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SUMMARY. Response surface methodology, originally developed for determining optimal conditions in in- 
dustrial experiments, was early adapted to experiments in marine ecology. However, these involved studying 
the shape of the complete response surface, not only detecting the optimum, and often had counts or du- 
rations as the response variable. Thus, nonlinear, nonnormal response models were required. For counts, 
binomial and beta-binomial models have been used, the latter because of substantial overdispersion. In 
closely controlled experiments, overdispersion among units held under the same conditions might indicate 
that some mishap has occurred in conducting the study. One possible check is to model the dispersion as a 
second response surface. This procedure is used to show that overdispersion in fish egg hatching experiments 
has a biological explanation in that it occurs only under suboptimal hatching conditions. 
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1. Introduction 
In the 1950s, Box and his colleagues developed the techniques 
of response surface analysis for use in industrial experiments 
to determine the optimum conditions of production, especially 
in chemical processes (Box and Wilson, 1951; Box, 1954; Box 
and Draper, 1959; Box and Hunter, 1965; Box and Hill, 1967). 
Shortly thereafter, Alderdice pioneered the introduction of 
these techniques into experimental marine ecology (Alderdice, 
1963, 1976; Forrester and Alderdice, 1966; Alderdice and For- 
rester, 1968, 1971a, 1971b, 1974; Lindsey, Alderdice, and Pien- 
aar, 1970; Alderdice and Velsen, 1971). 

The early work on response surfaces presented a number of 
unsuitable constraints for its applications in marine ecology. 
For the detection of the point of optimal response conditions, 
as in industrial experiments, a regression that is quadratic 
in the explanatory variables is often sufficient. However, the 
ecological goal soon became much wider than, e.g., only de- 
termining under what conditions the maximum proportion of 
eggs hatch. The complete shape of the surface, under varying 
environmental conditions (but controlled in the laboratory), 
was of direct interest. Simple polynomials were not adequate 
for this, so that transformations of the explanatory variables 
were adopted (Box and Tidwell, 1962; Lindsey et al., 1970). 

In addition, the original response surface methodology in- 
volved at least approximately normally distributed response 
variables, but, in marine ecology, the response was often a 
count or a duration, such as the number of eggs hatching in 
a tank or the time to hatch. These experiments were being 
conducted in the period when generalized linear models were 
only in the process of being developed. Thus, the initial ap- 
proach to this problem was to transform the response (e.g., 

the proportion of eggs hatching) as well as the explanatory 
variables (Box and Cox, 1964; Lindsey et al., 1970). 

The combination of these constraints soon led to the de- 
velopment of generalized nonlinear models for a variety of 
response distributions (Lindsey, 1971, 1974, 1975). However, 
such models did not take into account the overdispersion that 
might arise in such count data. For example, in a response sur- 
face design for fish eggs hatching, four sets of eggs were kept 
in separate cells of each tank corresponding to a point of the 
design chosen, i.e., to each combination of conditions stud- 
ied. Subsequent analysis (Lindsey, 1993, pp. 160-164, 1995, 
pp. 232-234) showed that overdispersion was indeed present. 
There is more variability among cells within a tank, all under 
the same controlled conditions, than would be expected under 
a binomial distribution. 

This is a disturbing conclusion for the overall quality of 
the experiments. Here I will perform a reanalysis to show 
that an adequate model, taking into account variation in the 
dispersion under different conditions, can lead to a biological 
explanation for the observed variability within cells of a tank. 

2. Models for Varying Overdispersion 
As suggested by Lindsey (1974), there is no reason that re- 
gression modeling should be restricted to  changes in the mean. 
Changes in dispersion, or other shape parameters, under vary- 
ing conditions might often be necessary. For example, Lind- 
sey and Laurent (1996), using a double Poisson distribution 
(Efron, 1986), found that the dispersion of micronuclei counts 
can change over time after the exposure of a subject to a toxic 
substance. 

Thus, it seems worthwhile to investigate whether such a 
phenomenon was present in the marine ecology experiments 

149 



150 Biornetrics, March 1999 

described in Section 1. What we require will be two response 
surfaces for a given experiment: the usual one describing 
changes in hatching success under the different assigned con- 
ditions and another describing changes in the heterogeneity 
among cells within tanks (or, what is the same thing, corre- 
lation among eggs within each cell) under these same condi- 
tions. 

