but the long times are recorded as 18 months.

Truncation means that events over 18 months before are missing.

Question (17)

Employment durations of recruits to the British Post Office in the first quarter of 1973

(Burridge, 1981) were given in Table 4.6. In fact, there were two groups corresponding

to different grades, as shown in the following table.
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Group Group Group

Quarters A B Quarters A B Quarters A B

1 22 30 9 2 3 17 1 1

2 18 28 10 1 0 18 1 0

3 19 31 11 0 0 19 3 2

4 13 14 12 1 1 20 1 0

5 5 10 13 0 1 21 1 3

6 6 6 14 0 0 22 0 1

7 3 5 15 0 0 23 0 1

8 2 2 16 1 1 24 0 0

(a) Choose and fit a suitable probability distribution to each group.

(b) Compare the results and discuss how well each model fits.

(c) Have you found a continuous distribution that fits better than the geometric dis-

tribution?

(d) Calculate the AICs and check the residuals.

(e) Combine the data for the two groups and refit the model.

(f) Does it change very much from the two separate models?

(g) Because observations on the two groups are independent, the AICs for the two

groups separately can be added together and compared to that for the model

where the groups were combined. What can be said about the difference between

the groups?

Answer

(a) If the recruits are leaving at random, we would expect an exponential distribution,

whereas if they leave after reaching a certain level of dissatisfaction, we would rather

look for an inverse Gauss distribution.

(b) The parameter estimates are µ̂ = 4.54 and 4.31 for the exponential distribu-

tion; they are µ̂ = 4.54, σ̂2 = 0.221 and µ̂ = 4.31, σ̂2 = 0.216 for the inverse Gauss

distribution. These estimates are very similar for the two types of recruits.

(c) The deviances (AICs) are 56.51 (58.51) and 85.07 (87.07) for the two groups for

the exponential distribution and 24.79 (28.79) and 35.28 (39.28) for the inverse Gauss.

By comparison, the multinomial AIC is 26, so that the inverse Gauss distribution is

close to fitting well, especially for the first group. The log normal, gamma, and Weibull

distributions fit much more poorly.

(d) When the data are combined, the deviances (AICs) are, respectively, 130.10

(132.10) and 48.61 (52.61) for the two distributions. Notice how they increase due to

the larger sample available through combination.

(e) The parameter estimates are now µ̂ = 4.40 for the exponential distribution and

µ̂ = 4.40, σ̂2 = 0.218 for the inverse Gauss distribution. As might be expected, they
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Table 4.23: Frequency of employment times of recruits to the Post Office, with fitted

inverse Gauss distribution and standardised residuals. (Burridge, 1981)

Quarters Recruits Multinomial Inverse Gauss Residual

1 52 0.2167 0.2172 −0.017

2 46 0.1917 0.2146 −0.768

3 50 0.2083 0.1521 2.234

4 27 0.1125 0.1063 0.297

5 15 0.0625 0.0758 −0.746

6 12 0.0500 0.0553 −0.348

7 8 0.0333 0.0412 −0.600

8 4 0.0167 0.0311 −1.274

9 5 0.0208 0.0240 −0.314

10 1 0.0042 0.0187 −1.643

11 0 0.0000 0.0147 −1.876

12 3 0.0083 0.0116 −0.475

13 1 0.0042 0.0093 −0.826

14 0 0.0000 0.0075 −1.341

15 0 0.0000 0.0061 −1.207

16 2 0.0083 0.0049 0.747

17 2 0.0083 0.0040 1.045

18 1 0.0042 0.0033 0.227

19 5 0.0208 0.0027 5.353

20 1 0.0042 0.0023 0.617

21 4 0.0167 0.0019 5.276

22 1 0.0042 0.0016 1.016

23 1 0.0042 0.0013 1.222

23 0 0.0000 0.0011 −0.513

are in between those for the two groups individually, and thus have not changed very

much. The deviance to compare the separate models with the combined one is

−2∑
i

[(n1i +n2i) log(π̃•i)−n1i log(π̃1i)−n2i log(π̃2i)]

where the indices indicate the two models. This gives a value of 0.18, indicating very

little difference so that the two groups can be combined.

The fitted model for the inverse Gauss distribution is shown in Table ??. This

distribution, and the exponential, are plotted in Figure ??. We see how the inverse

Gauss distribution tries to account for the relatively equal numbers leaving in the first

three quarters. This model over-estimates the shorter times (except for three and four

quarters) and under estimates the longer ones.

We can conclude that the two groups are very similar and that recruits are not

leaving randomly. There is some indication that a model of dissatisfaction or incom-

patibility describes the leaving process.
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Figure 4.19: Histogram for employment times of recruits to the Post Office, with fitted

exponential (solid) and inverse Gauss (dotted) distributions. (Burridge, 1981)
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Question (18)

The inverse Gauss and log normal distributions are closely related to the normal dis-

tribution. The latter is in the location–scale family. Are the first two members of this

family? Why?

Answer

Question (19)

For each distribution studied in this chapter,

(a) check whether it is a member of the exponential family,

(b) a member of the exponential dispersion family, and

(c) for the members of the exponential family, derive the sample size formula.

Answer

(a) Only the binomial, Poisson, and exponential distributions are members of the (one

parameter) exponential family. The Poisson can be written

log[ f (yi;µ)] =−µ+ yi log(µ)− log(yi!)

so that θ = log(µ), a(θ) = −µ = −eθ, and b(yi) = − log(yi!). Here, the canonical

parameter is the logarithm of the mean, the basis of log linear models (just as the

canonical parameter for the binomial, the logit, is the basis of logistic models).

The exponential distribution can be written

log[ f (yi;λ)] = log(λ)−λyi

so that the canonical parameter is θ = λ = 1/µ, with a(θ) = log(θ) and b(yi) = 0.

(b) The normal, log normal, gamma, and inverse Gauss distributions are members

of the exponential dispersion family. The log normal distribution has a form very

similar to that for the normal given in the text. The gamma distribution can be written

log[ f (yi;µ,α)] = α[log(α)− log(µ)]− log[Γ(α)]+(α−1)yi −αyi/µ

If we take θ=−1/µ and σ2 = 1/α, we have a(θ)=− log(µ)= log(−θ) and b(yi,σ
2)=

α log(α)− log[Γ(α)]+(α−1)yi.

For the inverse Gauss distribution,

log[ f (yi;µ,σ2)] =−yi/(2σ2µ2)+1/(σ2µ)−1/(2yiσ
2)− log(2πy3

i σ2)/2

We can take θ=−1/µ2 and σ2, then a(θ)= 1/µ=
√

(−1/θ) and b(yi,σ
2)=−1/(2yiσ

2)−
log(2πy3

i σ2)/2.

(c) For the Poisson distribution, the sample size is calculated from

n• =
D/2

ȳ•[log(µ̂)− log(µ0)]+µ0 − µ̂
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whereas, for the exponential distribution, it is

n• =
D/2

ȳ•(λ̂−λ0)− log(λ0)+ log(λ̂)

For a fixed value of σ2, the sample size can also be calculated by this method for mem-

bers of the exponential dispersion family. See Section ?? for the normal distribution.





