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Summary. For study of the human sex ratio, one of the most important data sets was collected in
Saxony in the 19th century by Geissler. The data contain the sizes of families, with the sex of all
children, at the time of registration of the birth of a child. These data are reanalysed to determine
how the probability for each sex changes with family size. Three models for overdispersion are
®tted: the beta±binomial model of Skellam, the `multiplicative' binomial model of Altham and the
double-binomial model of Efron. For each distribution, both the probability and the dispersion
parameters are allowed to vary simultaneously with family size according to two separate regression
equations. A ®nite mixture model is also ®tted. The models are ®tted using non-linear Poisson regres-
sion. They are compared using direct likelihood methods based on the Akaike information criterion.
The multiplicative and beta±binomial models provide similar ®ts, substantially better than that of
the double-binomial model. All models show that both the probability that the child is a boy and the
dispersion are greater in larger families. There is also some indication that a point probability mass
is needed for families containing children uniquely of one sex.

Keywords: Akaike information criterion; Beta±binomial distribution; Direct likelihood inference;
Double-binomial distribution; Finite mixture model; `Multiplicative' binomial distribution; Non-linear
Poisson regression; Overdispersion

1. Introduction

The study of the human sex ratio is greatly indebted to the data collected by Geissler (1889)
on the distributions of the sexes of children in families in Saxony during 1876±1885. The data
contain the sizes of families, with the sex of all children, at the time of registration of the birth
of a child. They, thus, do not necessarily refer to complete families because the parents could
have more children in the future. We assume that all children born to the family are included,
and not just those still alive at the time of the most recent birth, although this is not clear.
These data involve almost 1 million birth registrations and about 3.7 million births. Many

scientists have studied these data; Edwards (1958) provided a critical discussion of the
historical references. They present some interesting problems. For example, during the 10-
year period, many parents will have had several children and their families will be included
more than once, a problem that is essentially insurmountable given the available information.
Secondly, the rule determining when parents stop having children may vary with family size,
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depending more heavily on the sex balance as the size of family grows: parents with an
extreme sex imbalance may continue to have children for longer. Thus, the last birth may be
particularly suspect as far as providing an unbiased estimate of the biological sex ratio.
Two essential questions for the sex ratio are whether the probability that the child is a

boy varies among families and whether it can vary over time within a family. As is well
known, for aggregated data such as those that we have available from the Geissler study, these
cannot be distinguished. They will both manifest themselves as overdispersion with respect
to a binomial model. Thus, we can only ask whether the variability changes with the size of
family; if it does, it could be the result of either or both of the factors mentioned. There is
common agreement that the overdispersion cannot be explained by multiple births (twins).
Because there is a suspicion of bias for the last child, often analyses are performed on the

data without the last recorded birth. This can create some confusion. Thus, for example,
Sokal and Rohlf (1969), p. 80, used the data for the ®rst 12 children of families of size 13,
whereas Fisher (1958), p. 67, took the complete data for families of size 8.
Edwards (1958) provided a table with the frequencies, without the last recorded birth, for

families of size 2±13, for all possible combinations of boys and girls. It is reproduced in Table
1. Families of the same size lie along diagonals. For example, the data used by Sokal and
Rohlf (1969), p. 80, can be found on the uppermost diagonal, whereas those of Fisher (1958),
p. 67, correspond to the families on the diagonal for seven children. For convenience below,
we shall denote by n, varying from 1 to 12, the number of children in each family as included
in Table 1; this means that the total number of children in the family, at the time of recording,
is n� 1.
Edwards (1958) ®tted a beta±binomial distribution individually to each family size, i.e. to

each diagonal of the table, using the method of moments. He found a very good ®t with a �2-
test and a rather uniformly increasing variance with family size. With the more powerful
methods that are now available, an attempt to ®t a global model to the data in the table
appears useful. This will allow us to check exactly how the variance is changing with family
size and also whether the probability that the child is a boy is changing. We also look at the
possibility of there being couples able to have children of only one sex.
The analysis of these data has wider interest than simply elucidating the human sex ratio

for several reasons. It provides the opportunity to compare three models that have been
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Table 1. Geissler's data on the human sex ratio, from Edwards (1958)