The usual model for overdispersed binomial data is the 
beta-binomial distribution (Skellam, 1948). One way that this 
can be obtained is by assuming that the binomial probability 
varies in a heterogeneous population (here, among cells under 
identical conditions) according to a beta distribution; this is 
then integrated to obtain the marginal beta-binomial distribu- 
tion of the counts. Here, I will use the following parametriza- 
tion for this distribution: 

where, for our data, n is the number of eggs in a cell of tank, 
y the number hatching, 7r the probability of an egg hatching, 
$ a dispersion parameter, and B(.)  the beta function. The 
mean and variance are, respectively, p = n7r and 

2 e + + n  
0 =x(1-7r)- 

e* + 1' 

The correlation among eggs in a cell is given by p = l/(exp($) 
+l), with positive values (i.e., $ < co) indicating overdisper- 
sion (Lindsey, 1993, pp. 159-160). When $ + 00, it becomes 
the binomial distribution. 

I will use logistic regression for modeling variation in the 
probability of hatch: 

where xi is a vector of (usually two or three) explanatory 
variables defining the conditions at design point a, 8 is the 
unknown parameter vector, and ~1(.) is some function de- 
scribing the response surface for the probability of hatch, in 
the simplest cases, a polynomial in xi. 

To this, I add a regression equation for the dispersion: 

(3) 

where < is another unknown parameter vector and 772(.) is 
some function describing the response surface for the het- 
erogeneity among cells of a tank under the same conditions, 
again, in the simplest cases, a polynomial in xi. Note that this 
regression model induces a logistic regression for the correla- 
tion, p i ,  among the eggs in a cell and that the way in which 
the variance changes will be a rather complex combination of 
the two regression equations. 

All model parameters were estimated by maximum likeli- 
hood. The models were fitted by substituting the appropriate 
regression equations based on (2) and (3) directly into the log 
likelihood derived from equation (1). This function was then 
minimized by a Newton-Raphson procedure that calculates 
numerical second derivatives. 

All the models to be considered will be compared using a 
direct likelihood approach based on the full log likelihood so 
obtained. In other words, models that predict the observed 
data better (i.e., make them more probable) will be consid- 
ered to be more suitable for describing the conditions for fish 

eggs hatching. When the numbers of parameters estimated 
differ among models, the log likelihood will be penalized by 
adding to it the number of estimated parameters, as in the 
Akaike information criterion (AIC; see Akaike, 1973). Smaller 
values indicate a preferable model, but the absolute size has 
no meaning because it depends on which proportionality con- 
stants have been included. (Here, all constants of the proba- 
bility distribution are included.) For example, one model with 
an AIC that is 1 point lower than another model could have 
a completely redundant parameter added and still fit as well 
as the second model. Notice that the usual problems of in- 
ference in the presence of overdispersion do not arise with 
this approach; the need for each regression coefficient can be 
checked by removing it from the model and comparing AICs. 

3. Modeling Fish Eggs Hatching 
In the context of fish eggs hatching, there are (as yet) no 
theoretical equations for q1(.) and 772(.) based on the under- 
lying biological mechanisms. Thus, in the models to follow, 
I will take polynomial regression equations for the probabil- 
ity (k = 1) and dispersion (k = 2) parameters of the beta 
binomial distribution, 

for two explanatory variables, with the obvious extension for 
three, where gJ ( z J z )  = xJ2 without transformation and g3 (zJz)  
= z;: when power transformed. Because these are not the- 
oretical but empirical functions, we are not interested in es- 
timating an exact value of the transformations. Instead, the 
power transformations are usually rounded to interpretable 
values such as the square root, logarithm, or reciprocal; this 
will be done here. They will, nevertheless, be counted in the 
penalty for the AIC because they have been obtained from 
the data. 