Chapter 5

Normal regression and ANOVA

5.1 General regression models

Chapter ?? should have brought the students to the point where they should be eager to

study more complex situations in which distributions vary with explanatory variables,

i.e. combining Chapters ?? and ??. Unfortunately, this cannot realistically be done

in an introductory course, although it was partially tackled in Section ?? where we

studied differences in the distribution of ages of school children in Bombay and in

Exercise (??.??) on employment time in the British Post Office (where the explanatory

variable was the grade of the employee); I tell them that they must wait for the next

year’s course for a more systematic treatment of the problem. They must be satisfied

with studying one particular case, classical linear models. Given the historical baggage

that they will encounter in the literature of any field, this really is necessary.

5.1.1 More assumptions or more data

The important point to get across in this chapter is that, in spite of appearances, we

are still doing the same thing as in Chapter ??: studying how the form of histograms

changes under varying conditions. See Figure 5.1 in the text. However, the models

make more assumptions because the histogram must here have the form of the normal

curve. At the same time, this simplifies things, because only the mean will change,

instead of each bar of the histogram (almost) independently.

Because the methods in Chapter ?? were so generally applicable, students may feel

that they are sufficient. (In many cases, they are right.) They should be brought to con-

sider why introducing a density function may be useful. From the results of describing

histograms in Chapter ??, this should be fairly obvious. Among other things, we find

again smoothing and simplicity, as well as obtaining information on how the data might

have been generated. An additional reason is that these models can be used even when

sufficient observations are not available to construct frequency tables as in Chapter ??.

117
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5.1.2 Generalised linear models

This family of models was revolutionary in the 1970s. At present, it is a shackles on

most statisticians who cannot see just how limited it is! Again, students need some

familiarity with it in order to face the literature.

5.1.3 Location regression models

The existence of this family shows that generalised linear models need not be the only

solution to the normal distribution’s limitations. However, neither of these families

even includes the so widely used Weibull distribution!

5.2 Linear regression

The way in which inferences are made in this chapter will depend on the instructor.

I present both the classical tests and direct likelihood methods based on the AIC and

like to give the students the choice of which they use. (It is not difficult to guess what

is almost invariably chosen.) It is important to show that, although the ANOVA tables

look more complex, the calculations are essentially the same, involving the same sums

of squares.

5.2.1 One explanatory variable

Note that the AIC is here defined slightly differently than for categorical data. The

deviance at the top of page 240 does not compare the model of interest to a saturated

model (which would have a variance of zero), but instead to a maximal model of inter-

est. Instead of adding 2p to this deviance, the latter is decomposed into its two parts,

corresponding to the two models being compared. Twice the corresponding number of

parameters in each model is then added to each part. One inconvenience is that values

may be negative. However, differences in AIC, the only comparison of interest, will be

identical to any other definition of the AIC.

For more advanced classes, it may be useful to mention how to make the AICs in

this chapter comparable with those obtained using non-normal distributions. We need

to define the AIC for the model of interest as

−2log[Pr(y1, . . . ,yn)]+2p

which contains the normalising constant and the unit of measurement ∆i in its defi-

nition. Again, illustrating this idea is probably outside the scope of this introductory

course, although students should understand after having studied the material in Chap-

ters ?? and ??.

The link between least squares calculations for linear regression and the methods

for logistic and log linear regression in Chapter ??, mentioned in passing in the text,

should be brought out. The calculations for the estimates on pages 82, 97, and 238

are similar, the only essential difference being the weights, wi, used. Here, they are

identically one.



5.2. 5.2. LINEAR REGRESSION 119

The essential thing with the babies’ weights example is to link together Figures 5.1

and 5.2. Linear regression is not about fitting a straight line through data! It is about

how the form of a distribution (now tightly constrained), represented by the histogram,

changes with an explanatory variable.

The linear regression example on the effects of dieting is purposely chosen to il-

lustrate a case where the null model of interest does not have a zero slope. No one

would expect that weight after a diet was independent of weight before. This example

also provides a clear opportunity to discuss the difference between one- and two-sided

tests, if the instructor considers this to be important. However, linear regression is cer-

tainly not the best way to analyse these data; a paired means analysis would be more

appropriate, as we shall see later in the chapter.

In explaining how a normally-shaped histogram is positioned along the fitted re-

gression line for the mean, it is useful to calculate an interval about the line of say

two standard deviations (as in Figure 5.2). This can be done using the tools of Section

??. (Emphasise that it only works for that distribution, because the variance can be

assumed to be constant.)

With a variance estimated as σ̂2 = 4.190, the estimated standard deviation is about

2. For people having a given prior weight of xi, the weights after diet will have a mean

of 4.187+ 0.910xi. About 95% of them will be distributed between 0.187+ 0.910xi

and 8.187+ 0.910xi, found by subtracting and adding two standard deviations. Thus,

for example, people with prior weight of 64 kg will, on average, be 62.4 kg after

diet, but the 95% range will be 58.4 to 66.4. This shows how the model is taking

into account individual human variability, indicating that a substantial proportion gain

weight although there is an average weight loss.

For both examples, most of this is based on theoretical assumptions that cannot be

checked with only 24 or ten observations. Thus, in the second example, the students

should be able to see that they cannot construct a histogram of weights after diet for

each given prior weight. Discuss with them what would be required in order to check

the model. They should see that they would need a sample with a considerable num-

ber of people for each prior weight of interest. With such data, they would probably

discover that the distribution of posterior weights, for each given prior weight, was not

normal but skewed (weights, unlike heights, usually are - why?), possibly close to one

of those already studied in Chapter ??. This will imply that the variance is not constant

as well. In addition, one might also discover that the mean does not follow a straight

line.

However, although none of these assumptions can be checked with only so few ob-

servations, useful information, if approximate, about the relationship between babies’

weights and age or weight before and after diet may have been obtained. Remind the

students that all models are approximations to reality in any case.

5.2.2 Multiple regression

Multiple regression (with an arbitrary distribution) is central to statistical modelling.

Thus, this small section is important.

In the example, the idea of coding a binary explanatory variable as 0 and 1 is

slipped in. The students should already be very familiar with constraints on qualitative
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explanatory variables in Section ??. Now they learn how it can be implemented in

practice with multiple regression. Emphasise that this also works with logistic and log

linear models.

In this way, dummy variables are introduced to ‘show’ that ANOVA and regression

are really the same thing. The former is just a special case of the latter.

5.3 Analysis of variance

5.3.1 One explanatory variable

ANOVA should be simple for the students, after all the work in Chapter ??: (usually)

no logarithms!

After blindly attacking the data on times taken to do homework in Chapter ?? using

a normal distribution, the results of that chapter are used to decide to transform the data.

This shows how log normal regression can also be done by these techniques. However,

care should be taken in the presentation: otherwise, this can lead to some confusion,

the danger being that students think that the logarithm of the response should be taken

for any data set when applying this ANOVA.

The most common one-way analysis, difference of two means, is taken as a spe-

cial case of ANOVA. In these ways, the students, as throughout the course, should be

brought to see that these are not ad hoc recipes but a unified approach to modelling

data.

5.3.2 Two explanatory variables

ANOVA is widely used in psychology, hence the example with two explanatory vari-

ables concerning learning scores. I do not know if Koerth pursuit rotor scores actually

are constructed to be vaguely normal, and there are not sufficient data to check. Be-

cause the interaction can be taken to be zero, the sums of squares for residual and

interaction can be combined to obtain a new residual sum of squares. This is equiv-

alent to the standard likelihood comparison using the no interaction model as a basis

of comparison for eliminating main effects. It is also a direct rationale for using the

interaction sum of squares as residual when there is only one observation for each

combination of explanatory variables.

