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Summary. The daily evolution of the price of Abbey National shares over a 10-week period is
analysed by using regression models based on possibly non-symmetric stable distributions. These
distributions, which are only known through their characteristic function, can be used in practice for
interactive modelling of heavy-tailed processes. A regression model for the location parameter is
proposed and shown to induce a similar model for the mode. Finally, regression models for the other
three parameters of the stable distribution are introduced. The model found to fit best allows the
skewness of the distribution, rather than the location or scale parameters, to vary over time. The
most likely share return is thus changing over time although the region where most returns are
observed is stationary.

Keywords: Extreme values; Fourier transform; Infinite variance; Regression model; Skewness;
Stable distribution

1. Introduction

Processes in economics often include considerable ‘noise’ as they evolve. Share prices in
stock-markets, even if they tend to show a global upward, constant or downward trend, are
usually extremely variable. The daily closing price y, (in pence) of the shares of the (British-
based bank) Abbey National between July 31st and October 8th, 1991 (Buckle, 1995), repro-
duced in Table 1, displays such a behaviour, as can be seen in a plot of the share relative
returns (circles and 0s) against time ¢ in Fig. 1. (Note that Buckle considered as a datum a
closing price for the last Monday of August 1991, the 26th, a bank-holiday in England. In
fact, this was just the closing price of the previous trading day, Friday, yielding a zero return
for that Monday.)

This behaviour, resulting from a large number of external (usually uncontrollable) independ-
ent influences, might be modelled by using simple distributions such as the normal distribution,
if it were not for some rather common extreme observations (such as those indicated by a 0
in Fig. 1). These ‘outliers’, although they may be of no direct interest in studying the global
evolution of share prices, cannot be discarded. They do not result from recording errors: they
were truly produced in some way by the stochastic process under study.

Various questions can be asked when studying the evolution of relative returns.

(a) We might be interested in understanding and forecasting extreme events to develop a
short-term investment strategy for example.
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Table 1. Prices and relative returns of Abbey National shares between July 31st and October 8th, 1991
Day Price  Relative Day Price  Relative Day Price  Relative
(pence)  return (pence)  return (pence)  return
July 31st 296 — August 23rd 307 0.0066 September 17th 295 0.0000
August 1st 296 0.0000 August 26th — — September 18th 293 —0.0068
August 2nd 300 0.0135 August 27th 304 —0.0098 September 19th 292 —0.0034
August 5th 302 0.0067 August 28th 303 —0.0033 September 20th 297 0.0171
August 6th 300 —0.0066 August 29th 304 0.0033 September 23rd 294 —0.0101
August 7th 304 0.0133 August 30th 304 0.0000 September 24th 293 —0.0034
August 8th 303 —0.0033 September 2nd 309 0.0164 September 25th 306 0.0424
August 9th 299 —0.0132 September 3rd 309 0.0000 September 26th 303 —0.0098
August 12th 293 —0.0201 September 4th 309 0.0000 September 27th 301 —0.0066
August 13th 294 —0.0034 September Sth 307 —0.0065 September 30th 303 0.0066
August 14th 294 0.0000 September 6th 306 —0.0033 October Ist 308 0.0165
August 15th 293 —0.0034 September 9th 304 —0.0065 October 2nd 305 —0.0097
August 16th 295 0.0068 September 10th 300 —0.0132 October 3rd 302 —0.0098
August 19th 287 —0.0271 September 11th 296 —0.0133 October 4th 301 —0.0033
August 20th 288 0.0035 September 12th 301 0.0169 October 7th 297 —0.0133
August 21st 297 0.0312 September 13th 298 —0.0100 October 8th 299 0.0067
August 22nd 305 0.0269 September 16th 295 —0.0101
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Fig. 1.

Share relative returns and fitted models against time: 0, outlying observed returns; O, observed returns;

, fitted mode under the stable model (d);

, 10% relative density contours under the stable model (d);

----- , mean under the normal model (1)

(b) We might be concerned by changes in the shape of the region where most returns are
observed, occasional extreme responses being of no direct interest. Hence, these observa-
tions should not be influential in an analysis undertaken to answer such a question.

(c) Finally, we might wish to describe how the most probable relative return is changing
with time, informing us about trends in likely future returns. Again, extreme values
should not influence this description as they are occasional and thus rather unlikely.
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In this paper, we shall propose answers to the last two questions for the Abbey National
shares data set.

