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ROBUST ESTIMATION OF THE MEDIAN
LETHAL DOSE

G. E. Kelly1,* and J. K. Lindsey2,*

1Department of Statistics, University College Dublin, Belfield,

Dublin 4, Ireland
2Department of Biostatistics, Limburgs Universitair Centrum,

Diepenbeek, Belgium

ABSTRACT

Alternatives to M-estimation for robust estimation of the median lethal dose in

biological assays are developed. A class of link functions based on the

Student-t distribution is proposed, where degrees of freedom are estimated

from the data by maximum likelihood. Other alternatives include slash and

finite mixture distributions. For bioassays from a pharmaceutical company,

these methods extend the standard probit and logistic models, as well as the

Huber’s M-estimator. They are also applied to several standard examples from

the literature.

Key Words: Bioassay; LD50; Robust link function

INTRODUCTION

Biological assays are frequently used by pharmaceutical companies in order

to assess the toxicity of certain compounds; see for example Ref. [1]. The present

study is motivated by routine assays of a biological compound, to determine its
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toxicity, carried out by a pharmaceutical company in Ireland, for which we present

data in “Examples” later.

In such a biological assay, doses of a compound at different levels are

administered to groups of animals and their responses are recorded. These are

usually dichotomized as death (0) or survival (1). The LD50 is defined as the

unknown dose level for which the probability of response equals one-half. The

tolerance of an individual animal is defined to be the dose just insufficient to cause

its death. The toxicity of the compound is often summarized in terms of the LD50.

However, the assay often has to be repeated because either the estimated LD50 or

the associated confidence limits do not satisfy regulatory requirements. Because

this is expensive, it is appropriate to look at the estimation techniques to find ways

in which they could be improved.

The classical approach to the estimation of the LD50 is to relate the

probability of response to dose using a normal or logistic distribution function as

the link function, giving the probit and logistic regression models. The assumed

distribution function then represents the population of tolerances and the LD50 is

estimated by maximum likelihood (MLE). We also note that the problem of estima-

ting an ED50, which occurs in drug screening, is the same as that of the LD50.

In many cases, the form of the tolerance distribution may not be known. This

has led some authors to consider a nonparametric approach such as the Spearman–

Kärber estimator which is a discretized estimate of the mean of the tolerance

distribution. However, in Ref. [2], Miller and Halpern show that the Spearman–

Kärber estimator performs poorly for heavy-tailed distributions. These authors

proposed a robust approach, giving extensions of L- and M-estimators in the

location problem for the LD50 in discretized form. In particular, they compared the

trimmed mean, the Tukey biweight, and the Spearman–Kärber estimator with

regard to the size of their asymptotic variances. Their robust estimators first

require an estimate of the sample tolerance distribution, which involves monoto-

nizing the proportion-of-deaths sequence at each dose. This can be problematic, as

can the choice of trimming or tuning constants. Moreover, no method for choosing

among the estimators has been proposed.

The application that motivated our consideration of heavy-tailed distri-

butions involves routine biological assays on mice. From repeated assays, it has

become evident that a tolerance distribution with heavier tails than normal or logi-

stic provides an improved fit to the data. The need for heavy-tails in the tolerance

distribution might be interpreted as indicating that some animals are either very

frail or very resistant to the compound. In a bioassay, this then prevents the propor-

tion of deaths from being identically one for large doses or zero for small doses.

We, thus, extend traditional approaches and propose using a class of several

robust distributions to model tolerances. The best model from the extended class

can be chosen using Akaike’s information criterion. Pawitan[3] shows how

Huber’s M-estimator of location can equivalently be defined using a density with a

normal center and exponential tails. We consider this interpretation of the Huber

estimate as well as the distributions with even heavier tails than Huber.
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These include the Student-t, slash, or finite mixture distributions, the latter to be

defined later. The Student-t is appealing because it can model both heavy-tailed

and normal tolerance distributions.

ROBUST ESTIMATION

Let x1; . . . ; xk be a sequence of dose levels at which subjects are tested. At

each dose level, ni subjects are tested. Define the random variable Y by Y ¼ 1 if the

outcome for a subject is death and Y ¼ 0 if the outcome is survival, and let

p ¼ PðY ¼ 1Þ: The response Y will vary with dose. The probit model assumes that

p ¼ F ðaþ bxÞ ð1Þ

where F ð·Þ is the standard normal cumulative distribution function and x is either

the dose or the log dose. Equation (1) implies that the median lethal dose, LD50, is

given by r ¼ 2a=b:
The distribution function, here F ð·Þ; is known as the tolerance distribution.

