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,4bs~rtrc*t: Probability distributions in the cuponcntial family can bc fitted directly as log linear 
models and the usual maximum likelihood cstimcrtcs of paramctcrs obtained. If a composite 
distribution is constructed from several competing candidates. thcsc may also be compared uithin 
a log lincar model. and those not acccptablc eliminated. The approach also applies to truncated 
distributions, as well as when independent \sariablcs arc prcscnt (gencralizcd linear modclc). Ecrc’. 
in the most general case. the diffcrcnt sub-populations may cvcn have different distributions 
within the same model. With additional iterations. estimation may be cxtcndcd to certain models 
outside the gcncralizcd linear framework. 

Kq~r~~~i.s: Comparison of modclh. Gcncralizcd linear modclh. Goodness of fit. Likelihood infcr- 
cncc. Log linear models. Probability distributions. Truncated distributions. 

Several approaches have been suggested for the comparison of probability 
models. In the context of classical hypothesis testing, Cox [4], [S] and Atkinson 
[2] introduce methods of imbedding several alternative models in a combined 
probability distribution. They concentrate especially on exponential combina- 
tions of the form 

for variable vector, y, parameter vectors, Je and normah~mg w~-:G~~ t. c. 

with N observ ions and j indexing individual observations. A vah c OP h near 1 
indicates that c suitable distribution is proportional to the proballiaity dcnsit);. 
f&J, while one near 0 indicates that it is f,L>. 

A second approach, using likelihood inference but not equation ( 1.1). was 

proposed by Lindsey [ 1 I][ 121, w +!.3 probability cls within a mot-c 

general multinomial distribution. with &, observat for vailuc \vx of the 
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variable, where ii indexes distinct values of y, so that &z~ = N, the likelihood 
function is 

where ( 1 l 2) 

px_ =F(y,; e:, y discrete (1.3a) 

I 
?‘I, +j.JZ 

S f( yk; 0) 0, y continuous 
?‘r, -- J.s,/Z 

(1.3b) 

with Ft.) a probability function, fc.) a probability density function, and dyk the 
unit of measurement. The general multinomial model places no constraints on 
the probabilities, pA, and hence fits the data exactly. Then, for each model of 
interest, a different vector, p, is estimated from equations ( 1.2) and ( 1.3), and 
that giving a larger value of the likelihood function (1 2) and hence a smaller 
deviance, i.e., that closest to the uncfinstrained multinomial modei, is considered 
more plausible. 

This second approach will be pursued in the present paper, where we shall 
show how many models, specifically those which are members of the exponential 
family, can be fitted and compared in this way as log linear models. 

2. Likelihood functions for grouped data 

For discrete models, the form of the likelihood function is not a problem for 
fitting distributions. For continuous data, some kind of grouping must be 
performed, although note that any empirically observed continuous data are 
already grouped. For the present, we restrict attention to the exponential family, 
which has a density of the form 

f(rk; O)=exp 1 ~rj(~~)ej+c(e)+dl(J7~) 7 

j=l 1 (2-l 1 

where ct.) is the normalizing constant and tj(.) are the sufficient statistics for the 
parameters. For any empirically observed data. a probability function must be 
used 

i 

P 

F(y,: 0) =exp 
j= I 

(2.2) 

where c&(.) is a function of yI, depending on both C/J.) and the width of the 
grouping intervals associated with each observed ~7~. This is just the approxima- 
tion to an integral shown in equation ( 1.3b). We may now consider discrete and 
continuous data on the same footing. 

In most applications, the latter part of the probability in (2.2), the function of 
the grouping width, is a constant independent of the parameters to be esti- 



mated, so that equations (2.1) and (2.2) yield the same likelihood function. If WC 
maximize this likelihood with respect to 0 in the usual way, we obtain the usual 
maximum likelihood estimates. 

