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Abstract: Probability distributions in the exponential family can be fitted dircctly as log lincar
models and the usual maximum likelihood estimates of parameters obtained. If a composite
distribution is constructed from several competing candidates. these may also be compared within
a log lincar model. and those not acceptable climinated. The approach also applies to truncated
distributions, as well as when independent variables are present (generalized linear models). Here.
in the most general case. the different sub-populations may even have different distributions
within the same model. With additional iterations. cstimation may be extended to certain models
outside the generalized lincar framework.,

Kevwords: Comparison of models. Generalized lincar models, Goodness of fit. Likelihood infer-
ence. Log lincar models. Probability distributions, Truncated distributions.

1. Intreduction

Several approaches have been suggested for the comparison of probability
models. In the context of classical hypothesis testing, Cox [4], [5] and Atkinson
[2] introduce methods of imbedding several alternative models in a combined
probability distribution. They concentrate especially on exponential combina-
tions of the form

N 1-A

Cn{fl(yj~ 01)}A{f:(.",‘~0:)} (1.1)

i=

for variable vector, y, parameter vectors, 8, and 6,. and normalizing constai t. ¢,
with N observations and j indexing individual observations. A valuc of A ncar /
indicates that the suitable distribution is proportional to the probubility density,
f,(.), while one near 0 indicates that it is f,(.).

A second approach, using likelihood inference but not cquation (1.1). was
proposed by Lindsey [11][12], who imbe<s probability models within a more
general multinomial distribution. Here, with n, observations for value y, of the
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variabie. where k indexes distinct values of y, so that Ln, = N, the likelihood
function is

L(p)a[]Ip».  where (1.2)

p.=F(y.: 8), y discrete (1.3a)
w v /2

S [ f(y:; 0)dy, y continuous (1.3b)
Ay /2

=f(yi: 0) Ay

with F(.) a probability function, f(.) a probability density function, and Ay, the
unit of measurement. The general multinomial model places no constraints on
the probabilities, p,. and hence fits the data exactly. Then for each model of
interest, a different vector, p, is estimated from equations (1.2) and (1.3), and
that giving a larger value of the likelihood function (1 2) and hence a smaller
deviance., i.c., that closest to the uncenstrained multinomial modei, is considered
more plausible.

This second approach will be pursued in the present paper, where we shall
show how many models, specifically those which are members of the exponential
family, can be fitted and compared in this way as log linear models.

2. Likelihood functions for grouped data

For discrete models, the form of the likelihood function is not a problem for
fitting distributions. For continuous data, some kind of grouping must be
performed, although note that any empiricaily observed continuous data are
already grouped. For the present, we restrict attention to the exponential family,
which has a density of the form

p
f(yi:0)= exp{ Z tj(yk )Hj +c(0) +d( }’k)} s (2.1)
j=1

wiiere c(.) is the normalizing constant and ¢,(.) are the sufficient statistics for the

parameters. For any empirically observed data, a probability function must be
used

14
F(y,: 0)= cxp{ ¥ 1(x,)8;+c(0) + d:(yk)}, (2.2)
j=1

where d.(.) is a function of y, depending on both d(.) and the width of the
grouping intervals associated with each observed y,. This is just the approxima-
tion to an integral shown in equation (1.3b). We may now consider discrete and
continuous data on the same footing.

In most applications, the latter part of the probability in (2.2}, the function of
the grouping width, is a constant independent of the parameters to te esti-
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mated, so that equations (2.1) and (2.2) yicld the same likelihood function. If we
maximize this likelihood with respect to @ in the usual way, we obtain the usual
maximum likelihood estimates.

However, the multinomial likelihood of equation (1.2) can also be maximized
as a log linear model for categorical data, for example with GLIM, if we ignore
that c(.) is a function of @ and treat it is a global constant parameter, the
intercept. Thus, we propose to maximize the equivalent Poisson likelihood

TIxg e /n,
where

p
Ap=expi0,+ 2, 1(y)8, +ds(y,))}.
j=1

0, replaces c(8), and the total number of observations is fixed. For a member of
the exponential family, the sufficient statistics for the parameters are fitted as
explanatory variables in a Poisson regression. Now, the grouping intervals are no
longer independent of the parameters, since we are, in fact, estimating the
probabilities of observations falling in the different grouping intervals and the
probability parameters are a function of these intervals. The full likelihood for
our model is the multinomial likelihood given by equation (1.2) with », =
F(y.; 0).