3.1 English Sole 
The English (or lemon) sole (Parophrys vetulus) is found in 
the Pacific Ocean on the west coast of North America. The 
experiment considered here was conducted at the Fisheries 
Research Board of Canada Biological Station in Nanaimo, 
British Columbia, in 1966 to study total and viable hatching 
of the eggs (as well as incubation period and size of larvae) 
under an experimental design assigning various levels of 
salinity and temperature. All eggs were from the same source. 
There were 17 combinations of conditions, with one tank 
containing four separate cells, for each condition except one 
point, which had two tanks (eight cells). Thus, the four 
cells per tank represent a pseudoreplication. Alderdice and 
Forrester (1968) provide the data on total and viable hatch. 
The former, which are used here, are the total numbers 
hatching out of those in the cell, whether viable or not; they 
are also reproduced in Lindsey (1993, p. 162; 1995, p. 252). 

Salinity ranged from 10 to  40 parts per thousand, with 
maximum standard error of 0.02 over the course of the 
experiment. Temperature ranged from 4OC to 12"C, with 
a maximum standard error of 0.1. Thus, the experimental 
conditions were very tightly controlled. 
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Standard normal theory polynomial regression was 
originally used to estimate response surfaces for all these 
variables, as described by Alderdice and Forrester (1968). 
Lindsey et al. (1970) reanalyzed the data for total hatch using 
normal (quadratic) regression, but with estimated power 
transformations for both response and explanatory variables. 
When a binomial distribution is used (nonlinear logistic 
regression), the transformations are estimated to be about 
0.2 for both salinity and temperature (Lindsey, 1993, p. 164). 
The same transformations are also reasonable for the beta- 
binomial distribution and will be used here; the nonlinear 
optimization problem proved too difficult to estimate them 
independently for this distribution. 

Overdispersion can be detected because four cells were 
used in each tank at each combination of conditions. The 
AIC for a model using a factor variable so that there is a 
different probability of hatch for each of the 72 cells is 292.4, 
whereas that with a different probability for each design point 
(pair of conditions) but the same for the set of four cells 
at that point is 568.6, indicating substantial overdispersion. 
The AICs for quadratic response surface models using the 
binomial distribution (logistic regression) without and with 
the transformations of the two explanatory variables are 
given in the first line of Table 1. We see that, even with 
the transformed explanatory variables, the binomial model 
fits substantially less well than the model with a different 
probability at each design point. 

When we fit a standard beta-binomial regression model, we 
obtain a substantial improvement over the binomial (which is 
a special case of it),  as seen in the second line of the table. 
(This line also confirms that the transformation parameters 
taken from the binomial model improve the beta-binomial 
model even though they have not been reestimated.) Finally, 
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Table 1 
AICs f o r  various models fitted to the data o n  hatching 
of English sole eggs. The transformed model has both 

salinity and temperature raised to  the power 0.2. 

Untransformed Transformation 

Binomial 1383.8 868.3 
Beta binomial, 

constant dispersion 392.1 371.1 
Beta binomial, 

dispersion regression 383.4 365.8 

we can allow the dispersion, or correlation among eggs in a 
cell, to vary with the experimental conditions; we find yet 
more improvement in the AIC, as shown in the last line of 
the table. Using transformations for the covariates in the 
dispersion regression does not improve the model, so they are 
left untransformed. This regression for the dispersion can be 
further simplified by eliminating two terms, yielding a final 
AIC of 363.9 and the equations 

711 = - 264.34 + 108.62~:: - 35.63~:: + 217.26~2: 

- 80.70&;4 + 15.73~:,2&,2 

712 = 5.02 - 0.0045~li - 0.029~2i + 0.020~:,, 

where 2 1  is salinity and 2 2  temperature. 
The response contours for the two parameters of the beta- 

binomial distribution described by these two equations are 
plotted in Figure 1. Although the distributional assumptions 
and the transformation of temperature are quite different, the 
surface for the probability of hatch resembles that obtained 

10 15 20 25 30 35 40 

Salinity 

Figure 1. Contours for the response surfaces for the probability of sole eggs hatching (left) and for 
the correlation among the eggs (right) along with the design points where observations were made. 
Probability contours range from 0.1 to 0.9 in steps of 0.1; correlation contours range from 0.04 to 0.32 
in steps of 0.02. 



by Lindsey et al. (1970). As we have seen, the transformations 
substantially reduce the AIC; without them, the contour plot 
for the probability of eggs hatching would have an elliptical 
form. The contours for the correlation are indistinguishable 
with and without the transformation. 