However, the multinomial likelihood of equation ( 1.2) can also be maximized 
as a log linear model for categorical data, for example with GLIM, if we ignore 
that cd.) is a function of 8 and treat it is a global constant parameter, the 
intercept. Thus, we propose to maximize the equivalent Poisson likelihood 

where 

B,, replaces CO?), and the total number of observations is fixed. For a member of 
the exponential family, the sufficient statistics for the parameters are fitted as 
explanatory variables in a Poisson regression. Now, the grouping intervals are no 
longer independent of the parameters, since we are, in fact, estimating the 
probabilities of observations falling in the different grouping intervals and the 
probability parameters are a function of these intervals. The full likelihood for 
our model is the multinomial likelihood given by equation ( 1.2) with ,ok = 
F( y,; 0). 

In log linear models for categorical data, conditicuing on the total number of 
observations in the Poisson likelihood ensures that the total multinomial proba- 
bility of all categories included in the model equals one. Here, as defined so far, 
this is not what we require, since, in a probability model to be fitted, the sum of 
probabilities of all possible values of yk must equal one. The normalizing 
constant, c(O), will only normalize the probabilities contained in the model. This 
may simply be accomodated by including zero frequencies for all unobserved 
values of y,, since these are sampling zeroes, which might be nonzero in 
another sample, and not structural zeroes (see Lindsey [13] p. 78). In practice, 
we can only include a finite subset, but parameter estimates with any desired 
degree of accuracy can be obtained by only excluding intervaJ5 with small 
enough probaE?ities. In this way, 8,) provides an estimate of c(B), hence a 
second estimate of <a function of) 8. 

If we purposely exclude certain grouping intervals which have relatively high 
probabilities under our model, but have zero observed frequencies, we are 
fitting a truncated distribution. In terms of categorical iog linear models, we are 
saying that these are structural zc,roes which are impossible to observe. 

Three points may be noted. The function n,< yk) does not involve 8 and, thut;, 
forms a known constant term In the log linear regression model, something 
which is known as an offr;et in GLI terminoiogy. Sxondly, as Lindsey [I 11 
shows, A y, in equation ( 1.3b1, which is included in the offset, may be allowed to 
vary within a certain objective range without greatly modifying the results. Thus. 
it may not necessarily be the unit of measurement, but may be chosen to reduce 



37h .I. K. Lhdsey urtd G. Mmch / Fitting and compuring probuhility distribrttions 

the number of smail frequencies, if a measure of goodness of fit is required. 
Thirdly, the deviance does not remain unchanged as zeroes are added. In fact, it 
increases as the parameter estimates become more accurate, since the best 

&mates are for a truncated model with just the observed non-zero frequencies 
included. On the other hand, if the data have been regrouped, so that &A is 
larger than the unit of measurement, 8 will not be accurately estimated, as is 
always the case with grouped data. 

This, then, is a procedure which gives the usual rr urn likelihood esti- 
mates of all parameters, with the same standard er when they are in 
canonical form. The statistical properties of these mode re well known; see, 
for example, Haberman [7] and Silvapulle and Burridg 51. If the parameter 
estimates exist, they are unique. For our present case, exponential family, 
these estimates do exist. 

The deviance of this Poisson regression model fro e saturated model 
provides a measure of goodness of fit of (1.3); see Lin 1 l]. This involves a 
comparison of the estimated probabilities for the model (1.3) to the observed 
relative frequencies. As always with inferences for goodness of fit, the probiem 
of small and zero frequencies must be taken into account. Obviously, if the 
fitting procedure involves a lot of zeroes, deviance values shouid be interpreted 
in terms of relative plausibility and the corresponding test statistics as a guide to 
selecting a model. Conditional tests may be more appropriate in such cases. 

TWO simple examples may be used to illustrate this approach. Take first a 
discrete case, the Poisson distribution. With 0: = log@), equation (1.3a) be- 
comes 

so that we fit a log linear model with an intercept and a term in y, with 
offset - log( y,!). If we are not fitting a truncated model, the intercept will yield 
the negative of the mean plus log(N) and the parameter r yk the iog of the 
mean. and these two estimates of the mean will be identncai to the degree of 
accuracy determined by the zero frequencies included. 