The traditional normal regression model (on time) is clearly an inadequate tool as the slope
of the fitted mean (plotted as a broken line in Fig. 1) is very sensitive to the occasional extreme
(0) observations. Therefore, it is important to use models that are based on distributions with
heavier tails than the normal distribution when the extreme observations are considered to be
a reality, but of no direct interest. In this context, stable distributions provide an attractive
alternative approach.

Such distributions have been used in various fields besides economics (Mandelbrot, 1963;
Buckle, 1995), such as physics (Janicki and Weron (1994), pages 115-116) and survival analysis
(Hougaard, 1986).

Stable distributions are defined in Section 2 by using their characteristic function. The main
properties of stable processes are then presented and some well-known members described. In
Section 3, we discuss appropriate inference procedures. Most of the methods used in the
literature put a constraint on the skewness parameter, restricting discussion to symmetric
stable distributions. The direct likelihood inference procedure that we use does not rely on
such an assumption and is thus more general. It even allows direct modelling of this skewness
parameter.

In Section 4, stable generalized regression models for the location parameter are suggested
as a generalization of the well-known normal linear regression. When parameters other than
the location are held constant, this is shown to induce an implicit regression model for the
mode, the most probable response, a model that is easy to interpret. Finally, the model is further
generalized to regression equations for any or all of the four parameters of the distribution.

In Section 5, the Abbey National share relative returns are analysed by using these stable
generalized regression models. In the last section, we discuss the implications of our results.

The data that are used in this paper can be obtained from

http://www.blackwellpublishers.co.uk/rss/

2. Stable distributions

We first review the definition and the basic properties of stable distributions. A systematic
review of their theoretical aspects can be found in Samorodnitsky and Taqqu (1994).

2.1. Definition
A random variable Y is said to have a stable distribution if and only if it has a domain of
attraction, i.e. if there is a sequence of independent and identically distributed random

variables {Z,, Z,, . . ., Z,} and constants {a,} and {b,} such that
Zi+Z,+ ... +Z7
24+ +Z, b, Vin
a

n

converges in distribution to Y. In the special case where the Z;s have a finite variance, it can
be shown that Y is normally distributed.

The common way to specify a stable distribution is by its characteristic function ¢(¢), its
density function f(y) not being available in an explicit form, except in three special cases that
we discuss in Section 2.2. Until recently, this has been a major justification for not consider-
ing stable distributions in practice, although their interesting theoretical properties indicate
their potential importance in applied statistics. Indeed, they provide the only possible limiting
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distributions for the sum of independent, identically distributed random variables. This prop-
erty, which was originally used to derive the form of their characteristic function, generalizes
the central limit theorem to the case of infinite variance. Therefore, when an observed process
results from a large number of external (usually uncontrollable) independent influences, as is
often the case in economics, the family of stable distributions is an alternative that is worth
considering.

The logarithm of the characteristic function of the four-parameter family of stable distri-
butions can be written

log (1)} = ivt — 811" {1 + 18 sen() w(t, @)} (1)
— log(F! f) = log { JR exp(iry) f(7) dy}

where

tan(ma/2) if o # 1,

wit, @) = {(2/7r) log |1] ifo=1,

F[ fdenotes the positive Fourier transform of f(-), v € R is a location parameter, § € R" is
a scale parameter, « € ]0, 2] is the characteristic exponent determining the type of stable
distribution, especially the thickness of the tails, and 5 € [—1, 1] is an index of skewness. The
distribution is respectively left skewed or right skewed when 3 > 0 or 8 < 0, and it is sym-
metric when § = 0. Note that this has the opposite interpretation in terms of the sign
compared with the traditional coefficient of skewness based on third moments.

When a random variable Y has such a characteristic function, we shall write

Y~ 8.7, 6, B).
The distribution of Y can be standardized by using

Y—~o
Z_ (51/(1 ~ SO/(OS ]7 ﬁ)

The properties of any stable distribution can be deduced from the standardized stable distri-
bution with the same values of o and 3.

2.2. Special cases
In special circumstances, the characteristic function in equation (1) corresponds to a density
function that can be written in an explicit form.