Boys Girls

0 1 2 3 4 5 6 7 8 9 10 11 12

12 7 Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð
11 24 45 Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð
10 30 93 181 Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð
9 90 287 492 478 Ð Ð Ð Ð Ð Ð Ð Ð Ð
8 264 713 1027 1077 829 Ð Ð Ð Ð Ð Ð Ð Ð
7 631 1655 2418 2309 1801 1112 Ð Ð Ð Ð Ð Ð Ð
6 1579 3725 4948 4757 3470 2310 1343 Ð Ð Ð Ð Ð Ð
5 3666 7908 9547 8498 6436 3878 2161 1033 Ð Ð Ð Ð Ð
4 8628 16340 17332 14479 10263 5917 3072 1540 670 Ð Ð Ð Ð
3 20540 31611 30175 22221 13972 7603 3895 1783 837 286 Ð Ð Ð
2 47819 57179 44793 28630 15700 8171 3951 1776 722 275 104 Ð Ð
1 114609 89213 53789 28101 13740 6233 2719 1152 432 151 72 24 Ð
0 Ð 108719 42860 17395 7004 2839 1096 436 161 66 30 8 3



proposed for overdispersion in binomial data. For reasons discussed below, only one of
these, the beta±binomial model, has been widely used. A second point is that, in contrast with
most regression problems, such as with generalized linear models, here two regression
equations, for the probability (location) and for the dispersion, are needed simultaneously, a
family of models originally suggested by Lindsey (1974a) and independently by Pregibon
(1984). We extend this to ®tting a ®nite mixture model. Finally, methodology based on non-
linear Poisson regression is introduced to estimate the models ef®ciently.

2. Models for overdispersion

The most commonly used model for overdispersion in binomial data is the beta±binomial
model (Skellam, 1948):
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where n will be the family size for the Geissler data (in fact, the number of children, less 1)
and y the number of boys, and B�.� is the beta function. This parameterization is convenient
for comparison with the two to follow. The correlation is � � 1=fexp� � � 1g, with positive
values (i.e.  <1� indicating overdispersion (Lindsey (1993), pages 159±160). This distri-
bution can be derived from the binomial distribution if the Bernoulli probability is thought to
vary in the population according to a beta distribution, and the marginal distribution taken.
Although the binomial distribution is a member of the exponential family, the beta±binomial
distribution is not.
Two members of the exponential family have, however, been proposed to handle binomial

overdispersion. Unfortunately, both have intractable normalizing constants and thus have
not yet been widely used. They may nevertheless be ®tted by the method of Lindsey and
Mersch (1992), as explained by Lindsey (1995), pages 129±132.
Altham (1978) introduced two generalizations of the binomial distribution. That which she

called the `multiplicative' generalization is a member of the exponential family. It can be
written

f� y; �,  � � c2��,  �
n

y

� �
� y�1ÿ ��nÿy expf y�nÿ y�g

where c2��,  � is the intractable normalizing constant. The distribution will be overdispersed
for  < 0, with  � 0 yielding the usual binomial distribution. This parameter, as ÿ2 , is the
logarithmic conditional cross-product for the sexes of any pair of births given all the others.
A parameter in Cox's (1972) quadratic binomial model has a similar interpretation (see Cox
and Wermuth (1996), p. 80).
Efron (1986) proposed a family, which he called double exponential, that is a member of

the exponential family. For overdispersed binomial data, the double-binomial distribution in
this family may be appropriate:
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where c3��,  � is again an intractable normalizing constant. Again, the distribution will be
overdispersed for ÿ1 <  < 0. Here, 1=� � 1� has an approximate interpretation as the
variance in¯ation factor.
In each of these models, we let the probability that the child is a boy vary with family size

in the following way:

�n � log

�
�n

1ÿ �n

�
� �0 � n�1, �1�

a logistic regression. Similarly, the dispersion parameter is allowed to depend on family size
as follows:

 n � �0 � n�1. �2�
This completes the description of our models. Two problems remain: how can the models be
®tted and how can they be compared?
Procedures for ®tting the beta±binomial distribution are reasonably well known, at least

for simple data sets. As already mentioned, ®tting the other two distributions is considerably
more dif®cult because of the normalizing constant cj ��,  �. For one ®xed n, i.e. one diagonal
of our data table, they may be ®tted by the method of Lindsey and Mersch (1992) using
a standard linear Poisson regression model for the frequencies; see Lindsey (1995), pages
131±132, for ®tting the double-binomial distribution to the diagonal with n � 12. The
frequencies are regressed on the suf®cient statistics, y and y�nÿ y� for the multiplicative
binomial distribution and y and y log� y� � �nÿ y� log�nÿ y� for the double-binomial distri-
bution. (That given by Lindsey (1995), p. 131, contains an error.) The normalizing constant
is estimated by the intercept of the regression equation, the constant �1ÿ ��n also being
absorbed by it. (In what follows, this ®tting procedure, using Poisson regression, should not
be confused with the regression equations (1) and (2), used in the models being ®tted.)
Using this method, Lindsey and Laurent (1996) ®tted the Efron double-Poisson regression