The maximum probability of hatch (94%) occurs at about 
(22.3, 8.4). However, the interesting result is that the corre- 
lation response surface is very flat at about zero in the whole 
region of good hatching conditions but increases steeply away 
from them (in the lower-right corner). Thus, we find that the 
overdispersion is present only when the conditions for the eggs 
are very poor; it is especially dependent on salinity. Accord- 
ing to this model, under good hatching conditions, the results 
from a set of four cells are very similar, not exceeding binomial 
variation. 

Note, however, that the fit for this final model is consid- 
erably worse than that for the completely saturated model 
with a different probability for each cell. This appears to be 
due primarily to a lack of adequate flexibility of the quadratic 
regression, even with the transformed explanatory variables. 
(Only slight further improvement of our model, according to  
the AIC, can be obtained by using the exact maximum like- 
lihood estimates of the two transformations.) 

3.2 Pacific Cod 
Let us now further investigate our hypothesis about the source 
of overdispersion in fish hatching experiments by considering 
a second study performed in the same laboratory. The one 
that I will look at has the added attraction of involving 
the simultaneous variation of three conditions: salinity, 
temperature, and oxygen content of the water. The full 
quadratic model will have 10 regression coefficients for each 
of the two parameters plus the three power transformations 
for a total of 23 parameters. 

This second study involves the Pacific cod (Gadus macro- 
cephalus), a fish that occurs around the rim of the north 
Pacific Ocean. A first experiment (Forrester and Alderdice, 
1966), similar to that described previously for the English 
sole, was conducted in 1965 using only salinity and 
temperature. These preliminary results allowed a more 
complex experiment to be designed in 1966 whereby oxygen 
content was also introduced, as described by Alderdice and 
Forrester (1971b). For more precision near the optimum, 
additional design points were added in a complementary 
experiment in 1968. Here, over the two years, there were a 
total of 19 design points, all distinct, with four cells at each. 
Again, we look at total eggs hatched out of those in each cell; 
the data are provided in Alderdice and Forrester (1971b) and 
reproduced in Lindsey (1995, p. 233). 

For this experiment, the original publication used normal 
regression with transformations of all variables, including 
the response. Reanalysis using a binomial or beta-binomial 
distribution (Lindsey, 1995, pp. 231-234) yields, respectively, 
approximately -1 for salinity, -0.5 for temperature, and 2 for 
oxygen content. These transformations will be used in what 
follows. 

The results are remarkably similar to those obtained for 
English sole, which is surprising given the very different 
nature of the two species. The AIC for a model with a different 
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probability of hatch for each of the 76 cells is 287.9, whereas 

that with a different probability for each design point but the 
same for the set of four cells at that point is 681.0, again 
indicating substantial overdispersion. The AICs for quadratic 
response surface models using the binomial distribution 
(logistic regression) without and with the transformations of 
the three explanatory variables are given in the first line of 
Table 2. As expected, these models do not fit well. The results 
in the lower part of the table are also similar to those obtained 
previously for the English sole. The apparent poorer fit of the 
transformed regression for the dispersion parameter is due to 
the fact that 5 of the 10 terms can be eliminated from that 
equation, giving an AIC of 360.2 and the equations 

VI = - 26.36 + 396.58/~1i - 2992.5/xfi + 60.65/& 

- 73.88/~:2i + 0.0550~& - 0.000177~& 

where xi  is salinity, x2 temperature, and 23 oxygen 
content. In contrast to the model for the English sole, here 
the transformations have been retained in the dispersion 
regression. 

Because we have a four-dimensional model, no simple 
representation of the complete response surface is possible. 
Contour plots for cross-sections, approximately through the 
maximum hatch of 0.92, at about (22.0, 3.5, 11.6), are shown 
in Figure 2. This maximum is considerably different than 
that found in the original publication, using a Box-Cox 
transformation: maximum probability of hatch, 1.024 (!) at 
about (15.5, 3.7, 9). The new results correspond much more 
closely to the empirical observations. 