(a) a =1 and B =0 yields the symmetric (about -y) Cauchy distribution with density

1

w61+ (v =)'/}
(b) a = 2 yields the normal distribution N(~, 26).
(c) a= % and B =1 yields the Lévy distribution with density

fy) =

L( — )7 ex —672 with y >
Jen TSP T e

In all other situations, the density must be generated numerically. However, as Hoffmann-
Jorgensen (1994), pages 406411, pointed out, the characteristic function can be inverted and
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expressed in terms of incomplete hypergeometric functions, which are generally only defined
as the sum of infinite series that can be numerically approximated.

A series expansion of the density is also available in the symmetric case (5 = 0; see Fama
and Roll (1968)) when o > 1. These series can be integrated term by term to yield an approx-
imation to the cumulative density of symmetric standardized stable random variables.

2.3. Properties

A random variable, Y ~ S, (v, 6, B), generally takes its values on R. Notable exceptions to
this are the Lévy distribution mentioned above and distributions with o < 1 and 8 = —1,
these having zero density on (—oo, v]. By definition, stable distributions are invariant under
addition, i.e. the sum of independent variables with the same characteristic exponent « will
still be stable with that characteristic exponent. Moments of order greater than or equal to «
do not exist, unless o = 2, in which case all the moments are finite. From this, we see that all
the stable distributions have an infinite variance, except the normal distribution. Moreover,
their mean is defined if and only if « € (1, 2]. Therefore, stable distributions are potential
candidates to model heavy-tailed processes. All stable distribution functions are unimodal
(Yamazato, 1978) and bell shaped (Gawronski, 1984).

3. Inference

Various methods have been suggested to estimate the parameters of a stable distribution
S, (v, 6, B) when the corresponding random variable Y is assumed to have generated a sample
{yi, ..., y,}. We review some of these techniques in Section 3.1. Then, in Section 3.2, we
show how to compute the likelihood function by a numerical inversion of the Fourier trans-
form in equation (1) to obtain the density function at any point, and hence the likelihood. This
evaluation of the likelihood function is made possible by efficient non-linear optimizers. We
also show how traditional linear, and non-linear, regression techniques can be implemented
practically.

3.1.  Review of current techniques
Fama and Roll (1968) integrated series expansions of the density to construct tables of
cumulative density functions (CDFs) for standardized symmetric (8 = 0) stable distributions
at various values of « in [1, 2]. The location and scale parameters are estimated with sample
quantiles and used to standardize the observations. The corresponding empirical CDF is then
compared with the theoretical CDFs in these tables to obtain an estimate for «.

Press (1972) suggested alternative methods that are also suitable for asymmetric distri-
butions. The resulting parameter estimates are based on the empirical characteristic function

NI B
o) = 2 exp(ity).

=

By noting that |¢(z)| = exp(—4|t|*), and considering two distinct values ¢, and 7, for ¢, Press
(1972) suggested, in the case a # 1, ‘moment’ estimates for « and 6, obtained by simultane-
ously solving

81t]* = —log (1) i=1,2.

An analogous argument based on the imaginary part of the logarithm of the characteristic
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function also leads to moment estimates for the location and skewness parameters. Similar
expressions are also available in the case o = 1. Press (1972) mentioned the problem of
developing a strategy for choosing the #;s, but he did not propose a solution although this
should affect the precision of the estimates. He did, however, point out that most applications
in economics involve large data sets (e.g. daily observation of a share over several years)
which, owing to the consistency of ¢(¢), lead to reasonable estimates of the parameters. The
asymptotic distribution of these estimators can also be derived in the symmetric case. This
can be used to construct confidence intervals.

Paulson et al. (1975) also used the empirical characteristic function to develop a method of
estimation. Their idea, which was already partially developed by Press (1972), is to find the
parameters «, 7y, 6 and § that minimize

| 160 - o exp-ryar @
It is legitimized by the coincidence of distributions sharing the same characteristic function.
They illustrated their technique by analysing security prices. Koutrouvelis (1980) also used the
empirical characteristic function to estimate stable distribution parameters in a ‘regression-
type’ approach.

On an empirical basis, Fielitz and Smith (1972) suggested using asymmetric stable distri-
butions, instead of the often-recommended symmetric distributions, to model changes in
stock prices. Leitch and Paulson (1975) also showed that ‘symmetry is definitely the exception,
not the rule’ when modelling changes in log(stock prices). They illustrated their claim by using
the empirical characteristic function method of Paulson ez al. (1975) discussed above. This
procedure gives better results than that of Fama and Roll (1968, 1971), particularly with
parameters affecting the tail.