As already mentioned, the tolerance of a mouse is the dose just insufficient to

cause its death. This biological interpretation of the model leads to its appeal in

bioassays. Reference [4] contains many examples of its use. Model (1) assumes

that the tolerances have a symmetric distribution that is normal. Of course,

distributions other than the normal can be considered.

Thus, in general, we shall denote the tolerance distribution by Fð·Þ. We

assume that all subjects, whether tested at the same dose or different doses, act

independently. Thus, the number of responses yi at dose xi is binomial with

parameters ni and pi ¼ Fðaþ bxiÞ: For m different doses, the likelihood of the

data is given by

Lða;bÞ ¼
Ym
i¼1

n

yi

 !
½Fðaþ bxiÞ�

yi½1 2 Fðaþ bxiÞ�
ni2yi :

Numerical optimization methods can be used to find the MLE’s â and b̂:
Their variances and covariances can be estimated from the inverse of the sample

information matrix. The MLE of the LD50 is r̂ ¼ 2â=b̂: The model can be

reparameterized in terms of r in order to obtain its standard error (SE) directly. In

the case where x is log dose, direct calculation of the SE requires parameterization

in terms of exp(r ). The asymptotic normal approximation will be more appro-

priate on one scale than on the other, as will be indicated by Akaike’s information

criterion.

Alternative Tolerance Distributions

The slash distribution, used in Ref. [2], is the distribution of a normal

variable divided by a uniform [0,1] variable. It has heavier tails than the Cauchy
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and has been used in Monte Carlo studies of robust estimators for the case of i.i.d.

observations. It has the distribution function given by

FðxÞ ¼

Z 1

0

F ðuxÞ du

where F ð·Þ is the cumulative distribution function of a standard normal variable.

For the Huber estimator, consider the one-sample location setting. Huber’s

ckð·Þ is given by

ckðy; uÞ ¼

y 2 u jy 2 uj # k

þk y . uþ k

2k y , u2 k

8>><>>:
and the corresponding estimator of u is the solution of

Pm
i¼1ckðyi; uÞ ¼ 0: By

analogy with MLE, the function ck replaces the derivative of the log likelihood,

yielding an M-estimator.

As in Ref. [3],
Pm

i¼1ckðyi; uÞ ¼ 0 can be viewed as a score equation. The

associated log of the hypothetical tolerance distribution Li is, for fixed k, that of a

normal center with exponential tails given by

d logðLiÞ

›u
¼ c ðyi; u Þ ) logðLiÞ ¼

Z
ckðyi; uÞd u

¼
2ðyi 2 uÞ2=2 jyi 2 uj # k

2kð2jyi 2 uj2 kÞ=2 jyi 2 uj . k

8<:
We normalize this class, so they correspond to distribution functions and

choose to estimate k by maximizing this class. When the tolerance distribution is

chosen from this class (suitably renormalized), we call it Huber. We note that

because of the normalizing constant these distributions no longer have derivative

of the log likelihood equal to ckð·Þ:
We also consider a mixture distribution for handling cases in which animals

are very frail or very resistant. This assigns probability n1 to group responses of

0%, probability n2 to group responses of 100%, and probability ð1 2 n1 2 n2Þ to

the responses that are generated from a logistic tolerance distribution (but this

could also be assumed to be normal or some other distribution). An example of a

dose–response function for this distribution can be seen later.

Tolerance distributions such as the Cauchy and the slash will perform better

than the normal if the underlying tolerance distribution is very heavy-tailed.

The Student-t distribution provides a wider, alternative model, with members

lying somewhere between the normal and the Cauchy.

We use Akaike’s information criterion to select the best model. In our

examples, this amounts to choosing the model which minimizes twice the negative
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log likelihood, with an extra penalty of two units per parameter for the link

functions containing more than two unknown parameters, Huber, Student-t, and

finite mixture.

To obtain likelihood ratio intervals for the LD50, we use profile likelihood:

we proceed as in Ref. [1] but perform a sequential grid search for the endpoints. At

each step, we use the estimates from the previous step as our new initial estimates.

The range of the grid search is taken from the Wald interval based on the SE of the

LD50.