Notice that the sums of squares for the main effects can be most easily obtained

as sums of squares of the parameter estimates instead of recalculating the differences

between means.

5.3.3 Matched pairs

Matched pairs is an important type of design for obtaining information efficiently in

many fields. Continuation of the dieting example should allow the student to see that

developing an appropriate model requires clear reasoning about what is going on. The

presentation here should contrast with the usual view that matched pairs simply require

an appropriate test.
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5.3.4 Analysis of covariance

We have already encountered analysis of covariance in the multiple regression model

for babies’ weights above. Here, a rather old-fashioned presentation is given. However,

the advantage is that it brings out the links between linear regression and ANOVA and

serves as a very clear illustration of what interaction is all about. It also provides some

of the basic steps in any model selection procedure. Because of the previous example,

no new example has been provided (but there are exercises for the students).

5.4 Correlation

All students seem to have heard of correlation. By now, they should have realised that

there are better ways to look at association and dependencies among variables in most

contexts (especially for categorical variables). Correlation will, however, be used in

Chapter ??.

The presentation of the correlation coefficient is only the second place in the text

where multivariate observations are discussed (the first was for log linear models).

Correlation and simple linear regression can be contrasted by showing that the first

must be represented as a simultaneous two-dimensional histogram and the second as a

moving one-dimensional one.

The important point with correlation is that conclusions only be drawn in the wrong

direction: no dependence means zero correlation but zero correlation does not mean

lack of dependence. Give examples: the dependence may be non-linear. Show that the

same problem occurs with simple linear regression, but is easier to get around, because,

for example, a quadratic term can be added.

5.5 Sample size calculations

Here the general theory of likelihood-based sample size calculations, outlined in Chap-

ter ??, is applied to normal distribution to yield the same results as from a more classi-

cal power calculation.

5.6 Solutions to the exercises

Question (1)

The times in seconds for 30 children, classified by age, to push a hockey ball between

a series of sticks during physical education were recorded (McPherson, 1990, p. 272)

as shown in the following table:

Age Time

10 37 45 41 87 53 27 105 46

27 35 38 54 19 36 30

16 9 14 11 14 9 18 6 8

30 8 10 12 16 23 14
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(a) Is there any indication of a difference in time between the two age groups?

(b) Do you think that the variability is the same in the two age groups?

(c) Why is a model for matched pairs not suitable for these data?

Answer

(a) The ANOVA table is

SS df MSS F

Age 7616.1 1 7616.1 26.9

Residual 7935.1 28 283.4

The AIC with no difference in mean is 276.7 whereas it is 258.5 with different means

and constant variance. Both show clear evidence of a difference in mean with 45.3 sec

for age 10 and 13.5 sec for age 16.

(b) Yes, there is a difference in variability. The variances are respectively 491.16

and 37.85. The AIC with different variances is 240.6.

(c) Different children are involved in each group. There is no pairing among the

values in the two age groups. Either set of times could be reordered without changing

the results.

Question (2)

The table below gives the percentage of eligible voters casting ballots in the 1964

Vancouver civic election and the mean income (dollars) in 1961 in 24 districts of the

city (Erickson and Nosanchuk, 1977, p. 206).
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District Income Turn-out

East side

Cedar Cottage 3974 40

Collingwood 4186 38

Fraserview 4173 42

Grandview 3864 42

Kingsway 3865 38

Little Mountain 4383 43

Mt. Pleasant 3422 30

New Brighton 4003 39

Newport 4594 41

Riley Park 3865 38

Strathcona 2751 24

Sunset 4299 40

Woodland 3315 26

West side

Arbutus 6267 55

Burrard 3589 27

Dunbar 5701 58

Fairview 3786 30

Kerrisdale 7066 59

Kitsilano North 3785 34

Kitsilano South 4558 41

Marpole 4640 41

Pt. Grey 5908 48

Shaughnessy 8477 52

West End 4233 33

The districts of Vancouver are distinct in the eyes of long-term residents of the city, and

almost anyone who lives there knows them by name, although they have no adminis-

trative status.

(a) Study the relationship between the two variables, income and turn-out. Graphics

will be useful.

(b) What reasons can you find to explain your results?

(c) Suggest a better model if the number of eligible voters in each district were

available.

(d) The unit of observation is the district, each having a distinct geographical loca-

tion. Is it reasonable to assume that such observations are independent?

(e) Is this a sample, and is there a well-defined population?

(f) Does it make sense to draw inferences about true parameter values in a model

for data such as these?
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Figure 5.1: Scattergram for voting behaviour in Vancouver (circles for the east side,

triangles for the west side), with the fitted linear regression. (Erickson and Nosanchuk,

1977)

Answer

(a) The data are plotted in Figure ??. They appear to follow a fairly straight line, with

the exception, perhaps, of the richest district, Shaughnessy, which has a low turn-out.

We may fit a linear regression, giving β̂0 = 11.95 and β̂1 = 0.00618. This is also

plotted on the graph. Turn-out increases, on average, by 0.6% for every $100 increase

in income.

The deviance, from Equation (5.2), comparing models without and with income,

is 30.18 with one degree of freedom. The corresponding AICs are 108.82 and 80.64,

respectively, showing that the model with dependence of mean turn-out on income is

superior to that without. The Student t test gives t22 = 7.44 which yields a P-value, on

a two-sided test, less than 0.001, so that the hypothesis of no effect is clearly rejected.

(b) This type of data is called ecological because it contains no information about

individuals but only about groups. We would require knowledge of political science

and of voting habits in local Vancouver elections, such as information about the parties

and candidates running and the issues at stake, in order to venture conclusions about

why there is higher turn-out in higher income districts.

(c) If we had the number of eligible voters in each district, we could try fitting a

logistic regression to these data.

(d) Candidates, and perhaps issues, will be different in the various districts. People
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may have chosen to live in a district because they find similar people there. Districts

closer together may often be more similar than those further apart.

(e) All districts in Vancouver are represented, so that this is not a sample for the

1964 election. It might be considered to be a sample from the series of civic elections

in different years in Vancouver, but it is certainly not a random sample.

(f) With some imagination, we might argue that this analysis tells us something

about other elections in Vancouver, before or after, but candidates and issues will surely

change, making the conclusions doubtful. The regression model describes these data,

with little justification for extrapolation. Thus, the deviance and AIC show which

model fits best, but the test has little meaning.

Question (3)

The table below presents the murder rates in 24 randomly chosen cities in the U.S.A.,

classified by type and location (Blalock, 1972, p. 335).

City type

Region Industrial Trade Government

NE 4.3 5.9 5.1 3.6 3.1 3.8

2.8 7.7 1.8 3.3 1.6 1.9

SE 12.3 9.1 6.2 4.1 6.2 11.4

16.3 10.2 9.5 11.2 7.1 12.5

(a) Study the effects of each of these two nominal variables separately on the ob-

served murder rates.

(b) Now construct a model to describe the simultaneous effects of the two explana-

tory variables.

(c) Discuss the advantages of this second approach over the first.

(d) Rates refer to the occurrence of events, here murders. If we had the numbers

of such events in each city, what other information would we require in order to

calculate the rates?

(e) What distribution might be more appropriate than the normal, if such information

were available?