model to overdispersed Poisson count data. They allowed both the location and the disper-
sion parameters to vary over time according to regression equations similar to those given
above. For the Geissler data, the problem is more complex because the normalizing factor
�1ÿ ��n is not constant.
The Poisson regression required to ®t these models may be written

log��yn� � �n ÿ logf f�yn; �n,  n �g �3�
where �yn is the (Poisson) mean frequency of families of size n with yn boys, f�.� is one of the
three distributions described above and �n corresponds to a factor variable with a different
level for each family size. �n ®xes the total number of families of each size at the observed
value, ensuring that each distribution (for each diagonal) is properly normalized (Lindsey
(1995), pages 44 and 127).
For simple models in the exponential family, equation (3) is linear in the unknown

parameters (except for the normalizing constant that does not involve the observations and is
estimated by the intercept). However, for our models, it is non-linear, even for the binomial
distribution, because of the term n log�1ÿ �� mentioned above, where n varies from 1 to 12.
Thus, a non-linear Poisson regression function is required here to ®t the models by using
equation (3).
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To compare the models, we use direct likelihood methods (Edwards, 1972; Lindsey, 1974b,
1996). For eachmodel ®tted, we give theÿ2 log-likelihood based on the Poisson distribution, so
that smaller values are preferable. Deviances for nested models can be obtained by subtraction.
Because the models contain differing numbers of parameters, we use a standard model

selection procedure, penalizing complexity by using the Akaike information criterion (AIC)
(Akaike, 1973). This means that twice the number of parameters estimated will be added to
each ÿ2 log-likelihood in comparing them. Smaller values are still to be preferred. Such a
method is generally appropriate only for the reasonably small sample sizes that are usually
encountered, i.e. those obtained by a sample size calculation appropriate to detect an effect of
scienti®c interest. Although in other cases it will generally indicate too complex a model, we
nevertheless use it here with nearly 1 million observations.

3. Modelling the human sex ratio

The saturated Poisson regression (log-linear model) for the table, with 90 parameters (the
number of frequencies in the table), has ÿ2 log-likelihood � 842.4 (including the factorial of
the Poisson distribution here and in all following likelihoods). The binomial distribution,
ignoring overdispersion, has a common estimate for all family sizes, for the log-odds, �̂ �
0:0596, or, for the probability, �̂ � 0:5149, with ÿ2 log-likelihood � 1866.5. As a non-linear
Poisson regression model, it has 13 parameters, 12 of which ��n� ®x the family sizes, leaving
77 degrees of freedom, as expected. These are the two extreme models providing points of
comparison.
We ®rst ®t the beta±binomial model and compare our global model with the results

obtained by Edwards (1958) for separate family sizes. The results are in the ®rst part of Table
2. (As indicated there, some of the parameter estimates are multiplied by 100 for clarity.)
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Table 2. Parameter estimates{, likelihoods and AIC values for Geissler's data

Beta±binomial model
�̂0 0.060 (0.001) 0.049 (0.002) 0.059 (0.001) 0.050 (0.002)
100�̂1 Ð 0.186 (0.038) Ð 0.173 (0.039)
�̂0 4.580 (0.036) 4.580 (0.036) 5.400 (0.125) 5.387 (0.124)
100�̂1 Ð Ð 711.000 (1.431) 710.866 (1.424)
72 log-likelihood 1033.1 1011.0 970.7 950.4
AIC 1061.1 1041.0 1000.7 982.4

Multiplicative binomial model
�̂0 0.057 (0.001) 0.051 (0.002) 0.057 (0.001) 0.051 (0.002)
100�̂1 Ð 0.115 (0.036) Ð 0.104 (0.036)
100�̂0 71.950 (0.066) 72.006 (0.066) 70.523 (0.199) 70.527 (0.199)
100�̂1 Ð Ð 70.193 (0.025) 70.197 (0.025)
72 log-likelihood 1009.7 1001.4 953.6 948.5
AIC 1037.7 1031.4 983.4 980.5

Double-binomial model
�̂0 0.060 (0.001) 0.051 (0.002) 0.059 (0.001) 0.052 (0.002)
100�̂1 Ð 0.067 (0.038) Ð 0.142 (0.038)
100�̂0 73.150 (0.140) 73.131 (0.140) 0.527 (0.316) 0.528 (0.316)
100�̂1 Ð Ð 70.857 (0.060) 70.862 (0.060)
72 log-likelihood 1375.9 1356.4 1028.6 1009.1
AIC 1403.9 1386.4 1058.6 1041.4

{Standard errors are given in parentheses. Each model has 12 parameters ��j � ®xing the family sizes, in addition to
those shown.