DuMouchel (1973) reminded us that stable distributions are not the only alternative to
model long-tailed (infinite variance) processes. He suggested that, in some situations, extreme
observations might be generated by a different process than that producing the main body of
the data. Therefore, he proposed a mixture model of a (short-tailed) normal distribution with
a symmetric (long-tailed) stable distribution (with « < 2). This enables us to assess (partially)
the validity of the usual ‘stability hypothesis’. (Note that Teichmoeller (1971) has shown that a
mixture of normal distributions does not properly model stock price changes, a typical exam-
ple of a heavy-tailed process.) DuMouchel (1973) suggested computing the Kullback—Leibler
information to discriminate between symmetric stable and mixture models. The same method
could be used with alternative long-tailed distributions. DuMouchel (1973) also warned that

‘arguments for applying a stable model to data based on appeals to the generalized central limit
theorem have much less force in the infinite-variance case than in the finite-variance normal theory
case’.
Thus, in practice, the stable family of distributions should certainly not be considered as the
ultimate answer, even to modelling share prices, as often suggested in the literature.

In a second paper on stable distributions, DuMouchel (1975) showed how to approximate
the Fisher information matrix about the stable distribution parameters in both the symmetric
and the asymmetric cases. This can be used to construct confidence intervals for the max-
imum likelihood estimates (MLEs). He also provided some examples where the efficiency of
estimators, such as those proposed by Fama and Roll (1968, 1971), is assessed: their estima-
tion of ~y is very efficient, whereas the estimators for 6 and 5 do not perform as well, although
they can be used as initial values in an iterative estimating strategy.
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Chambers et al. (1976) showed how to simulate stable random variables. Buckle (1995)
estimated the parameters in stable distributions by using Bayesian arguments and Monte
Carlo simulation.

Stable distributions were also considered in econometry: see for example Liu and Brorsen
(1995) (and the references therein) where a generalized autoregressive conditional hetero-
scedastic process with residuals having a conditional stable distribution was proposed.

Although this review has not been comprehensive, it clearly shows that the likelihood has
not often been considered for estimating stable distribution parameters. In the next section,
we show how the Fourier inversion formula can be used to compute a stable density, making
likelihood inference possible.

3.2. An alternative approach

Before giving the technical details of our approach, let us consider an alternative, but
equivalent, form for the characteristic function of stable distributions, as used by Buckle
(1995):

log{¢(0)} = iyt — |16 exp{ —if Zn. sgn(r)}, 3

N, =min(a, 2—a)=1-|1—ql.

Although the parameters play the same role, they are slightly different in this parameteriza-
tion. They are related to the parameters in equation (1) by

;2 _1 [ cos(mar/2)
-

, As M
b= {cos(ﬁa/2) }

A* = cos’(ra/2) + 3 sin’(ra/2),

where

sgn(A) = sgn(l — a),
sgn(f3') = sgn(p).

The location and tail parameters, v and «, are unchanged (see also Leitch and Paulson
(1975)).

The density corresponding to this characteristic function can be computed from it by using
Fourier inversion:

1 1
T T

An extended version of this expression is

o [ s o ’ « / ds
thl(y|77 6 ’ 5 ) = ; J Ccos {(’Y - J’)g +s Sln(na,ﬁ’)} eXp{_S 005(77(1,[1/)} ? (4)
0

where
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;T
na,ﬂ/_ﬁ 277u

The last integral can be evaluated numerically by using for example Romberg integration
which allows the prespecification of the tolerated error. In this way, we can approximate the
density (and hence the likelihood) with the desired precision for fixed values of the stable
distribution parameters.

This can then be optimized, yielding the MLEs for v, §, 8" and « for a given sample. We
performed this estimation of the parameters using a non-linear optimizer. Our first results
were produced using procedure OPTMUM in GAUSS (Aptech Systems, 1992). More recently,
we have developed an R (a free S-PLUS clone) package, based on the Dennis and Schnabel
(1983) non-linear optimization algorithm, and allowing the interactive specification of non-
linear regression models (using the Wilkinson and Rogers (1973) notation when linear) for
the four parameters of the stable distribution.