Answer

(a) For type of city, the estimated mean murder rates are 8.58, for industrial cities, 5.60

for trade, and 5.95 for government. There appears to be little difference between the

latter two types. The deviance is 2.88 with AIC 68.99 as compared to 67.88 for the

model without the variable, type of city, indicating no evidence of difference among

types. The F test gives F2,21 = 1.34 with a P-value greater than 0.20, agreeing with the

AIC and the deviance test conclusion.

For regions, the estimated rates are 3.74 for NE and 9.68 for SE. The deviance is

20.00 with AIC 49.88, (as compared to the same AIC as above, 67.88, without region)
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indicating that there is a difference between regions. The F test is F1,22 = 28.63 giving

(similarly to the deviance test) a P-value less than 0.001, confirming this conclusion.

(b) A model with both explanatory variables will also contain the interaction pa-

rameters. The parameter estimates, using the mean constraint, are µ̂ = 6.708, α̂1 =
1.867, α̂2 =−1.108, α̂3 =−0.758 (for type), β̂1 =−2.967 (for region), γ̂11 =−0.433,

γ̂21 = 0.817, and γ̂31 =−0.383.

The analysis of variance table is

Effect SS MSS d.f. F

Total 373.54 16.24 23

City type 42.30 21.15 2 3.53

Region 211.23 211.23 1 35.21

Interaction 8.01 4.01 2 0.64

Residual 112.00 6.22 18

Residual+Interaction 120.01 6.00 20

This clearly indicates that the interaction can be eliminated. Therefore, the interaction

and the residual lines in the ANOVA table can be added, yielding the last line in the

table; the resulting mean sum of squares obtained from this is used as denominator

of the F-statistics for the main effects. The F test for difference in type of city has a

P-value between 0.05 and 0.02, and that for region is very significant. The model with

both effects but without the interaction has an AIC of 46.63, whereas the full model

has 48.97. When compared to the AICs previously given, this indicates that the model

with both region and type of city is preferable.

(c) The first approach only gives us the average relation for type of city, ignoring

region, and of region, ignoring type of city. It does not allow us to determine if the type

of city has a different relationship to the murder rate in the two regions.

(d) If we had the number of such events in each city, we would also require the

population of each city in order to calculate the rates.

(e) If the numbers of events were available, a distribution for counts, such as the

Poisson or negative binomial would be more appropriate. However, this would have to

be corrected by allowing for the population sizes, by using an offset in the log linear

model. See the answer to Exercise ??.

Question (4)

The data in Exercise (??.??) above are classified by the two main regions of Vancouver,

the East and West sides. Construct models to compare

(a) the mean income for the two regions;

(b) the percentage turn-out for the regions.

Answer

(a) For mean income, the one-way analysis of variance has means of $3900 and $5274,

respectively, for the east and west sides. The deviance, comparing without and with

difference, is 8.29, the AICs being 344.92 and 336.62 respectively. This indicates a



5.6. 5.6. SOLUTIONS TO THE EXERCISES 127

difference in income between the two sides. The F test gives F1,22 = 9.08 for a P-

value between 0.01 and 0.001, indicating rejection of the hypothesis of no difference.

(This can also be calculated as a Student t test, t22 = 3.01, with the same conclusions,

of course.) A Chi-square test with one degree of freedom based on the deviance also

leads to the same conclusion.

(b) For voting turn-out, the difference between the two sides can be seen in Figure

??. The one-way analysis of variance has means of 37.0% and 43.5%, respectively, for

the east and west sides. The deviance, comparing without and with difference, is 3.09,

the AICs being 108.82 and 107.74 respectively. This provides a small indication of a

difference in turn-out between the two sides. The F test gives F1,22 = 3.02 for a P-value

between 0.10 and 0.05, indicating that the hypothesis of no difference is not rejected.

The test based on the deviance yields the same result. Here, the AIC and the tests are

in some disagreement. With one degree of freedom, tests point to a simpler model than

the AIC. (The reverse will be true for degrees of freedom greater than seven.)

Question (5)

Construct a model to compare the relationship between voter turn-out and mean income

for the two regions of Vancouver in Exercise (??.??) above.

Answer

We can use a model for analysis of covariance. We have already fitted three of the sim-

pler models above. Recall that the AICs were 108.82 for the null model, 80.64 for that

with only income, and 107.74 for that with only the region of the city. That for parallel

regression lines in the two regions has 81.15, whereas that with two distinct regressions

has 79.95. Thus, the (very slightly) preferable model is this last one, although it is not

much better than the one with only income according to the AIC.

For the east side, the parameter estimates are β̂0 =−7.31 and β̂1 = 0.0114, whereas

they are β̂0 = 10.52 and β̂1 = 0.00625 for the west side. The model is plotted in Figure

??. We see how the lower turn-out for high income districts in the west side has pulled

down that regression line.

Question (6)

The following table gives the salaries (dollars) of board chairpersons of community

organisations in the U.S.A., classified by type of organisation and size of community

(Blalock, 1972, p. 358).



128 CHAPTER 5. NORMAL REGRESSION AND ANOVA

0 2000 4000 6000 8000 10000

0
2

0
4

0
6

0
8

0
1

0
0

Income

T
u

rn
−

o
u

t

Figure 5.2: Scattergram for voting behaviour in Vancouver (circles for the east side,

triangles for the west side), with the separate fitted linear regression lines for the east

(solid) and west (dotted) sides. (from Erickson and Nosanchuk, 1977)
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Size of Organisation type

community Religious Social welfare Civic

Large 13000 15000 20800

11500 10600 18100

17300 12300 18100

19100 11400 22300

16700 10800 16500

Small 15000 9300 14400

12300 10400 10800

13900 12900 9700

14300 11000 12300

11700 9100 13100

Five organisations of each type were randomly selected for both large and small com-

munities. No further information is given about the definitions of the variables. Study

the relationships between these two nominal variables and the salaries by fitting an

appropriate model.

Answer

We shall fit a two-way analysis of variance model. The AICs are 464.19 for the full

model, 471.37 for that without interaction, 482.55 for that with only size of community,

483.81 with only organisation type, and 490.06 with neither. This indicates that the full

model, with interaction is necessary. For comparison, the ANOVA table is

Effect SS MSS d.f. F

Total 348707000 12024379 29

Size 94696330 94696330 1 21.54

Type 100886000 50443000 2 11.47

Interaction 47620670 23810330 2 5.42

Residual 105504000 4396000 24

The F test for the interaction being zero is significant so that this confirms that the full

model is required.

The parameter estimates, using the mean constraint, are µ̂ = 13790.0, α̂1 = 690.0,

α̂2 = −2510.0, α̂3 = 1820.0 (for type), β̂1 = 1776.7 (for size), γ̂11 = −736.7, γ̂21 =
−1036.7, and γ̂31 = 1773.4. On average, salaries are higher in large communities and

in religious organisations. However, they are relatively much higher for civic organisa-

tions in large than in small communities.

Question (7)

The following table gives estimations of an index of the cost of living in five areas of

Bengal, India, in 1945 by five investigators (Yule and Kendall, p. 529):
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Area

Investigator A B C D E

1 270 263 264 263 260

2 280 265 274 274 279

3 275 284 278 271 296

4 271 269 272 297 274

5 279 267 269 263 284

(a) Is there a difference in cost of living among the areas?

(b) Is there any evidence that the investigators differ in their evaluations of the areas?