From the likelihoods, we see that regressions are required for both the probability and the
dispersion; both parameters change with family size. The four models are all much better
than the binomial distribution. The last two, with a regression for the dispersion parameter,
are considerably superior to the saturated model with 90 parameters according to the AIC:
1000.7 and 982.4, compared with 1022.4. The dispersion parameter is estimated to be less
than 1, decreasing with increasing family size, indicating increasing variability.
The variance of the Bernoulli probability �, that is assumed to have a beta distribution in

the construction of the beta±binomial distribution, is

�2n �
�n�1ÿ �n�
exp� n� � 1

where �n and  n vary according to family size following respectively equations (1) and (2). This
provides an indication of how the dispersion is changing. The values for the different family
sizes are in Table 3, along with those calculated separately for each family size, as given by
Edwards (1958). The probabilities from the global model, and the separate probabilities
given by Edwards, are also shown, as are the correlations estimated from the global model.
We see that all these parameters increase with family size, with our estimates of the variance
changing more rapidly than those of Edwards.
Table 2 also provides the ®ts and parameter estimates for the models based on the other

two distributions, the double- and multiplicative binomial models; the latter gives the best ®t
of the three. With 16 parameters, it, like the beta±binomial model, ®ts exceptionally well for
such a large sample size: the AIC value is here 980.5 compared with 1022.4 for the saturated
model. In contrast, the standard asymptotic signi®cance test for goodness of ®t of this model
is extremely misleading: �2

74 � 106:2, from the difference in log-likelihoods (for the reason,
see Lindsey (1996), pages 104±110, 302±303 and 310±311).
As with the beta±binomial model, both the probability and the dispersion increase with

family size in both of these models. Unfortunately, because of the intractable normalizing
constant, the variance is dif®cult to calculate.
For all three distributions, the log-odds parameters without the regression have virtually

identical estimates whereas those with the regression are very similar. In contrast, the
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Table 3. Probabilities, variances and correlations from the beta±
binomial distribution, according to family size, for Geissler's data{

Family
size

�̂n �̂2n �̂n

2 0.5134 0.5138 0.00141 0.00185 0.00565
3 0.5138 0.5144 0.00157 0.00139 0.00630
4 0.5143 0.5141 0.00175 0.00127 0.00702
5 0.5147 0.5141 0.00195 0.00180 0.00781
6 0.5151 0.5149 0.00217 0.00236 0.00870
7 0.5156 0.5147 0.00242 0.00260 0.00969
8 0.5160 0.5156 0.00270 0.00290 0.01079
9 0.5164 0.5178 0.00300 0.00298 0.01202
10 0.5168 0.5174 0.00334 0.00320 0.01338
11 0.5173 0.5171 0.00372 0.00384 0.01489
12 0.5177 0.5192 0.00414 0.00378 0.01657

{For each of �n and �
2
n, the ®rst column is the estimate given by the global

model ®tted here and the second column is the individual value calculated
by Edwards (1958).



estimates of the parameters in the dispersion regression are unfortunately not comparable,
making interpretation dif®cult.
We can, at least, conclude that the probability that the child is a boy increases on average

with family size. In addition, within a given family size, this probability varies in un-
known ways among families, more so for larger families. Combined, these two results may be
indications either that the probability that the child is a boy is increasing with the order of
birth for individual families or that there is a difference among families such that those with
higher probability of giving birth to a son tend to have larger families.
One additional hypothesis of interest is that some couples are only capable of having

children of one sex. This can be modelled by using a ®nite mixture model with equal point
masses for families with either all girls or all boys:

�1ÿ ��z� � f� y; �,  �
where � is the mixing probability and z � 1 if the family has all boys or all girls and z � 0
otherwise. We add this mixture to the models ®tted above for the beta±binomial and the
multiplicative binomial models with two regression equations. The ÿ2 log-likelihood values
are respectively 949.3 and 944.6, both slightly better than for the corresponding models
without the mixture. The parameters for the latter model are now �̂0 � 0:052, 100�̂1 � 0:0969,
100�̂0 � ÿ0:555 and 100�̂1 � ÿ0:173 (with the same standard errors as in Table 2). The
estimate of the logit of the mixing probability is ÿ8:310 (standard error 0.254), yielding an
estimated probability of 1ÿ �̂ � 0:000246 for one-sex-children only families. If we add
a third regression equation to the model, allowing the mixing probability to change with
family size, similar to equation (1) but for � instead of �, the ®t is not improved at all. Thus,
we have some evidence for the existence of such families, although they are very rare. (This
probability, none-the-less, refers to almost 250 families in the data set.)
It is intriguing to see what happens when we ®t a mixture model to the data set for