In log linear models for categorical data, conditicning on the total number of
observations in the Poisson likelihood cnsures that the total multinomial proba-
bility of all categories included in the model equals one. Here, as defined so far,
this is not what we require, since, in a probability model to be fitted, the sum of
probabilities of all possible values of y, must equal one. The normalizing
constant, c(@), will only normalize the probabilities contained in the model. This
may simply be accomodated by including zero frequencies for all unobserved
values of y,, since these are sampling zeroes, which might be nonzero in
another sample, and not structural zeroes (see Lindsey [13] p. 78). Ir. practice,
we can only include a finite subset, but parameter estimates with any desired
degree of accuracy can be obtained by only excluding intervals with small
enough probauilities. In this way, 6, provides an estimate of c(@), hence a
second estimate of {a function of) 0.

If we purposely exclude certain grouping intervals which have relatively high
probabilities under our model, but have zero observed frequencies, we arc
fitting a truncated distribution. In terms of categorical iog linear models, we are
saying that these are structural zcroes which are irmpossible to observe.

Three points may be noted. The function d,(y,) does not involve § and, thus,
forms a known constant term :n the log linear regression model, something
which is known as an offset in GLIM terminology. Secondly, as Lindsey [11]
shows, 4y, in equation (1.3b), which is included in the offset, may be allowed to
vary within a certain objective range without greatly modifying the results. Thus.
it may not necessarily be the unit of measurement, but may be chosen to reduce
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the number of smail frequencies, if a measure of goodness of fit is required.

Thirdly, the deviance does not reman unchanged as zeroes are added In fact, it

increases as the para u

estimates are for a tru th just tnc

included. On the other hand, lf the data have been regrouped, so that Ay, is

larger than the unit of measurement, 8 will not be accurately estimated, as is
always the case with grouped data.

This, then, is a procedure which gives the usual maximum likelihood esti-
mates of all parameters, with the same standard eriors when they are in
canonical form. The statistical properties of these models are well known; see,
for example, Haberman [7] and Silvapulle and Burridge {15]. If the parameter
estimates exist, they are uniquc. For our present case, the exponential family,
these estimates do exist.

The deviance of this Poisson regression model from the saturated rmodel
provides a measure of goodness of fit of (1.3); see Lindsey [11]. This involves a
comparison of the estimated probabilities for the model (1.3) to the observed
relative frequencies. As always with inferences for goodness of fit, the probiem
of small and zerc frequencies must be taken into account. Obviously, if the
fitting procedure involves a lot of zeroes, deviance values should be interpreted
in terms of relative plausibility and the corresponding test statistics as a guide to
selecting a model. Conditional tests may be more appropriate in such cases.

Two simple examples may be used to illustrate this approach. Take first a
discrete case, the Poisson distribution. With 6, = log(n), equation (1.3a) be-
comes

pe=e* +vlog(u)—log(y, H (2.3)

I—

so that we fit a log linear model with an intercept and a term in y, with
offset — log(y,!). If we are not fitting a truncated model, the intercept will yield
the negative of the mean plus log(N) and the parameter for y, the iog of the
mean, and these two estimates of the mean will be identical to the degree of
accuracy determined by the zero frequencies included.

The equivalent continuous case is the exponential distribution. Here, equa-
tion (1.3b) becomes

D= e ~logtu) -y, /“Ayk, (2.4)
so that again we fit a log linear model with an intercept and a term in y, but
with offset log(dy,). Now 8, = —1/u, so that the intercept yields the negative

of the log mean plus log( N) and the parameter for y, the negative reciprocal of
the mean, and again these two estimates of the mean will be identical, if we
have an untruncated model

3. Comparing probability distributions

Suppose now that we do not know the correct form of the probability model
(1.3), but have several possible candidates. As long as the competitors are all



J.K. Lindsey and G. Mersch / Fitting and comparing probability distributions 377

members of the exponential family, we may construct a composite log linear
model which encompasses all of these candidates. Since cach simple model is a
log linear regression on some functions of the variable, the sufficient statistics.
we can combine these functions as terms in a composite model. We are, thus,
imbedding the several distributions of interest within a more general distribu-
tion which takes the form of a iog lincar model. We have two levels of
imbedding: several specific probability distributions within a more gereral
compc-ite one, and the latter within the unconstrained multinom:.l distribution.
In this way, we avoid the restrictions of the aliernatives implied by using model
(1.1) to compare distributions.
Suppose we wish to compare a gamma distribution

pA = cn-lug(p)*(u— Diog(v ) — v, = log( l'(u)).,_‘yk (3 1 )

with the log normal distribution

~ aconst-log(r=) /2 - p A2y s wlogty et - logt(v )/ (2at ) g,
pi=c ‘ Ay, (3.2)

Here, 0, = —p and 6, =« — 1 forequation(3.})and 6, =u /07,0, = —1/(20°).
and const = —log(y,) — log(27", .. in equation (.2).