(c) Why can you not determine if each investigator used the same criterion in all

areas?

Answer

(a) The ANOVA table is

SS df MSS F

Investigator 775.4 4 193.8 2.6

Area 239.0 4 59.7 0.8

Residual 1175.4 16 73.5

The AIC with no difference in mean is 186.8, whereas it is 183.8 with difference in

investigator, 191.9 with difference in area, and 187.2 with difference in both. Thus,

neither approach indicates a difference among areas. The means are 264.0, 274.4,

280.8, 276.6, and 272.4.

(b) On the other hand, the ANOVA table indicates no differences at the 5% level,

whereas the AICs indicate a difference in investigators.

(c) The interaction between investigator and area cannot be estimated because there

is only one observation for each investigator/area combination.

Question (8)

In a study of 24 fifth-grade children at the School of Behavioural Sciences in Macquarie

University, Australia, the time taken to solve four block design problems and the value

for the embedded figures test (EFT), a measure of difficulty in abstracting logical struc-

ture of a problem from its context, were recorded. The children were classified by the

type of problems presented first, those solved by row (group 1) or by formation strategy

(group 2) as shown in the following table (Aitkin et al., 1989, p. 344):

Group Time EFT Time EFT Time EFT Time EFT

1 317 59 464 33 525 49 298 69

491 65 196 26 268 29 372 62

370 31 739 139 430 74 410 31

2 342 48 222 23 219 9 513 128

295 44 285 49 408 87 543 43

298 55 494 58 317 113 407 7
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Figure 5.3: Scattergram for the dependence of time on EFT, with the fitted linear re-

gression line.

(a) Is there any relationship between the time taken on the block design problems

and the results of the embedded figures test?

(b) Do the results for either of these measures differ with the order of presentation?

(c) Develop a complete model for these data and explain your conclusions.

Answer

(a) The AIC for the null model is 303.4 as compared to 296.8 when time depends on

EFT, indicating a relationship. The equation is

µi = 271.13+2.04xi

where xi is the EFT score. This is plotted in Figure ??.

(b) No. The AICs for time, without and with an order effect are 303.4 and 304.6.

Those for EFT are respectively 240.3 and 242.3.

(c) The above model for dependence of time on EFT is sufficient. Adding group

and the interaction between group and EFT does not improve the model. However,

using a log transformation (log normal distribution) does improve the model somewhat:

AIC 294.7, not surprising given that these are durations. (The gamma distribution also

provides about the same fit.)
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Question (9)

(a) Would any of the explanatory variables in any of the exercises above be suscep-

tible to use as causal effects?

(b) Do the above data tables provide such information?

(c) How would you go about collecting information on causality in such contexts?

Answer

(a) The only explanatory variable in the above exercises that was controlled was the

order of the problem presented in Exercise (??.??).

Consider, however, the example of babies’ weights. There, it might be possible to

control is gestation age, for example by having a mother avoid strenuous exercise to

prevent premature birth. Thus, this might possibly be considered as a causal variable.

(b) We have no information on how the data on birth weights were collected but

it is certain that a controlled experiment was not performed, setting the weights at

random! Thus, one must be extremely cautious in drawing any conclusions about

increasing birth weight by trying to increasing gestation age. One aspect favourable

to the possibility of such a conclusion is that the relationship is the same for both

sexes.

(c) An experiment might be designed whereby some mothers-to-be in danger of

giving premature birth were randomly chosen to follow a treatment believed to in-

crease gestation age and another group not. The birth weights of the babies would then

be recorded and the results analysed as we have done. In such an experiment, the con-

clusions would be much stronger than those we have drawn, although we should not

expect the actual model estimates necessarily to be similar.

Question (10)

Many of the data sets in the examples and exercises of this chapter may seem rather

contrived. This illustrates the very real difficulty in finding data which might plausibly

be described by models based on the normal distribution. Which of these tables do you

think contain purely invented data?

Answer

The tables on murder rates and salaries appear to be pure inventions. In any case, it

seems strange that the same numbers of observations appear in each category. Little

information is provided about the source of the data except to say that the cities and the

organisations were randomly chosen.

Question (11)

(a) Calculate the sample size required to detect a difference in means of 10 for a

suitable value of the deviance.

(b) Plot this as a function of the variance.
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Figure 5.4: The relationship between sample size and variance for a difference of

means of 10 from normal distributions.

Answer

(a) Suppose first that the variance is 100. We take a deviance of four. Then the sample

size required is 64.

(b) The sample sizes for various values of the variance are plotted in Figure ??. We

see how they increase linearly with the variance.
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Chapter 6

Dependent responses

The goal in this short chapter is to try to show students some of the wide areas for more

complex applications of statistical models. These should be appealing in almost any

field, from economics (time series) to medicine (survival curves). Special effort has

been made to choose models that require no new material. Thus, this chapter provides

applications of the methods of the preceding chapters. Many of the concepts rather

incidentally introduced in previous chapters reappear here: assumptions (such as the

Markov) made to simplify models, the intensity function, unmeasured heterogeneity

(as in overdispersion), and so on.

6.1 Repeated measurements

It will be useful to point out to the students that the models used in this chapter involve

multivariate responses. A series of observations on an individual will be dependent,

requiring such models. This contrasts with virtually all of the models in previous chap-

ters, where independent observations were assumed.

6.2 Time series

6.2.1 Markov chains

Point process data can be looked at in a number of ways. We saw this in Chapter ??

when studying the Poisson and exponential distributions. The graph in Figure 6.1 of the

text is a useful representation of this. The students should discuss ways of applying the

methods of that chapter, such as creating a frequency table of the number of different

lengths of times between accidents or looking at the number of accidents each week or

month.

I have chosen to look at another, perhaps less obvious (to the students) way of han-

dling such data: Markov chains. This answers an important question about dependence

among events at successive points in time. Once the tabulation of the table is accom-

plished (tedious without a computer), the modelling is very simple, but effective. The

135
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results in the example, that accidents depend on what happened two days, but not one

day, before will surely bring discussion from the students.

A Markov chain is auto-regression for a categorical response. This is introduced

first, before the classical auto-regression because it is simpler and easier to understand,

given what has gone on previously in the course.

6.2.2 Autoregression

One simple example of classical auto-regression, with a normal distribution, here serves

to introduce a number of important concepts: stationarity, drift, trend, random walk.

This is a first application of correlation, appropriate because time series are multivariate

observations.

6.3 Clustering

Random effects models provide a second example of an application of correlation. This

time the multivariate observations are clustered rather than sequential. The explanation

of the model is heuristic, involving a lot of hand-waving. An interesting point to discuss

is that heterogeneity can only be detected because several observations are available on

each individual. Heterogeneity of responses across individuals is just the other side of

the coin to homogeneity of responses on the same individual. Total variability is made

up of the sum of the two.

As we saw in Section ??, in certain disciplines, clustering is built into many study

designs, for example, when the unit of random sampling is a group, such as a class-

room, family, or village, but each member of the group is questioned. Another impor-

tant application of clustering is to meta-analysis. This involves the secondary analysis

of a series of similar studies in order to combine the information from them. Responses

within a given study may be expected to be more similar than those across different

studies, so that each study is the ‘individual’ forming a cluster.

In sophisticated classes, it will be interesting to discuss what happens if repeated

responses on individuals are more heterogeneous than across individuals. From the

formula, it is obvious that the intraclass correlation could be negative. This could

happen if there is some sort of repulsion among events on an individual so that they are

forced to be quite different.