The equivalent continuous case is the exponential distribution. Here, equa- 
tion ( 1.3b) becomes 

so that again we fit a log linear model with an intercept d a term in y, but 

with offset logUy& Now 8, = -l/p, so that the interce yields the negative 
of the log mean plus loe( hi) and the parameter for 17~ the gative reciprocal of 

t&e ruem, and again these two estirmares of the mean be identical, if we 
have an untruncated model. 

ave severa 
ot know the correct form o .le probability model 

ates. As long as c competitors are all 



members of the exponential family, we may construct a composite log linear 
model which encompasses all of these candidates. Since each simple model is a 
log linear regression on some functions of the vari&Ae, the sufficient statistics, 
we can combine these functions as terms in a composite model. We are, thus, 
imbedding the several distributions of interest within a more general distribu- 
tion which takes the form of a log linear model. We have two levels of 
imbedding: several specific probability distributions wtthin a more general 
compc+e one, and the latter within the unconstrained multinomL1 distribution. 
In this way, we avoid the restrictions of the alternatives implied by using model 
( 1.1) to compare distributions. 

Suppose we wish to compare a gamma distribution 

with the iog normal distribution 

(3.2) 

Here, 8, = -_IFL and 8, = cy - 1 for equation (3.1) and 8, = P/U’+ 8, = - l/(2&. 
and const = - log( y,, I- log(2+, __ in equation (1.2). 

For the latter distribution by itself, WC would fit our log linear model with an 
intercept, log( yA ), and log? )I~ ), and constant term (offset) 

- log( >‘A ) - log(2n)/2 + log( &A ). (3.3) 

From this model, we obtain estimates of both the mean and the variance using 
the parameter estimates for the two terms involving yA. 

To compare the two distributions, we must also include yA, thus fitting the 
intercept, yI,, log( yA ), and log? y,, ), with a combined offset, which here contains 
the same - log( yx 1 from both distributions. We, then, test which terms in the 
log linear model are significant using standard techniques for log linear models. 
If the term for yx can be elimindted, we have a log normal distribution, and if 
the term for log? yL !, wc have a gamma distribution. However, it is always 
possible that the parameter estimates for the two distributions are such that it is 
impossible to cnoose tL Lrr b _ _ +-n the models. In such cases, this method will have 
the same problems as any other. 

With this procedure, we may discover acceptable probability distributions 
which are not among those usually considered. For example. the above compos- 
ite distribution, in fact, incorporates four common distributions: the exponential 
( y, ), the Pareto (log( yA )), the gamma ( yk, !og( 7, H, and the log normal 
(log( y, ), log’( y,)). However, only log( yA ) might fall Jut, leaving y/, and log? yx 1 

which corresponds empirically to the definition cf a probability distribution, 
although it does not correspond analytically to an\ kiiown distribution. 

Note that, in such comparisons using composite distributions, we may bc 
limited in the number of simple distributiohls which may be combined at one 
time, cspccially if eacl. _ k has several parameters. As usual. the total number of 
estimable parameters will depend on the rlumber of categories of the variable, 
y, with non-zero frequencies, i.e., on the degrees of freedom available. 
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Table I 
Simulated log normal data 

Y 0.5 I.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 Y.5 
Fwquency 1 14 8 I2 1s I4 6 10 5 li 
Y 10.5 111.5 12.5 13.5 14.5 15.5 16.5 17.5 
Frequency 6 9 6 ? 7 1 x 5 
Y 20.5 21.5 22.5 23.5 24.5 25.5 26.5 27.5 
Frequency 2 1 1 1 2 4 3 
y 31.5 32.5 33.5 34.5 36.5 38.5 43.5 
Frequency 1 I 1 2 I 1 I I I 
Y 51.5 53.5 65.6 74.5 95.5 97.5 i 04.5 165.5 
Frequency 2 I 2 1 I I 1 I 

On the other hand, although not noted in the previous section, where it 
would have had limited relevance, models may be fitted by this method even 
when all values of the frequency vector, n are very small, even one. Regrouping 
is not required for parameteb- estimation and comparing models, but n must be 
appropriately filled with zeroes. However, in such a case of sparse observations, 
measures of goodness of fit have little or no meaning. 