EXAMPLES

Pharmaceutical Assay

A pharmaceutical company in Ireland carries out a biological assay on mice

on a regular basis. Doses of a compound (a toxin produced by bacteria) at eight

levels are administered to the mice, with 10 mice at each dose level. The death or

survival of each mouse over 24 hr is the outcome measure. The eight log-doses

used by the company bracket the target log(LD50) of 2 and are equally spaced

between 1.57 and 2.44. These log-doses are in fact dilution factors, so that a small

log-dose will result in a high response; see Ref. [5]. In over 50% of recent assays,

only seven doses were administered; some of the responses are shown in Table 1.

The standard method is then to estimate the LD50 using a probit model with log

(dose) rather than dose in Eq. (1). In performing these analyses, it has become

clear that the normal model is not always the most appropriate one.

The results for different models fitted to the three assays are given in Table 2,

where the 95% confidence interval is the likelihood ratio interval. In Ref. [6], the

authors used Newton’s method to compute likelihood ratio intervals for the LD50.

As described earlier, we performed a sequential grid search to overcome this

problem.

In terms of Akaike’s information criterion, the mixture is penalized for using

four fitted parameters, the Student-t and Huber for three parameters, and the

logistic, normal, Cauchy, and slash for two. As expected, the Cauchy, slash, and

mixture distributions fitted better than the normal or logistic in all three cases.

Table 1. Responses from Three Biological Assays

Log Dose

Study 1.57 1.69 1.82 1.94 2.07 2.19 2.31 2.44

(a) 9 9 10 4 1 0 0 —

(b) — 9 10 10 5 0 0 0

(c) 10 9 10 9 7 0 0 —
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The mixture may be preferred slightly because it allows for greater asymmetry in

the response distribution. The Huber distribution has log likelihood between that

of the normal and the Cauchy, but it contains an extra parameter.

For all three assays, the mixture distribution with parameters n1 and n2

converged to a mixture with parameter n2 only and thus tended to give the largest

estimates of the LD50. The estimate of the parameter k in the Huber model was

about 2.0 for the three assays. In the first two assays, the estimated numbers of

degrees of freedom for the Student-t were 0.38 and 0.49, respectively, giving

results close to the Cauchy. In the third assay, the estimated number of degrees of

freedom was so small that it converged to the Cauchy.

A plot of the observed frequencies and expected values under the logistic,

mixture, and Student-t models for assay (a) are shown in Fig. 1. It can be seen that

the mixture and Student-t fits follow the data more closely than the logistic.

Some regulations require that the estimated LD50 be in the interval (80, 120)

and that the confidence limits be in the range 68–138; see “Discussion.” For the

first assay the lower limit of 68 is almost reached by the normal and Huber. For the

third assay the slash and mixture have estimated LD50 above 120. Thus, the choice

of tolerance distribution may be critical in determining whether regulations are

satisfied.

Table 2. Results from Three Biological Assays, in Order from Table 1

Distribution cLDLD50 (SE) 2logðL̂Þ 95% C.I.

Study (a)

Logistic 82.6 (6.00) 20.84 (71.5, 95.6)

Normal 80.9 (6.13) 21.42 (69.8, 94.5)

Huber 81.2 (6.03) 21.37 (69.9, 94.2)

Cauchy 85.6 (3.34) 18.98 (76.0, 93.7)

Slash 85.3 (3.89) 19.01 (76.1, 94.4)

Mixture 89.2 (5.41) 17.23 (78.9, 102.6)

Student-t 87.4 (—) 18.69 (76.8, 93.1)

Study (b)

Logistic 113.0 (7.05) 15.77 (99.8, 128.3)

Normal 110.3 (7.74) 17.15 (96.3, 127.4)

Huber 120.0 (6.76) 15.17 (104.8, 129.1)

Cauchy 116.3 (1.40) 12.63 (111.9, 121.0)

Slash 116.2 (1.77) 12.63 (111.5, 121.3)

Mixture 116.9 (6.97) 10.18 (108.5, 132.5)

Student-t 116.3 (—) 12.30 (109.4, 122.7)

Study (c)

Logistic 116.5 (7.83) 17.78 (101.9, 133.7)

Normal 113.5 (8.37) 18.86 (98.6, 132.7)

Huber 120.0 (6.75) 17.48 (98.7, 132.4)

Cauchy 119.7 (4.01) 15.10 (113.2, 134.7)

Slash 120.3 (4.47) 15.13 (112.4, 134.6)

Mixture 121.2 (—) 12.62 (114.4, 143.4)