6.4 Life tables

6.4.1 One possible event

The construction of a life table is essentially an exercise in reorganising data in a sen-

sible way. It has the additional complication that there are really two variables being

measured, the time and the censor indicator. A simple application of a logistic model

allows us to fit the famous Cox proportional hazards model.
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6.4.2 Repeated events

An important theoretical point, that usually has little practical relevance (as in the ex-

ample), is the difference between the case when only one event at a time is possible,

and when several may occur. Individuals can only die once, so that survival falls into

the former case. Students can discuss other situations, including some of the previous

examples in the text (accidents, divorces, consumer purchases).

6.5 Solutions to the exercises

Question (1)

The table below gives a series indicating if patients were arriving (indicated by 1) at

the intensive care unit of a hospital in the Oxford, England, Regional Hospital Board

each day from 4 February, 1963 to 18 March, 1964 (Lindsey, 1992, p. 26, from Cox

and Lewis, 1966, pp. 254–255; read across rows).

00010 00100 10000 10101 10001 00110 10001 01000

00111 00101 01000 10100 10001 00111 00011 00000

01000 01100 00101 10001 01101 01110 11110 01010

10101 00001 01100 10100 11011 11011 01000 00111

01100 00001 10110 01010 01110 00100 01010 00001

01001 00000 01010 01011 01101 01101 00101 10011

00111 00101 00011 00000 11011 00100 01110 01111

11011 00111 11001 11011 01111 10101 11011 11111

00111 11100 10010 11011 10011 10110 10111 00110

00111 00001 11000 11000 01111 00111 10001 01010

00110 00000 1

(a) Plot the cumulative number of events against time and interpret the resulting

graph.

(b) Fit a model to determine if there is any relationship between patients arriving on

successive days.

(c) Group the data by month and plot them to see if there is evidence of stationarity.

(d) What can be concluded about any systematic change over time? Consider both

steady changes and seasonal effects.

Answer

(a) The cumulated number of patients is plotted in Figure ??. Because the graph shows

a relatively straight line, the proportion of days with patients arriving is constant over

time. This proportion is indicated by the slope. Note that this is not a typical rate

(number of patients per day) because we do not know how many patients arrived on a

given day (unless it is zero).

(b) We can construct a two-way table showing a day with patients arriving, or not,

is followed by a day with patients arriving, or not:
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Figure 6.1: Cumulative number of patients were arriving at the intensive care unit of a

hospital in the Oxford, England, Regional Hospital Board each day from 4 February,

1963 to 18 March, 1964. (Lindsey, 1992, p. 26)
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Figure 6.2: Proportion of days in each month when a patient arrived at the intensive

care unit of a hospital in the Oxford, England, Regional Hospital Board each day from

4 February, 1963 to 18 March, 1964. (Lindsey, 1992, p. 26)

Day t

Day t −1 No Yes

No 112 104

Yes 103 91

When we fit a simple logistic model for independence to these data, we obtain a de-

viance of 0.06, with AIC 2.06, as compared to 4 for the saturated model. Thus, there is

no evidence for dependence between the probabilities of patients arriving on successive

days. If we had the hypothesis of independence before obtaining the data and applied a

significance test based on the deviance, then again there would not have been any real

evidence of dependence, the P-value being greater than 0.2.

(c) To facilitate calculations, we cut the series into sequences of 30 days, as ap-

proximate months. We then calculate the proportion of days in which patients arrived

and plot them as a histogram, shown in Figure ??. More patients appear to arrive in

the winter months of November, December, and January. This may indicate both a

seasonal effect and/or a longer trend to overall increase, because February 1963 had

fewer patients than February 1964 (although March of the two years is similar).

(d) We can study this more formally by fitting a logistic regression to the 14 months.

The model of independence (constant probability for all months) has a deviance of

30.95 and AIC 32.95, whereas the regression on month has deviance of 24.28 (28.28)
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and the full model has an AIC of 28. This indicates that the proportion of patients

entering per month is not random but is varying over the period. There is a large linear

trend, but the full model with a different probability each month is slightly superior. (A

closer look at Figure ?? reveals that the slope may be increasing in the later part of the

period.) Of course, this is a rather short series, given that there is evidence of seasonal

effects! It would be useful to know more about the type of problem each patient has. If

these include respiratory problems, for example, a seasonal model would make sense.

Question (2)

Exercise (??.??) gave the traffic violations each year among male subjects in a driver

education study. Develop a Markov chain model to describe these data.

Answer

In the Markov chain model, the result each year only depends on that the previous year.

In Exercise (??.??), we saw that this model does not fit well because there are more

long term dependencies. The AIC is 74.7 as compared to 27.3 for the best model found

in that exercise.

Question (3)

Beveridge (1936) gives the average rates paid to agricultural labourers for threshing

and winnowing one rased quarter each of wheat, barley, and oats in each decade from

1250 to 1459. These are payments for performing the manual labour of a given task, not

daily wages. He obtained them from the rolls of eight Winchester Bishopric Manors

(Downton, Ecchinswel, Overton, Meon, Witney, Wargrave, Wycombe, Farnham) in the

south of England. As well, he gives the average daily wages of carpenters and masons

in Taunton manor, and the average price of wheat for all England, as shown below.
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Agriculture Carpenter Mason Wheat price

3.30 3.01 2.91 4.95

3.37 3.08 2.95 4.52

3.45 3.00 3.23 6.23

3.62 3.04 3.11 5.00

3.57 3.05 3.30 6.39

3.85 3.14 2.93 5.68

4.05 3.12 3.13 7.91

4.62 3.03 3.27 6.79

4.92 2.91 3.10 5.17

5.03 2.94 2.89 4.79

5.18 3.47 3.80 6.96

6.10 3.96 4.13 7.98

7.00 4.02 4.04 6.67

7.22 3.98 4.00 5.17

7.23 4.01 4.00 5.45

7.31 4.06 4.29 6.39

7.35 4.08 4.30 5.84

7.34 4.11 4.31 5.54

7.30 4.51 4.75 7.34

7.33 5.13 5.15 4.86

7.25 4.27 5.26 6.01

(a) Fit an autoregression model to each series.

(b) Compare the results with those for time trend models.

(c) Does the price of wheat display any relationship to the rates paid to agricultural

labourers?

(d) Fit a multiple regression model for wheat prices containing an autoregression, a

time trend, and a dependence on agricultural rates.

i Are all these variables necessary in the model?

ii Interpret the results.

iii Plot profile likelihood functions for all important parameters.

Answer

(a) The four series are plotted in Figure ??. They do not appear to show much in

common.

The fitted autoregression equations are

µt = 0.39+0.96yt−1

µt = 0.46+0.89yt−1

µt = 0.09+1.01yt−1

µt = 5.65+0.06yt−1
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Figure 6.3: Average rates paid to agricultural labourers, carpenters, and masons, and

the average price of wheat, each decade from 1250 to 1459. (Beveridge, 1936)
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Figure 6.4: Normed likelihood function for the average price of wheat over the period

from 1250 to 1459.

respectively, for agricultural labourers, carpenters, masons, and wheat prices, with

AICs 10.7, 13.3, 11.2, and 62.3, as compared to the null models with 60.4, 42.0, 47.7,

and 60.4.