complete families of size 8 (Fisher (1958), p. 67), the same families for which the ®rst seven
children are shown in Table 1. In contrast with the results above, the beta±binomial and
multiplicative binomial models here have identical log-likelihoods, 52.7 without and 41.0
with a mixture, as differences from the saturated model. (For the ®rst seven children, the log-
likelihoods are 6.3 and 5.7 for the beta±binomial model.) With 6 and 5 degrees of freedom,
the models do not ®t well to the complete families. The estimated mixing probability is not
the same as above, both being considerably larger, respectively 0.001540 and 0.000699. This
stronger evidence of a mixture in complete families of size 8 seems to indicate that a sub-
population of single-sex families might be a social, not a genetic, phenomenon, although this
conclusion is questionable because of the poor ®t.
In social terms, we might argue that some of the parents who originally had small families,

those with very unequal sex ratios, might continue to have children so that the distribution of
the remaining small families would be underdispersed. For the same reason, larger families
would be overdispersed because equally divided families would be under-represented. With-
out rather strong assumptions (Edwards, 1958), these data provide little evidence of this
phenomenon as, with all models, they are overdispersed for all family sizes.

4. Discussion

The appearance of some families several times in the data set obviously makes our models
incorrect, at least for comparisons among families of different sizes. (A family cannot be
represented twice on the same diagonal.) Without further information, however, we cannot
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judge to what extent this is true, or how it might affect the excellent ®t of the beta±binomial
and multiplicative binomial models. If it has an in¯uence, it should primarily be on the slope
parameters for family size.
The exceptionally good ®t of the multiplicative binomial model for these data raises the

question of its interpretation. Does it have some biological signi®cance similar to the idea
for the beta±binomial model of the Bernoulli probability varying across the population
according to a beta distribution? Can more be said about the parameters than the empirical
statement that the probability and dispersion both increase with family size? Given that  
in the multiplicative binomial model measures the logarithmic conditional cross-product
between pairs of births, it is not surprising that it changes with family size nor that the model
provides a similar ®t to the beta±binomial model with its correlation between pairs of births.
But does the way in which these dependence parameters change have biological, or social,
meaning?
In these data, the last birth has been removed because of possible social `biases' in con-

tinuing to have children, as has usually been done in the literature. However, Geissler (1889)
also provided the comparable data for all births, including the last, for all family sizes. Fitting
the same sequence of models to the complete families of sizes 2±13 changes the results very
little, including the estimate of the mixing probability. This indicates that inclusion of the last
birth makes little difference and contradicts the results for families of size 8 mentioned earlier.
It may be a clue that the role of biological factors is relatively more important than that of
social factors.
For these data, the multiplicative binomial model ®tted somewhat better than did the beta±

binomial model. For other data sets, the same might occur with the double-binomial model.
This suggests that these two models should be much more widely used. In spite of the intrac-
table normalizing constant, in standard problems, these two models are much easier to ®t
than the beta±binomial model because this can be done with linear Poisson regression in any
statistical package by using the method of Lindsey and Mersch (1992).
For the problems involving a series of different distributions, as we have here for different

family sizes, the ®tting procedure is still fairly straightforward, despite the non-linear Poisson
regression.
The non-linear Poisson regression function was programmed in R (Ihaka and Gentleman,

1996), which uses the non-linear optimization algorithm of Dennis and Schnabel (1983).
(GAUSS, GENSTAT or S-PLUS would also be appropriate languages for this problem.)
The optimization algorithm calculates derivatives numerically so that only the minus log-
likelihood function must be supplied. In this way, models with from 13 to 18 parameters, all
treated as being non-linear, were ®tted. As a check, the beta±binomial models were also ®tted
directly, in the usual way without the Poisson regression, giving the same results. Because of
the high dimensionality of the problem, we have no absolute guarantee of having reached the
optimum for the models based on the other two distributions that cannot be checked in this
way, but the similarity of results is a good indication.
As in most non-linear optimization problems, the initial values are crucial. Estimates from

an approximate linear Poisson regression were used. In all three models, the regression
parameters for the probability are almost information orthogonal to those for the dispersion,
whereas those within the same regression equation are highly correlated. This can create
problems for the optimization routine which varies only one parameter at a time, not knowing
that two need to be changed simultaneously to improve the likelihood. Orthogonalizing the
parameters (Ross (1990), p. 17, and Lindsey (1996), pages 109 and 234±240) will usually aid
in obtaining convergence.
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