Example 1. Table 1 provides a set of 200 simulated log normal values. The 
procedure described above was usea !,o compare the gamma and log normal 
distributions, with the vector or! extended with zeroes to yk = 200. The intercept, 
yk, log( yk ), and log’{ yx ) were fitted. Table 2 gives the analysis from GLIM, with 
parameter values, sta errors, and changes in deviance due to removing 
each term in turn from e full composite model. In this case, the offset does 
not contain - log( yJ of expression (3.31, since this is not present in the 
exponential distribution. 

From these results, it is cli r that the ier for y, may be eliminated, but not 
the other two. ‘lk,~ strongQ indicates that ma distribution is rejected in 
favour of the log normal distribution, ac w uld be expected. At the same time, 
the Pareto and exponential are also clearly unacceptable. The deviance for 
goodness of fit of the log normal distribution is 98.93 with 197 d.f., but note that 
152 of the frequencies are zero and that many others are very small. The mean 
and variance calculated from the parameter estimates, with the yk term re- 

Table 2 
Comparison of the gamma and log normal models for the simulated data of Table I using GLIM 

Term Estimate s.e. Change in 
Deviance 

1 2.66cl 0.4686 

‘h - 0.0002538 0.01313 0.00 
iogt ‘A 1 I .290 0.3 188 25.73 
lO&(Y, J - 0.4967 0.1046 25.23 
- 



Trlblc 3 
Returns from a postal survey for the number of occupants in each house 

Number of Occupants 1 2 3 4 5 6 7 
Number of Houses 436 133 19 2 1 0 2 

moved, are: 2.302 and 1.003 respectively. The values calculated directly from the 
data are 2.296 and 0 997. If wc extend n with, for example, 50 more zeroes, to 
y, = 250, we obtain ._X $49 and d.997, even closer to the correct values. 

Example 2. Consider the data in Table 3 from a postal survey giving the number 
of occupants in each house, kindly supplied by A..?. Scallan. We may wish to fit a 
Poisson distribution truncated at zero which has 

pk = e - + - hzl1 - em - c’ I] -+ ‘I, log( p ) - log!( J’A ! ) 
. 

If we fit the log linear mode , using GLIM, with the frequency vector extended 
with zeroes to yk = 15, we obtain an intercept of 6.632 and a slope of -0.5505. 
The slope should be equal to log(p) which gives an estimate of the mean 
parameter equal to 0.5766. The intercept should be equal to log( N ) - p - log[ 1 

- exp( --IL)]. If we substitute in the value for p just obtained, we have 6.632, 
identical to three decimals with our estimated intercept. 

4. Comparing statistica els 

Suppose now that we have a more complicated model, one with independent 
variables. Parameters and variables indexed by k will be taken, as above, to 
refer to the dependent variable defining the probability distribution, while i 
indicates values of the independent variable(s). We restrict attention to one 
independent variable without loss of generality. 

Consider a composite model containing appropriate terms for all distributions 
of interest. If this can be reduced to a model of the form 

A ,k = exp 0,) + f: [j( Y,, jej + d,( Y,, ) 9 

i j=l I 
then we have an ndbl:rtical distribution for all values of the independent variable, 
x. On the other hand. if the model must be 

i 

P 

hik = exp t?,(, + ‘j(Y,,J”,j +n,(Y;k) 9 
I I 

where different elements of the vector, I, are possible zero for various values of 
i, the probability distribution will cha e in form depending on what value .X 
takes. ere we must distinguish two important cases. 