For the latter distribution by itself, we would fit our log linear model with an
intercept, log(y,), and log"(y,), and constant term (offset)

—log(y,) — iog(2m) /2 + log(2y,). (3.3)

From this model, we obtain estimates of both the mean and the variance using
the parameter estimates for the two terms involving y,.

To compare the two distributions, we must also include y,, thus fitting the
intercept, y, ., log(y,), and log*(y, ), with a combined offset, which here contains
the same -log(y,) from both distributions. We, then, test which terms in the
log linear model are significant using standard techniques for log linear models.
If the term for y, can be eliminated, we have a log normal distribution, and if
the term for log*(y,), we have a gamma distribution. However, it is always
possible that the parameter estimates for the two distributions are such that it is
impossible to choose Leiween the models. In such cases, this method will have
the same problems as any other.

With this procedure, we may discover acceptable probability distributions
which are not among those usually considered. For example. the above compos-
ite distribution, in fact, incorporates four common distributions: the exponential
(y,), the Pareto (log(y,)), the gamma (y,,!og(y,)), and the log normal
(log(y,), log*(y,)). However, only log( y, ) might fall out, leaving y, and log*(v,)
which corresponds empirically to the definition ¢f a probability distribution,
although it does not correspond analytically to anv kiiov.n distribution.

Note that, in such comparisons using composite distributions, we may be
limited in the number of simple distributious which may be combined at one
time, espccially if each has several parameters. As usual, the total number of
estimable parameters will depend on the number of categories of the variable,
y, with non-zero frequencics, i.e.. or the degices of freedom available.
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Table 1

Simulated log normal data

y 0.5 1.5 25 33 45 55 6.5 7.5 8.5 9.5
Frequency 1 14 8 12 15 14 6 10 5 i1

y 10.5 11.5 12.5 13.5 i4.5 15.5 16.5 17.5 18.5 19.5
Frequency 6 9 6 7 7 I 8 5 5 5
y 205 215 225 235 245 2535 26.5 275 285 305
Frequency 2 1 1 1 2 - 4 3 4 2
y 315 325 335 345 365 375 36.5 435 445 505
Frequency 1 1 1 2 1 i | | 1 i
y 51,5 535 656 745 955 975 104.5 165.5

Frequency 2 1 2 1 i 1 1 1

On the other hand, although not noted in the previous section, where it
would have had limited relevance, models may be fitted by this method even
when all values of the frequency vector, n are very small, even one. Regrouping
is not required for parameter estimation and comparing models, but » must be
appropriately filled with zeroes. However, in such a case of sparse observations,
measures of goodness of fit have littlc or no meaning.

Example 1. Table 1 provides a set of 200 simulated log normal values. The
procedure described above was usea {0 compare the gamma and log normal
distributions, with the vector n extended with zeroes to y, = 200. The intercept,
v.. log(y,), and log*( y,) were fitted. Table 2 gives the analysis from GLIM, with
parameter values, standard errors, and changes in deviance due to removing
each term in turn from the full composite model. In this case, the offsct does
not contain —log(y,) of expression (3.3), since this is not present in the
exponential distribution.

From these resnlts, it is cl¢ r that the ierm for y, may be eliminated, but not
the other two. Ti.s stronglv indicates that the gamma distribution is rejected in
favour of the log normal distribution, ac we uld be expected. At the same time,
the Pareto and exponential are also clearly unacceptable. The deviance for
goodness of fit of the log normal distribution is 98.93 with 197 d.f., but note that
152 of the frequencies are zero and that many others are very small. The mean
and variance calculated from the parameter estimates, with the y, term re-

Table 2
Comparison of the gamma and log normal models for the simulated data of Table 1 using GLIM
Term Estimate s.c. Change in
Deviance
1 2.660 0.4686
i —-0.0002538 0.01313 0.00
log(y,) 1.290 0.3188 25.73

log=(y,) -0.4967 0.1046 25.23
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Table 3

Returns from a postal survey for the number of occupants in cach house

Number of Occupants 1 2 3 4 S 6 7
Number of Houses 436 133 19 2 1 0 ]

moved, are: 2.302 and 1.003 respectively. The values calculated directly from the
data are 2.296 and 0 997. If we extend n with, for example, 50 more zeroes, to
yi = 250, we obtaia ..249 and U.997, even closer to the correct values.