Specifying reasonable starting values for the parameters is important both to ensure con-
vergence and to allow a quick evaluation of the likelihood in the optimization procedure.
Indeed, the optimizer that we use evaluates the gradient of the function numerically by taking
small differences from each argument successively. The time required to evaluate the integral
in equation (4) increases with the oscillation of the integrand. This oscillation is particularly
important when (y — «)/6" is very large, i.e. when the model under consideration assigns a
very small probability to the data. Therefore, unreasonable starting values for the parameters
significantly increase the time required to compute and maximize the likelihood with the
tolerated error as the optimizer tries to locate the parameter region where the MLEs are more
likely to be found. The choice of these values could be made by using the techniques reviewed
in Section 3.1.

The availability of the likelihood is particularly important to construct intervals of pre-
cision for the model parameters as symmetry is not the rule in practice; standard errors are
not appropriate for constructing such intervals.

4. Generalized regression models

If we can compute the likelihood, nothing prevents us from modelling the location parameter
in terms of covariates. If we denote by {x,, . . ., X, } the covariates associated with the obser-
vations {y,, . . ., y,} and by g(-) a link function, transforming the location parameter and
taking values on R, then a possible regression model would be

gn)
gm=| : |=X"9 (5)
g()
where X = (x, . . ., X,)" and %' respectively denote the design matrix and the associated

regression parameter vector. The other three parameters in the stable distribution can either
be fixed or simultaneously modelled if this is found necessary, as discussed below. In the
special case a = 2, we recover the traditional normal regression model. The regression in
equation (5) can also be extended to models that are non-linear in '

Modelling v may cause problems of interpretation to those accustomed to handling quan-
tities such as the mean and the median, although ~ is a location parameter in the same sense as
these two (more traditional) parameters. In our view, for many scientific questions, modelling
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the mode as a function of the covariates will often be more appropriate than other location
parameters because it is the most probable value for the response under the given model.
Unfortunately, for most distributions, we do not have a closed form expression for the mode,
meaning that we cannot directly model it (unless the distribution is symmetric). However, in
the stable family, for fixed values of &', 3’ and «, we can easily show that 3 — ~ does not vary
with 7, where 7 denotes the mode of the stable distribution S, (v, &', ). In this way, it is only
a function, say d(&', 8, ), of the other parameters. Therefore, the (generalized) regression
model in equation (5) implicitly defines the regression model

=g ' (xiY)+d@, B, )
for the mode. In the special case where g(+) is the identity function,
Fi=x' +d(©, 5, ) (6)

meaning that the v and the mode regressions only differ by the intercept.

But we must be aware that the mode is also influenced by the skewness of the distribution.
Therefore, a regression model for the mode would certainly be more delicate to interpret than
a model for the location parameter . Indeed, this last quantity only indicates where the
distribution is located: it does not inform us about the shape or the skewness of the distri-
bution. The total independence between the four parameters of a stable distribution allows
great flexibility when modelling data: this feature is particularly striking compared with
exponential family distributions where the dispersion is a function of the mean.

We can also allow the scale, the skewness and the characteristic exponent parameters to
vary with covariates, using appropriate link functions to guarantee that the constraints on
them are fulfilled:

log(é)) = x; 47,

The need to include a given covariate in one of the regression equations can be assessed
by comparing the Akaike information criterion (AIC; see Akaike (1973)) of the resulting
model with the AIC of the model ignoring this explanatory variable, with smaller values
being preferable.

5. Analysis of the Abbey National share returns

We shall now analyse the Abbey National share data given in Table 1 and plotted in Fig. 1 by
using generalized regression models. Econometricians often analyse log-returns instead of
share prices with the argument that ‘daily log-returns

log(y,/y:-1)

constitute a stationary process’ (Embrechts et al. (1997), p. 403). Using Taylor’s formula
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log( Vi > :10g<1 +y/ _yt—1> ~ Vi = Vi1 — 1,
Yi—i Yi—1 Vi—1

we can see that it is equivalent to relative returns.