(b) The corresponding regression equations for a time trend are respectively

µt = 2.90+0.26t

µt = 2.63+0.10t

µt = 2.59+0.12t

µt = 5.92+0.01t

with AICs 32.8, 11.5, 12.4, and 62.3. Thus, the autoregression fits better for agricul-

tural labourers and masons, the time trend for carpenters, and neither fits well for the

wheat prices.

(c) No, the price of wheat does not seem to depend on agricultural wages either the

same year or the year before.

(d) None of the variables are necessary in the model. None of the available in-

formation seems to be able to explain the erratic changes in the price of wheat. The

normed likelihood function for the mean price of wheat is plotted in Figure ??. Plau-

sible values lie in the interval (5.6, 6.4), with maximum likelihood estimate 6.03. On

the other hand, the standard deviation of wheat prices in this model is 0.99 so that, for
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Table 6.1: Annual percentage increase in average wages of white collar workers in the

U.S.A., 1962–1979. (Lindsey, 1992, p. 122, from Nichols, 1983)

1961–62 2.8 1970–71 6.2

1962–63 2.7 1971–72 6.3

1963–64 2.7 1972–73 5.5

1964–65 2.2 1973–74 6.2

1965–66 2.9 1974–75 9.1

1966–67 4.5 1975–76 7.6

1967–68 5.1 1976–77 6.9

1968–69 5.5 1977–78 7.5

1969–70 6.2 1978–79 7.2

example, 95% of wheat prices over this period should lie in the range (4.05, 8.01). By

now, the students should understand clearly the difference between these two intervals!

Question (4)

Table ?? gave the evolution of wage increases for low grade jobs; the table below gives

a similar series of annual percentage increases in average wages of white collar workers

in high grade jobs in the U.S.A., 1962–1979 (Nichols, 1983).

1962 3.5 1971 6.2

1963 3.7 1972 5.6

1964 3.5 1973 5.7

1965 4.2 1974 6.2

1966 4.2 1975 8.8

1967 4.1 1976 6.5

1968 4.7 1977 7.7

1969 5.9 1978 8.8

1970 6.4 1979 8.0

(a) Plot and compare the two series.

(b) Find a reasonable model for this series.

(c) Compare it to the results given for the other series.

(d) Redo the analyses for the two tables using a log normal distribution.

Answer

(a) The two series are plotted in Figure ??. They follow each other fairly closely,

although the high grade workers had larger increases at the beginning of the period.

(b) We shall try the same models as for the low grade workers in the text. The auto-

regression with drift has parameter estimates, β̂0 = 1.325, β̂1 = 0.812, and σ̂2 = 0.929.

The AIC is 2.74. That without drift has parameter estimates, β̂1 = 1.028 and σ̂2 =
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Figure 6.5: Annual percentage increase in average wages of low (solid) and high (dot-

ted) grade white collar workers in Britain, 1962–1979. (from Nichols, 1983)
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Table 6.2: Judgement of three different levels of albedos by four observers at illumina-

tion level 2. (McNemar, 1954, p. 321)

Level of albedos

Observer 0.07 0.14 0.26

1 14 24 65

2 27 36 47

3 18 24 62

4 24 59 84

1.068. The AIC is 3.12. The independence model has parameter estimates, β̂0 = 5.894

and σ̂2 = 2.732. The AIC is 19.09. Finally, the model with linear trend has parameter

estimates, β̂0 = 2.803, β̂1 = 0.309, and σ̂2 = 0.440. The AIC is −9.97.

(c) These are very similar to the results obtained for the low grade workers, so that

the conclusions will be the same.

(d) When we take the logarithm of the percentages, a common procedure for re-

sponse variables in economics, we have to add 2∑ log(yi) to the AIC formula for the

normal distribution to make them comparable. (This comes from the extra yi in the

denominator of the distribution; see page 117 of the text. Another way of looking at

it is that this yi is related to the unit of measurement, which after the log transform,

becomes ∆i/yi.)

We obtain the following results. For low grade workers, the auto-regression with

drift has parameter estimates, β̂0 = 0.244, β̂1 = 0.881, and σ̂2 = 0.0284. The AIC

is 1.23. That without drift has parameter estimates, β̂1 = 1.025 and σ̂2 = 0.0324.

The AIC is 1.47. The independence model has parameter estimates, β̂0 = 1.638 and

σ̂2 = 0.169. The AIC is 29.54. Finally, the model with linear trend has parameter

estimates, β̂0 = 0.901, β̂1 = 0.0738, and σ̂2 = 0.0384. The AIC is 6.36.

For high grade workers, the auto-regression with drift has parameter estimates,

β̂0 = 0.302, β̂1 = 0.850, and σ̂2 = 0.0196. The AIC is −1.42. That without drift has

parameter estimates, β̂1 = 1.024 and σ̂2 = 0.0324. The AIC is −1.25. The indepen-

dence model has parameter estimates, β̂0 = 1.734 and σ̂2 = 0.815. The AIC is 20.83.

Finally, the model with linear trend has parameter estimates, β̂0 = 1.192, β̂1 = 0.0542,

and σ̂2 = 0.0109. The AIC is −11.39.

Here, the results are not as similar for the two grades. For the low grade, the

auto-regression is superior to the trend model, giving a comparable fit to that without

logarithms. However, the trend model without logarithms is the best of those tried.

On the other hand, for the high grade, the trend gives a better model here and it is

also superior to any model without logarithms. In summary, the trend model is better

than the auto-regression in both cases, but logarithms are required only for high grade

workers.

Question (5)

The judgements of three different levels of albedos by four observers at a level of

illumination of 2 were given in Table ??. The experiment was also performed, with
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the same observers, at an illumination of 1.2. The results are given below (McNemar,

1954, p. 321).

Level of albedos

Observer 0.07 0.14 0.26

1 11 24 60

2 22 26 44

3 16 22 55

4 20 32 82

(a) Set up the ANOVA table.

(b) Calculate the intra-class correlation and the differences in evaluation with level

of albedos.

(c) Compare your results with those for the lower level of illumination.

(d) In Section 5.3.2, we performed an analysis of variance with two explanatory vari-

ables. Could this be extended to study level of albedos and level of illumination

simultaneously?

Answer

(a) The ANOVA table is

SS MSS d.f. F

Individual 415.0 138.3 3

Albedos level 4131.5 2065.8 2 26.0

Residual 476.5 79.4 6

(b) The variance estimates are σ̂2 = 79.4 and σ̂2
c = 14.7, so that the estimate of the

intraclass correlation is ρ̂ = 0.16. The parameter estimates for the albedos levels are

β̂1 =−17.25, β̂2 =−8.50 and β̂3 = 25.75, with µ̂ = 34.50.

(c) The intraclass correlation here is considerably smaller than that (0.32) obtained

for the lower level. On the other hand, the parameter estimates for differences with

albedos level are very similar.

(d) The extension to two explanatory variables is straight forward, although it in-

volves considerable calculations. The ANOVA table is

SS MSS d.f. F

Individual 1302.8 434.3 3

Albedos level 8039.1 4019.5 2 25.8

Illumination 204.2 204.2 1 1.3

Interaction 46.6 23.3 2 0.1

Residual 1201.2 80.1 6

Residual+Inter. 1247.8 156.0 8
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As might be expected from the previous two analyses, neither the interaction nor the

difference in illumination is necessary in the model. Neither P-value is significant at the

10% level. Note again that, since the interaction test was not significant, the interaction

and the residual lines in the ANOVA table were added to compute the mean sum of

squares used as denominator for testing the main effects. The parameter estimates for

the albedos levels are now β̂1 =−18.42, β̂2 =−6.54 and β̂3 = 24.96, with µ̂ = 37.42.