Example 2. Consider the data in Table 3 from a postal survey giving the number
of occupants in each house, kindly supplied by A.J. Scallan. We may wish to fit a
Pcisson distribution truncated at zero which has

L =€ ~ 4 —log]l —exp(— )]+ ¥y log(uy—log(y, 1)

If we fit the log linear mode , using GLIM, with the frequency vector extended
with zeroes to y, = !5, we obtain an intercept of 6.632 and a slope of —0.5505.
The slopec should be equal to log(w) which gives an estimate of the mean
parameter equal to 0.5766. The intercept should be equal to log(N) — u — log[1
—exp(—u)]. If we substitute in the value for p just obtained, we have 6.632,
identical to three decimals with our estimated intercept.

4. Comparing statistical models

Suppose now that we have a more complicated model, one with independent
variables. Parameters and variables indexed by k& will be taken, as above, to
refer to the dependent variable defining the probability distribution, while i
indicates values of the independent variable(s). We restrict attention to one
independent variable without loss of generality.

Consider a composite model containing appropriate terms for all distributions
of interest. If this can be reduced to a model of the form

14
Ay = exp{o(, + Z t,'(y,‘k )0,' +ds(¥, )} s

i=1

then we have an ideutical distribution for all values of the independent variable,
x. On the other hand, if the model must be

p
A = exp{(),(, + Z tj(yik )9:’,‘ + d:(yik)> s
j=1

where different clements of the vector, 8,, arc possible zero for various values of
i, the probability distribution will change in form depending on what value x
takes. Here we must distinguish two important cases.
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In the situation to which we are accustomed in generalized lincar models, and
its special case, classical normal theory models, the parameter vector, 8,, simply
takes on different values as / varies. For example, if we take Puisson model (2.3)
and introduce an independent variable, we obtzin

p,=¢ — s vglog(u) - log(y,

when x is discrete. If x is continuous, it must be cut into discrete segments to
form a contingency table for this method to be applied. (Unfortunately, little is
known about the effects of grouping in independent variables; sce Heitjan [8].)
Thus, any computer program capable of fitting fairly general log linear models
can be used to fit generalize¢ linear models with discrete explanatory variables,
although certainly not necessarily in the simplest manner possible!

Consider now the second, less usual situation, where we begin from a
composite probability model, such as that illustrated above or, for example, by
combining equations (2.4) and (3.2). We are hoping that certain terms will not
be significant so that we can choose one of our alternative models. Here, this
means that the same term(s) must be non-significant for all values of the
independent variable(s). If such is the case, we fall back to the first situation,
just discussed.

However, it is now possible to detect and fit different probability distributions
for different values of the independent variable(s), i.e. for different sub-popula-
tions under study. Such a situatior is easily imaginable, for example, in a
mortality study, where test and control sub-populations have different hazard
functions or in a medical study, where healthy and ill people have very different
distributions of a substance in the blood. Now, different terms of the composite
probability model are significant for (some of) the different sub-populations.

Example 3. We shall apply these procedures to the distributions of successive
quarterly losses from two groups of staff recruited to the Pos: Office in the first
quarter of 1973, presented in Table 4 of Burridge [3]. The two groups corre-
spond (o two different .rades. In his presentation, Burridge uses a gamma
distribution which would requirz the terms, y, and log(y,), in our procedure. In
this example, we shall fit truncated distributions in order to accomodate the
large number of survivors after 24 quarters.

When we fit the truncated gamma distribution, ignoring group differences, we
obtain a deviance of 76.98 with 44 d.f. This indicates a large lack of fit (although
14 of the 48 cells are zero). (Adding group differences reduces the deviance to
76.79 with a lcos of 2 d.f., perhaps indicating that, for this model, such
differences are probably not required.) We try a composite model with the
following additional terms: 1/y,, 1/y}, y{, and log*(y,). In this way, we cover
the normal, log normal, inverse Gauss, Pareto, exponential, and gamma distribu-
tions, as well as severai extensicns. We discover that, although several complex
models may be possible, one ot the simplest still has four terms required: y,,
log(y,). 1/y,, and 1/y{. This model has a deviance of 39.79 with 42 d.f. This
now appears to be an acceptable gocdness of fit. Again, when we add differ-
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Fig. 1. Survivor function.. for tie gamma (dashed) and four term composite (so'id) functions for
the Post Office data (Burridge. [3)).

ences between groups, the resulting change is small: a deviance of 38.99 with 38
d.f. There is rc indication that any individual! term differs between the two
groups.