Consider first (as suggested by Buckle (1995)) a stationary model for these relative returns
(also shown in Table 1). (The definition of relative return given by Buckle (1995), in his
section 3.2, is the negative of this, in disagreement with his histogram in Fig. 6, p. 611.) This
model makes the assumption that the distribution of relative returns is not evolving with
time. Moreover, these are assumed to be independent. Using the modelling strategy presented
in Section 3.2, we find the MLEs 4 = 0.00175, §' = 0.0079, 3’ = —0.822 and & = 1.53. With
the data set used by Buckle, these estimates become 5 = 0.00173, §' = 0.0078, 3’ = —0.809
and & = 1.52. Not surprisingly, they are very close to the previous estimates as the artificial
closing return for the bank-holiday is not an extreme.

Under the same hypotheses and using Bayesian procedures with his data set, Buckle (1995)
found the parameter estimates, as the marginal means of the posterior distributions, to be
4 =0.00053, & = 0.0079, 5’ = —0.55 and & = 1.61, whereas the marginal modes that he pro-
vided are & = 1.65 and ' = —0.80. Except for the location parameter for which we do not
have the marginal mode, these estimates are similar to the MLEs. Using the criteria proposed
by Paulson ef al. (1975), we find 5 = 0.00183, §’ = 0.0087, ' = —0.99 and & = 1.52, again
similar to the MLEs, except perhaps for the skewness parameter 3'. Note that the estimates
obtained by using the approach proposed by Press (1972) are, with our example, very sen-
sitive to the choice of the arbitrary values ¢, and ¢, (mentioned above) at which the empirical
characteristic function is set equal to its theoretical counterpart.

To obtain estimates of the precision of the maximum likelihood parameters, we can look at
the normed profile likelihoods (see for example Lindsey (1996), p. 111), as plotted in Fig. 2.
For example, the normed profile likelihood for 3" in Fig. 2(b) is simply

R(F) = max {H.fa(pzliy,ff,lj)}.
(.8, )eRxRy x10.21 U~ fa(p |7, 0% B7)

A likelihood interval for 3’ can then be obtained by considering the values of 3’ for which
R(3") is larger than some percentage. For example, the 14.6% (= exp{—xf(0.95)/2}) likeli-
hood interval corresponds to the traditional 95% confidence interval.

Because of the skewness of these (normed) profile likelihoods, we conclude that the use of
standard errors as a measure of precision would be misleading.

The graph for « indicates that the normal (o = 2) and the Cauchy («a = 1) distributions
are unlikely distributions for the data, whereas the graph for 3 informs us that there is little
support for symmetry (3" = 0).

The normed profile likelihood graphs obtained with the unmodified data set are nearly
identical with the profiles displayed in Fig. 2. The normed profile likelihood for ~, plotted in
Fig. 2(c), shows that Buckle’s (1995) estimate for - is almost as likely as our MLE. This is
confirmed by the first two rows of Table 2, where the AIC values of these two models are
virtually identical. (For comparability with other types of models, the likelihood function
includes the Jacobian for the transformation from prices to relative returns.)

Similarly, the normed profile likelihood for 8’ in Fig. 2(b) indicates that the estimate of
Paulson et al. (1975) for the skewness parameter is reasonable. This is again confirmed by the
AIC values of (the corresponding) models (a) and (c) in Table 2.

When comparing the normed profile likelihood plots with the marginal posterior densities
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Fig. 2. Normed profile likelihood for the parameters in the stationary model

Table 2. Likelihood (—log(L)) and AIC table for the Abbey National shares relative returns
modelled by using stable distributionst

Model —log(L) Number of AIC
paramelers
(a) Stationarity, our estimates 130.3 4 134.3
(b) Stationarity, Buckle’s (1995) estimates 130.3 4 134.3
(c) Stationarity, Paulson et al. (1975) estimates 131.0 4 135.0
Varying location
(d) vy, =y + it 129.4 5 134.4
© 7 =t + i+t 129.4 6 135.4
() v = o + Y1t +ap 129.2 6 135.2
(®) 7 = to + it with =0 131.3 4 135.3
Varying shapes
(h) log(6)) = i + ¥it 130.0 5 135.0
1+ 5
@ log<1 +;’,> =+ it 126.3 5 1313
- Mt
G) 10g< il > =y} + ot 127.4 5 132.4
2 —q
Normal distribution
(k) Stationarity 133.7 2 135.7
W) v = o + it 133.7 3 136.7

TThe AIC values of the models selected are given in bold.
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given by Buckle (1995), we see that the graphs for o and § are similar. The other two are
considerably more skewed, pointing to larger values being plausible. Note that our graphs are
exact, requiring no approximations either from Monte Carlo sampling or from imposing an
arbitrary prior distribution. In addition, they are parameterization invariant so inferences
can be drawn from these graphs about any desired transformation of the parameters. How-
ever, as for marginal posterior densities, they do summarize a four-dimensional surface so
care must be taken in their interpretation. Fortunately, the parameter estimates are not
highly correlated. (Asymptotic correlations among the estimates range from —0.04 between «
and 3 to 0.74 between v and &', all transformed as in the regression equations above.)