In the situation to which we are accustomed in generalized linear models, and 
its special case, classical normal theory models, the parameter vector, 
takes on different values as i varies. For example, if we take Pu~son m 
and introduce an independent variable, we o&in 

Ph=e -P, &‘lh log( p , 1 - logt l’, h ! 1. 

when x is discrete. If x is continuous, it must be cut into discrete seg 
form a contingency table for this method to be applied. (~~fo~t~natel 
known about the effects of grouping in i~deQe~ nt variables; “=Pce 
Thus, any computer orogram capable of fitting rly general log linear 
can be used to fit generalized linear models with discrete explanatory variables, 
although certainly not necessarily in the si p!est manner possible! 

Consider now the second, less usual situation, where we begin from a 
composite probability model, such as that illustrated above or, for example, by 
combining equations (2.4) and (3.2). We are hoping that certain terms will not 
be significant so that we can choose one of our alternative models. Here, this 
means that the same term(s) must be non-significant for all values of the 
independent variable(s). If such is the case, we fall back to the first situation, 
just discussed. 

However, it is now possible to detect and fit different probability distributions 
for different values of the independent variable(s), i.e. for different sub-popula- 
tions under study. Such a situation i- 3 easily imaginable. for example, in a 
mortality study, where test and control sub-QopulMions have different hazard 
functions or in a medical study, where healthy and ill people have very different 
distributions of a substance in the blood. Now, different terms of the composite 
probability model are significant for (some of) the different sub-populations. 

Exumple 3. ‘We shall apply these procedures to the distributions of successive 
quarterly losses from two groups of staff recruited to the Post Office in the first 
quarter of 1973, presented in Table 4 of Burridge 13 , The ~0 groups corre- 

spend ;o two different brades. In his presentation, Burridge uses a gamma 
distribution which would require the terms, y, and log( y,), in our procedure. In 
this example, we shall fit truncated distributions in order to accomodate the 
large number of survivors after 24 quarters. 

When we fit the truncated gamma distribution, ignoring group differences, we 
obtain a deviance of 76.98 with 44 d.f. This indicates a large lack of fit (although 
14 of the 48 cells are zero). (Adding group differen s reduces the deviance to 
76.79 with a 1~s of 2 d.f., Qerhaps indicating t, for this model, s 
differences are probably n t required.) We try a composit 

following additional ter /yk. l/y& y& and l~g?( y, ). In 
the normal, log normal, inverse Gauss, Pareto, exponential, and gamma distribu- 
tions, as well as several extzim+ns. We discover that, althoug 
models may be possible, one of the s plest still has four ter 
lo& yk ). I ,$, and l/y:. This model a deviance of 39.79 
now ap ears to be an acceptable goodness of fit. Again, when we add differ- 
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Fig. 1. Survivor functiorl.. for the gamma (dashed) and four term composite (solid) functions for 
the Post Office data (Rurridgc. [3)). 

ences betweer! groups, the resulting change is small: a deviance of 38.99 with 38 
d.f. There is no indication that any individual term differs between the two 
groups. 

We conclude that a relatively complex four parameter model is required to 
describe these data on staff leaving tile Post 0;: ‘%e, but that there exists no 
significant difference in the distribution tif losses between the two grades. The 
common survivor curve for the two groups is plotted for the two modeis in 
Figure 1. Although the two curves may appear fairly similar, we have just seen 
that they are very significantly different. The composite model shows a function 
which drops more quickly in the early stages than the gamma survivor function, 
but then levels off at higher values. 

Exampie 4. Consider TEW a much analyzed data set, that for time intervals 
between coal-mining disasters (Maguire et al. 1141). Vie use the corrected data of 
Jarrett [9]. We may test for a Poisson process in two ways. First let us group the 
data into intervals of 400 days and fit a Poisson distribution to the frequencies cf 
disasters in these interva 1;;. With a maximum frequency of 8 dishstcrs per 400 

cc is 21.127 wit 
a poor fit. Second, let us look at the actual intervals between disasters, a: an 
exponential distribution, regrouping them into intervals of width 20 days. The 
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deviance is 106.20 with 123 d.f. By comparison, a truncated doryman distribution 
has a deviance of 80.73 with 122 d.f. 