KELLY AND LINDSEY142

©2002 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

MARCEL DEKKER, INC. • 270 MADISON AVENUE • NEW YORK, NY 10016

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 C

ol
le

ge
 D

ub
lin

] 
at

 0
6:

29
 0

5 
A

pr
il 

20
13

 



Inhalation Bioassay

The LD50 experiments within a Bayesian framework are considered in

Ref. [7]. Table 1 of their paper reports inhalation test data with five animals at each

dose, where the dose levels in mg/ml are (422, 744, 948, 2069) and the cor-

responding numbers of deaths are ð0; 1; 3; 5Þ: These data have also been

considered in Refs. [1,8]. Racine et al.[7] found that the probit model applied to

these data gave fiducial limits for the LD50 covering the whole real line. This led

them to a Bayesian analysis with an uninformative prior for a and b. However,

they use log (dose) rather than dose in the probit model. Here we analyze the data

using log (dose) as the covariate, with the results given in the top panel of Table 3.

The fits of the logistic and the mixture were the same because the mixture

gave estimates of both mixing parameters close to zero. Our fit for the logistic

model agrees with Refs. [1,8]. We see, in terms of logðL̂Þ; that a normal

distribution fit better than the Cauchy and thus it is a matter of choosing the correct

model for the likelihood approach to give reasonable answers. Because the

estimated number of degrees of freedom for the Student-t model was 303, its fit is

similar to that of the normal model. The Huber model was also similar to the

normal with the parameter k estimate of 6.1. The results of all models were quite

similar indicating no extremes in the data. They are close to the Bayesian analysis

of Ref. [7]. Robust models like Huber’s or the Student-t give the same answer as

traditional ones when the data are well behaved.

On the original scale, the Student-t distribution gave the results shown in the

bottom panel of Table 3, which are similar to those in the top panel. However,

Figure 1. A plot of observed and expected values under the logistic model (—), the mixture model

(· · ·), and the Student-t (2 ·2) for the data of study (a) of Table 1.
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the estimated number of degrees of freedom was only 27.7. A normal distribution

again provided the best fit. For the Huber model, the MLE of the parameter k was

1, indicating a normal distribution. The mixture tolerance distribution again gave

the same results as the logistic.

In another example, Ref. [7] presented hypothetical toxicity data. The doses

in mg/ml were (50, 200, 300, 400, 2000), the numbers of animals at each dose were

(5, 10, 5, 10, 5), and the numbers of deaths were (1, 4, 2, 6, 4). We analyzed these

data using both log (dose) and dose as the covariate, with the results given in

Table 4.

The estimated number of degrees of freedom for the Student-t distribution

was 0.61 using log (dose), providing the best fit to the data although all models

with log (dose) were close. Using dose, the estimated Student-t degrees of freedom

was only 0.26. Using Akaike’s criterion, the logistic, normal, Cauchy, and slash

fitted equally well and gave similar estimates. Here we see, in the lower panel of

Table 4, that the models with dose fitted much more poorly than with log-dose

apart from the mixture. The estimates of the mixing parameters were both 0.01 for

log-dose whereas for dose they were approximately equal also at 0.11. Thus the

mixture on the original scale gave the smallest estimate of the LD50 of all mo-

dels but did not give the best fit by Akaike’s criterion. This example illustrates that

a number of alternative models should always be tried.

The probit model, using log (dose), gave a much shorter likelihood ratio

interval than that reported by Ref. [8] using fiducial limits. However, using dose,

the likelihood is flat for some distributions near the maximum so that the MLE of

the LD50 is given as an interval. The lower confidence limit does not exist for

Table 3. Results for the Inhalation Biological Assay

Distribution cLDLD50 (SE) 2logðL̂Þ 95% C.I.

Log scale

Logistic 895.3 (83.59) 5.89 (728, 1224)

Normal 895.9 (89.28) 5.87 (723, 1236)

Huber 895.9 (89.28) 5.87 (723, 1235)

Cauchy 912.1 (71.21) 6.33 (739, 1195)

Slash 903.6 (77.10) 6.29 (736, 1217)

Mixture 895.3 (83.59) 5.89 (728, 1224)

Student-t 895.8 (89.11) 5.87 (723, 1236)

Original scale

Logistic 900.7 (77.01) 5.92 (746, 1270)

Normal 899.6 (80.19) 5.89 (746, 1288)

Cauchy 916.9 (64.06) 6.32 (746, 1212)

Slash 909.5 (70.68) 6.29 (746, 1241)

Student-t 899.6 (80.18) 5.89 (747, 1287)

Mixture 900.7 (77.01) 5.92 (746, 1270)

Source: Racine et al. (1986).[7]
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the Student-t and Huber distributions; the Cauchy, slash, normal, and logistic

models have intervals covering the entire real line.