We have also considered non-stationary models as shown by models (d) and (e) in Table
2 where the location parameter is respectively modelled as a linear and a quadratic function
of time. The first of these models fits about as well but a quadratic in time is not necessary.
The parameter estimates are 4’ = 0.00804, 3’ = —0.782 and & = 1.31, and § = 0.00732
and 9)] = —0.000169 for the regression parameters, the last showing that the share relative
returns may be decreasing with time.

Associated with each value of 7, we have the fitted stable distribution S,(%,, &, 5')
describing the model structure (where 4, = 0.00732 — 0.000169¢). The mode j,, as the most
probable value generated by this distribution, is an attractive quantity to aid in understand-
ing the meaning of the regression model for +,. As we explained in Section 4, the linear
regression in time for , induces a linear regression model for the mode. Using equation (6),
we see that d(6', 3, @) can be determined by subtracting ¢y from the mode of the fitted stable
distribution S;(<)g, &, 4') at time ¢ = 0. This yields the fitted linear regression model

y,=—0.00033 — 0.000169¢

for the mode, plotted as the full line in Fig. 1. We have also determined the interval within
which the height of the density is at least 10% of its maximum (i.e. its value at the mode) for
the fitted stable distribution at each time point: the extremities of these intervals are plotted as
dotted lines in Fig. 1, so we have the 1.0 and 0.1 contours of (relative) density. For com-
parison, the regression for the mean under the normality hypothesis (model (1) of Table 2) is
represented by the broken line.

The position of the borders of the 10% density intervals with respect to the mode regression
line confirms that, under model (d), the estimated distribution is right skewed (3’ = —0.782)
throughout the time period. Note also that the width of the interval does not vary with =,
because &', 3 and « are assumed constant (and the link is the identity link). This can be
related to the constant variance assumption in normal regression models.

No serial association is detectable in these data, as shown by the AIC for model (f) in
Table 2, where conditioning on the immediately preceding share relative return p,_; is con-
sidered in addition to the linear model in time, giving an autoregressive AR(1) process. This is
not too surprising because the transformation from prices to relative returns is a form of first
differencing.

From models (k) and (1) in Table 2 and the normed profile likelihood for « in Fig. 2, we
can see that normality is not a reasonable hypothesis. This was already clear from Fig. 6 in
Buckle (1995), p. 611, although no formal comparison of these models was proposed there.
Note also that a symmetric stable model is not acceptable, as shown by the AIC of model (g)
and the normed profile likelihood for 3" in Fig. 2. This confirms the empirical conclusions
drawn by Fielitz and Smith (1972) and Leitch and Paulson (1975) in their studies of stock
price changes.
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Finally, for regression involving the location parameter, we observe that the fitted normal
regression line is closer to the horizontal than that for the mode under the stability hypoth-
esis. This is due to the influence of the extreme share price relative returns, as can be seen
from Fig. 1. The normal model must correct the slope of the regression line because the tails
of the normal distribution do not allow ‘extreme’ behaviour. In contrast, the stable regression
line goes through the main body of the data, nearly insensitively to the extreme observations
that can be encompassed by the heavy tails of a (non-symmetric) stable distribution.

The regression models considered so far are fairly classical, except for the use of the stable
family and the mode. Let us now study changes in the other parameters of the stable distri-
bution over time. From models (i) and (j) in Table 2, we see that a regression involving either
the skewness or the characteristic exponent parameter provides a better fit than any con-
sidered so far, with the former giving the best fit. We have checked that no combination of
several regression equations in the same model improves the fit.