From his Figure 1, Jarrett [9] suggests that the mean rate of disasters c 
after about 125 events. We now cut our time series at this point 
Poisson p:ocesses to each segment in the two ways just desc 
Poisson distribution, the deviance is now 5.89 with 26 d.f., while for the 
exponential distribution, it is 116.63 with 246 d.f., both indicating a very much 
improved fit. 

Diggle and Marron [6] have applied density estimation to these 
Figure 1 clearly shows the presence of a mixture of two distributions. With our 
method, we have shown that this can be modelled as a ‘mixture’ of two Poisson 
processes, in fact separated in time. 

5. sisns 

If we are prepared to go to non-linear Poisson regression, any probability 
distribution can be fitted by this method, but the software is not generally 
available. However, it is possible to fit some such models with existing software. 

As we have seen, models for members of the exponential family can be fitted 
using the log linear framework requiring only the iterations necessary to fit any 
log linear model. If the statistical package used for fitting log linear models has 
some programming capabilities incorporated, as in the case of GLIM, a supple- 
mentary iteration procedure can be developed to estimate one or more parame- 
ters not following the exponential family. This could be done in a way similar to 
that already used for many survival distributions with GLIM, as proposed by 
Aitkin and Clayton [l], among others. Thus, fo- 1 examp!e, more general classes 
of survival distributions could be fitted and compared, with a wider range of 
different hazard functions possible for the various sub-populations. However, 
since the models are no longer linear in the parameters, their existence and 
uniqueness are no longer guaranteed. 

Censored observations may also easily be treated in many cases. Consider one 
of the simplest, the exponential distribution. Equation (2.4) becomes 

pli 2- e -(‘6 I‘%@)--‘r /‘*dY,, 

where ck is an indicator variable with one for uncensored observations and zero 
for censored. We fit cx- and y,, with the usual offset and no intercept. 

As an example of a model combining a distribution outside the exponentially 
family and censored observations, consider the Weibull distribution with 

pk s e~~Iog(tr/~)c(~-l)~~~lOg(v~)-~f/~Ayk. 

With an initial value of CY = 1 in y& we fit ykQ, ck log( yk), and ck, again with the 
usual &set and no intercept. From the second term, we obtain a new estimate 
of cy, which we use in the first term in the iteration, continuing until conver- 
gence, if a solution exists. A vantage of this approach for linear models, with 



independent variables, is that the rcy parameter may be allowed to vary with the 
independent variables as easily as the usual parameters of the exponentially 
family. 

Similar iterative methods ca easily be developed for other distributions close 
to the exponential family. One such possibility is the delta algorithm, available 
in GLIM: see Jorgensen [lo]. 

6. ssio 

The method described in this paper may prove usefirl in a number of contexts 
for several reasons. With a single algorithm, Poisson regression, available in 
many statistical packages, a large number of probability distributions may be 
fitted. This contrasts with c!assical methods which require a distinct algorithm 
for each distribution. The hypotheses are very weak: independent observations 
following a multinomial distribution or, equivalently, a Poisson distribution with 
fixed total number of observations. The integration constant need not be known 
in advance, but is obtained numerically. This allows us to estimate distributions 
which otherwise might be excluded because of their analytic complexity. For 
example, parameter estimates for truncated distributions may easily be ob- 
tained. A good model may often be rapidly chosen using the we!!-knovvn 
methods of stepwise regression and nested linear models. Distinct distributions 
with different forms may easily by identified as a function of discrete indepen- 
dent variables. This can often provide a powerful replacement for such classical 
approaches as discriminant analysis. 

The authors would like to thank Bent Jorgensen for helpful comment on an 
early draft and Dr. J. Burridge and A.J. Scallan for comments and suggestions 
which substantially clarified the presentation. 
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