They are in between those for the two illuminations separately.

Question (6)

The Panel Study of Income Dynamics carried out in the USA contains information on

unemployment periods due to layoffs. The sample distinguishes two ways in which

the unemployment spell could end: by being recalled to the same job or finding a new

job. The results are given in the table on the following page (Han and Hausman, 1990).

Data for which durations can end in more than one way are called ‘competing risks’.

Usually, strong assumptions have to be made in order to model them.
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Week New job Recall Censor Week New job Recall Censor

1 10 93 0 36 2 1 0

2 8 118 0 37 0 1 2

3 8 55 0 38 1 0 0

4 23 58 0 39 5 4 7

5 3 18 0 40 4 1 1

6 11 26 0 41 1 0 0

7 1 6 0 42 0 0 2

8 22 38 0 43 1 4 2

9 6 13 1 44 0 0 0

10 7 10 0 45 1 0 0

11 4 4 0 46 0 0 0

12 13 32 1 47 0 0 2

13 10 19 9 48 0 0 1

14 0 9 2 49 1 0 1

15 4 14 2 50 1 1 0

16 10 9 3 51 0 0 0

17 8 7 18 52 4 0 23

18 5 2 6 53 1 0 0

19 2 0 3 54 0 0 0

20 9 12 4 55 0 0 2

21 3 1 7 56 1 0 0

22 5 7 9 57 0 0 1

23 1 0 2 58 0 0 0

24 7 10 4 59 0 0 0

25 2 1 2 60 1 0 1

26 18 15 21 61 0 0 2

27 0 2 1 62 0 0 0

28 0 2 0 63 0 0 0

29 1 0 1 64 0 0 0

30 9 4 9 65 0 0 1

31 0 0 3 66 1 0 1

32 1 0 1 67 0 1 1

33 1 0 0 68 0 0 0

34 2 1 3 69 0 1 0

35 2 0 8 70 4 3 33

(a) Ignoring the reason for unemployment ending, plot the Kaplan–Meier survivor

curve.

(b) One possible approach to modelling competing risks is to assume that all termi-

nations except that currently of interest are forms of censoring.

i Plot the Kaplan–Meier curve for obtaining a new job, assuming that those

recalled are censored (as well as those actually censored).

ii Does any simple logistic model fit these data well?
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Figure 6.6: Kaplan-Meier curve for all termination of unemployment.

iii Use the same approach for recalls, assuming that finding a new job is cen-

soring.

(c) Discuss possible drawbacks of such an approach to competing risks.

Answer

(a) The Kaplan-Meier curve ignoring the reason for unemployment ending is plotted in

Figure ??. Notice how the curve drops rapidly before levelling off. Some workers find

a job rapidly, but then the rest have much more difficulty.

(b) The Kaplan-Meier curve for obtaining a new job is plotted in Figure ??. This

curve is relatively straight showing that workers do not necessarily find a new job

quickly.

A logistic model with obtaining a new job depending on log time (AIC 115.0) fits

better than one with it depending on time (136.6). The null model has an AIC of 136.9.

The Kaplan-Meier curve for being recalled is plotted in Figure ??. This drops like

the curve for all workers, showing that most recalls happen rather soon after unemploy-

ment starts.

A logistic model with being recalled depending on log time (AIC 109.1) also fits

better than one with it depending on time (143.1). The null model has an AIC of 485.2.

(c) People who are censored may be very different from those finding a job so that

it may not be wise to combine the two. There may also be a dependence between recall
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Figure 6.7: Kaplan-Meier curve for termination of unemployment by a new job.

and a new job. People who are recalled may also be those most likely to be able to find

a new job.

Question (7)

Table ?? gave the survival over a ten year period of women with Stage II cancer of the

cervix.

(a) Construct the life table for these data using both the Kaplan–Meier (binomial)

and Aalen–Nelson (Poisson) methods.

(b) Women with Stage II cancer have a more advanced form of the disease than those

with Stage I in Table ??. Do the forms of their two survival curves support this

fact?

(c) Compare the probabilities of censoring in the two stages.

Answer

(a) The life table for the women with Stage II cancer is given in Table ??.

(b) The two survival curves are plotted in Figure ??. As might be expected, the

lower curve for Stage II indicates that these women survive less time.
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Figure 6.8: Kaplan-Meier curve for termination of unemployment by recall.

(c) We can set up a 10×2×2 contingency table containing the numbers censored

and not censored, out of those at risk, each year. The logistic regression gives a de-

viance of 78.90 on 19 degrees of freedom, clearly indicating that censoring depends

either on the year or the stage or both. The parameter estimates for year are α̂ =
(−2.19,−1.51,−0.54,−0.46,−0.28,0.19,0.16,0.09,0.50,0.78, 1.07). They show that

censoring generally increased over the years of the study. The estimate for difference

with stage is β̂1 = 0.22, indicating more censoring in the Stage I group.

Question (8)

Table ?? gave the lengths of marriage before divorce in Liège. Notice that there is no

censoring in these data.

(a) Plot the Kaplan–Meier curve for these data.

(b) Reconstruct the data as a contingency table and compare the fits of any appro-

priate logistic models.

(c) Discuss the complications in interpreting such a graph and models, given the

special way in which the data were collected.
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Figure 6.9: Survival curve for the Stage 2 cancer data. (from Clayton and Hills, 1993,

p. 32)
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Figure 6.10: Kaplan-Meier curve for the divorce data.

Answer

(a) The Kaplan-Meier curve is plotted in Figure ??.

(b) As with the unemployment data in Exercise (??.??), the model with the loga-

rithm of time (AIC 160.2) fits better than that with time (344.1). The AIC of the null

model is 676.8.

(c) It is very difficult to specify a larger population to which such data might be

generalised. The couples were married spread over 50 different years before the time

of the study. Because no information is available about couples who did not divorce,

no conclusions can be made about length of marriage in general, only about length of

marriage of couples divorcing in Liège in that year.
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Table 6.3: Survival over a ten year period of women with two stages of cancer of the

cervix. (Clayton and Hills, 1993, p. 32)

Stage 1 Stage 2

Years Number Deaths Censored Number Deaths Censored

1 110 5 5 234 24 3

2 100 7 7 207 27 11

3 86 7 7 169 31 9

4 72 3 8 129 17 7

5 61 0 7 105 7 13

6 54 2 10 85 6 6

7 42 3 6 73 5 6

8 33 0 5 62 3 10

9 28 0 4 49 2 13

10 24 1 8 34 4 6

Table 6.4: Estimated intensities and cumulative survival probabilities for the Stage 2

data. (from Clayton and Hills, 1993, p. 32)

Binomial Poisson

Years Intensity survival survival

1 0.103 0.897 0.903

2 0.130 0.780 0.792

3 0.183 0.637 0.659

4 0.138 0.553 0.578

5 0.067 0.516 0.541

6 0.072 0.480 0.504

7 0.068 0.447 0.470

8 0.048 0.425 0.448

9 0.041 0.408 0.430

10 0.118 0.360 0.383