Thus, we can conclude that it is not the location, nor the scale, but the skewness of
these data that is changing over time. In model (i), the skewness parameter is estimated to be
changing from about 0.9 at the beginning of the series to —1 at the end. However, because the
location parameter ~y of the distribution is constant over time, the mode must be moving to
allow the skewness to change. The estimate & = 1.37 indicates that the distribution has
heavier tails than does the stationary model but slightly lighter than that for regression with
the location parameter given above. As can be seen in Fig. 3, the mode of the distribution
follows the central mass of observations remarkably well, whereas the skewness allows for the
extreme values, which are negative near the beginning of the series and positive near the end.

The normed profile likelihoods for the five parameters in model (i) are plotted in Fig. 4. All
are still skewed, but we see that they have changed considerably from those for the simpler
model in Fig. 2. Although the final model has more parameters than the stationary model, we
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have gained precision in the estimation of the other aspects of the distribution (as can be seen
from the spread of the profile likelihoods). This clearly indicates that the final model is more
reasonable. The normal (o = 2) and the Cauchy (o = 1) distributions remain unlikely can-
didates. There is strong evidence that the distribution tends to become right skewed with time
(as positive values for 3 are extremely unlikely). Finally note that allowing the skewness to
change with time has reduced the dispersion of the fitted distributions since there is less
evidence for ‘large’ values of &'

The data set just analysed is a very short time series. No substantive conclusions about
share relative returns should be drawn from the model selected. With a longer series, it is
quite likely that the skewness might, for example, be oscillating back and forth. But, a clear
conclusion that we can draw is that, during the time period observed, the major mass of
probability stayed in the same location, although fundamentally changing shape. In studying
such data, among other things, we were interested in how the region in which most relative
returns would lie was changing over time, and in how the most probable relative return
varied over time. Our model has permitted us to answer both of these questions, as can be
seen in Fig. 3. In contrast, a mean, with its standard deviation, could not have correctly
answered either of them.
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6. Discussion

We have shown that, with modern computing power, the family of stable distributions, which
is only known through its characteristic function, can be used, in a likelihood approach, to
model continuous responses. The density at any point is determined numerically by applying
a Fourier transform to the characteristic function defining the stable distribution. This allows
us to maximize likelihoods, and to plot profile likelihoods, for regression models based on the
stable family at a speed that makes real-time interactive modelling feasible, even on a low
speed personal computer.

The availability of an efficient non-linear optimizer, such as procedure OPTMUM in GAUSS
or the Dennis and Schnabel (1983) algorithm available in R (Ihaka and Gentleman, 1996),
enables us to compute the MLEs. The AIC can then be used to compare the relative merits of
(possibly non-nested) models.

We have defined a generalized regression model for the location parameter v and shown
that it induces (a closely related) regression model for the mode. This last quantity, as the
most likely value of the fitted process, allows a simple interpretation of the models so con-
structed. We, then, generalized regression to changes in any or all of the four parameters of
the stable family. Introducing regression parameters into the likelihood function does not
make the estimating procedure more difficult to set up. We can also consider non-linear
regression models for the various parameters without difficulty.

Finally, the capacity of stable regression models to describe heavy-tailed processes was
used to analyse the evolution of the Abbey National share relative returns. The advantages of
this methodology are particularly clear when ‘outlying’ observations, that can be encom-
passed by the tails of a stable distribution, have an undesirable influence on a normal
distribution fit.

Because the family of generalized linear models has come to be fairly widely used, statisticians
have become accustomed to regression models where the variance is not constant. However,
these models impose a fixed relationship between the mean and the variance. In contrast, the
stable family is particularly interesting because four different aspects of the shape of the distri-
bution (location, scale, skewness and the thickness of the tail) can vary independently of each
other. This provides a freedom of modelling that is rarely found in other families.

The results of the example have major implications for most of traditional statistical
modelling. In the history of statistics, how many spuriously significant differences in means
have been detected when, in fact, only the shape of the distribution (dispersion or variance,
skewness or the thickness of tails) was changing? What indeed is the appropriate measure of
difference in ‘location’ for a given problem? For example, are we interested in how the mean
or the most probable response changes? All too often in statistics, means are calculated and
studied without any reference to the distribution from which they are derived. But we see that
a mean, or location parameter, cannot be correctly interpreted (the mean may not even exist)
if the distribution from which it arises is not specified, especially if that distribution may
possibly be skewed.

The R package that we have developed to produce the results in the paper is available from
sites where R can be obtained, or directly from the first author.
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