We conclude that a relatively complex four parameter model is required to
describe these data on staff leaving tiie Post Oice, but that there exists no
significant difference in the distribution of losses between the two grades. The
common survivor curve for the two groups is plotted for the two models in
Figure 1. Although the two curves may appear fairly similar, we have just seen
that they are very significantly different. The composite model shows a function
which drops more quickly in the early stages than the gamma survivor function,
but then levels off at higher values.

Example 4. Consider ncw a much analyzed data set, that for time intervals
between coal-mining disasters (Maguire et al. [14]). We use the corrected data of
Jarrett [9]. We may test for a Poisson process in two ways. First let us group the
data into intervals of 400 days and fit a Poisson distribution to the frequencies of
disasters in these intervals. With a maximum frequency of 8 disasters per 400
days, we ex:tend with zeroes to 14. The deviance is 21.127 with 13 d.f., indicating
a poor fit. Second, let us look at the actual intervals between disasters, ac an
exponential distribution, regrouping them into intervals of width 20 aays. The
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deviance is 106.20 with 123 d.f. By comparison, a truncated norimal distribution
has a deviance of 80.73 with 122 d.f.

From his Figure 1, Jarrett [9] suggests that the mean rate of disasters changed
after about 125 events. We now cut our time series at this point and fit separate
Poisson processes to each segment in the two ways just described. For the
Poisson distribution, the deviance is now 5.89 with 26 d.f., while for the
exponential distribution, it is 116.63 with 246 d.f., both indicating a very much
improved fit.

Diggle and Marron [6] have applied density estimation to these data. Their
Figure 1 clearly shows the presence of a mixture of two distributions. With our
method, we have shown that this can be modelled as a ‘mixture’ of two Poisson
processes, in fact separated in time.

5. Extensions

If we are prepared to go to non-linear Poisson regression, any probability
distribution can be fitted by this method, but the software is not generally
available. However, it is possible to fit some such models with existing software.

As we have seen, models for members of the exponential family can be fitted
using the log linear framework requiring only the iterations necessary to fit any
log linear model. If the statistical package used for fitting log linear models has
some programming capabilities incorporated, as in the case of GLIM, a supple-
mentary iteration procedure can be developed to estimate one or more parame-
ters not following the exponential family. This coiid be done in a way similar to
that already used for many survival distributions with GLIM, as proposed by
Aitkin and Clayton [1], among others. Thus, for example, more general classes
of survival distributions could be fitted and compared, with a wider range of
different hazard functions possible for the various sub-populations. However,
since the models are no longer linear in the parameters, their existence and
uniqueness are no ionger guaranteed.

Censored observations may also easily be treated in many cases. Consider one
of the simplest, the exponential distribution. Equation (2.4) becomes

D= e G log(u) -y, /P-Ayk ,

where ¢, is an indicator variable with one for uncensored observations and zero
for censored. We fit ¢, and y,, with the usual offset and no intercept.

As an example of a model combining a distribution citside the exponentially
family and censored observations, consider the Weibull distribution with

Py = ec,‘log(a /Yy +H(a— D log(yv )y —vi /p.Ayk .

With an initial value of @ = 1 in yg, we fit y2, c,log(y,), and c,, again with the
usual vitset and no intercept. From the second term, we obtain a new estimate
of a. which we use in the first term in the iteration, continuing until conver-
gence, if a solution exists. An advantage of this approach for linear models, with
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independent variables, is that the a parameter may be allowed to vary with the
independent variables as easily as the usual parameters of the exponentially
family.

Similar iterative methods can casily be developed for other distributions close
to the exponential family. One such possibility is the delta algorithm, available
in GLIM: see Jorgensen [10].

6. Discussion

The method described in this paper may prove useful in a number of contexts
for several reasous. With a single algorithm, Poisson regression, available in
many statistical packages, a large number of probability distributions may be
fitted. This contrasts with classical methods which require a distinct algorithm
for each distribution. The hypotheses are very weak: independent observations
following a multinomial distribution or, equivalently, a Poisson distribution with
fixed total number of observations. The integration constant need not be known
in advance, but is obtained numerically. This allows us to estimate distributions
which otherwise might be excluded because of their analytic complexity. For
example, parameter estimates for truncated distributions may easily be ob-
tained. A good model may often be rapidly chosen using the well-known
methods of stepwise regression and nested linear models. Distinct distributions
with different forms may easily by identified as a function of discrete indepen-
dent variables. This can often provide a powerful replacement for such classical
approaches as discriminant analysis.
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