Reference [1] proves that useful limits based on Fieller’s theorem only exist

if the Wald test on the slope is significant. At some a level, insignificance will

occur with the Wald test and the corresponding confidence interval will be infinite.

We note that the 95% Fieller confidence limits did not exist for any model apart

from the Student-t. The Bayes interval of Ref. [7] was (74.3, 1524). This is

considerably shorter than any in Table 4 apart from Huber’s. This is because it

conditions on a positive slope, i.e., PðbÞ . 0 ¼ 1 a priori.

DISCUSSION

Regulatory requirements regarding pharmaceutical assays are complex. For

example, in the USA and the European Union, regulations require that the

estimated LD50 of a vial of the compound with nominal LD50 of 100, be in the

interval (80, 120). This is subsequent to the estimated LD50 having first been

normalized with respect to two standards. In addition, a monotone sequence of at

least four responses must be obtained and the estimate calculated by probit

analysis from this monotone sequence. Regulations in the UK not only carry a

similar requirement for a monotone dose sequence but also have requirements

concerning the associated Fieller confidence limits. These limits must be in the

range 68–138. The present work is part of a larger study to derive an acceptable

Table 4. Results for the Hypothetical Biological Assay

Distribution cLDLD50 (SE) 2logðL̂Þ 95% C.I.

Log scale

Logistic 317.1 (145.68) 21.98 (48, 5116)

Normal 317.8 (147.56) 21.98 (47, 5309)

Huber 287.2 (180.99) 22.15 (18, 37951)

Cauchy 312.6 (126.45) 21.95 (54, 4179)

Slash 314.3 (136.65) 21.96 (52, 4577)

Mixture 294.4 (556.50) 21.97 (—, 5111)

Student-t 311.7 (113.19) 21.93 (72, 4186)

Original scale

Logistic 520.9–522.9 (324.96) 22.58 entire real line

Normal 535.9–538.3 (—) 22.59 entire real line

Huber 293.5–294.4 (270.71) 22.35 (—, 1380)

Cauchy 385.2 (245.93) 22.42 entire real line

Slash 430.7 (350.66) 22.50 entire real line

Mixture 227.7 (122.32) 21.93 (—, 1118)

Student-t 337.2 (94.84) 22.02 (—, 5295)

Source: Racine et al. (1986).[7]
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alternative to these regulatory requirements which would result in fewer animals

being challenged.

As can be seen from Table 2, one important result of fitting a more appro-

priate tolerance distribution to data from biological assays is that the confidence

intervals for the LD50 estimate may be much more narrow than those obtained

with the logistic and probit link functions. This is important in reducing costs, in

satisfying regulatory requirements, and in preventing extensive experimentation

on animals. This, in turn, promotes animal rights.

Fitting the Student-t distribution provides a useful benchmark in bioassay

analysis, in that the estimated number of degrees of freedom, when very small,

indicates that a Cauchy or a slash link function is appropriate. When very large,

this indicates that a probit or logistic link function should be used. The models

considered here need not be tried and compared in practice.

Apart from our mixture model, we have assumed that the tolerance

distribution is symmetric, which may not always be reasonable. The proportions

of frail and resistant animals for the tested compound may not be the same. The

standard link function based on an asymmetric distribution function is the

complementary log function. In certain situations, it may be useful to develop

robust, heavy-tailed extensions, as we have done for the logistic and probit link

functions, perhaps based on asymmetric members of the stable family.

It is not common to consider robust estimation in the way we have, i.e., by

obtaining MLEs based on heavy-tailed distributions. Our approach considers a

larger class of models than traditional approaches. We then choose among the

models using Akaike’s information criterion. Our approach has the advantage that

our estimation procedures are more readily programmed in standard software

packages than classical robust estimators, such as M-estimators with Huber’s c ð·Þ

function or the Tukey biweight.

The approach in our examples, choosing the model which maximizes logðL̂Þ;
and using Akaike’s information criterion, is widely accepted within the likelihood

framework. This is unlike the Bayesian approach,[7] where the question of which

prior to use has no universal answer. See Ref. [9] for a more extensive discussion

of these different approaches to inference.
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