Because of the small number of points in a three- 
dimensional design space, much less information is available 
about changing dispersion than for the English sole. However, 
it is worth considering the results here because of the 
agreement between the two experiments. For the Pacific cod, 
the correlation response surface is also flat at zero under 
optimal hatching conditions but rises rapidly under poor 
conditions: The upper left for salinity-temperature, the upper 
left and lower right for salinity-oxygen, and the upper right 
and lower left for temperature-oxygen in the lower panel of 
Figure 2. For both these and the English sole data, inspection 
of the raw data confirms the much higher variability of 
response among a set of four cells when under suboptimal 
conditions. 

Table 2 
AICs for various models fitted t o  the 
data on hatching of Pacific cod eggs 

Untransformed Transformation 

Binomial 1109.4 804.3 
Beta binomial, 

constant dispersion 382.6 362.5 
Beta binomial, 

dispersion regression 383.6 362.8 
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Figure 2. Three cross-sections of contours for the response surfaces for the probability of cod eggs 
hatching (top panel) and for the correlation among the eggs (bottom panel) along with the design 
points where observations were made. Probability contours range from 0.1 to 0.9 in steps of 0.1; 
correlation contours range from 0.02 to 1.0 in steps of 0.02. 

4. Discussion 
Accounting for overdispersion in count data is usually con- 
sidered to be a technique that is necessary to draw correct 
inferences about the mean (or probability) parameters. Here, 
I have demonstrated that appropriate study of overdispersion 
can have substantial interest in its own right. As might be ex- 
pected, these more complex models, accounting for much of 
the overdispersion, do not noticeably modify the estimated re- 
sponse surface for the probability of eggs hatching. However, 
the second response surface, for the dispersion, heterogeneity, 
or correlation, contributes important new information. 

In a tightly controlled laboratory experiment, heterogene 
ity among units (here cells), supposedly under identical condi- 
tions, can indicate some mishap in conducting the experiment. 
The present analysis demonstrates that, in these experiments, 
the overdispersion might have a biological explanation linked 
with the suboptimal conditions. This could perhaps be due 
to greater sensitivity to manipulation or to interaction (com- 
petition) among such eggs within cells subjected to the most 
unfavorable conditions. 

If a proper replication of tanks under the same conditions 
had been used, as well as the pseudoreplication by means of 
cells within a tank, the model for overdispersion would have 
had to  be more complex than that used here. In such a case, 
variability among cells within a tank would probably be less 
than that among tanks under the same conditions. 

Diagnostic tools for models involving varying dispersion or 
shape parameters have not been developed. Those tradition- 
ally used for generalized linear models perform badly (Lindsey 
and Jones, 1997), often not even detecting obvious problems 
found by simply inspecting the data. Here, there are several 
sources of lack of fit: The beta-binomial distribution and logit 
link and the shapes of the two response surfaces as constrained 
by the transformed polynomials. Nevertheless, most of the 
variability in the data has been accounted for: the AIC was 
reduced from 1384 for the untransformed binomial model to 
364, with a lower bound of 292 for the English sole and from 
1109 to 360, with a lower bound of 288 for the Pacific cod. The 
regression equations should capture the essential shape of the 
response surfaces, although it would be interesting to see what 
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results a nonparametric procedure, such as local polynomial 
smoothing, yields. 

Following on the tradition of normal regression models with 
their constant variance, statisticians are unaccustomed to con- 
sidering regression equations for other parameters than the 
mean. The fact that the variance is a function of the mean in 
generalized linear models has not greatly modified this situa- 
tion, despite the recommendations of Lindsey (1974). Simul- 
taneous regression models for several parameters of a distri- 
bution can often provide enlightening information. 

The models were all fitted using a general nonlinear regres- 
sion function written in R (Ihaka and Gentleman, 1996) that 
allows twin regressions for about a dozen different distribu- 
tions, including the beta binomial. 
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RBSUME 
La mkthode des surfaces de rkponses, dkveloppke ?i l’origine 
pour determiner les conditions optimales dans des expkriences 
industrielles, a trbs t B t  6th adaptke aux expkriences d’kcologie 
marine. Cependant, elle 6tait utiliske pour l’ktude de la forme 
de la surface de rkponse, ne se limitait pas A la seule recherche 
de l’optimum, et avait souvent des comptages ou des durkes 
comme variables de rkponse. Alors, des modkles non linkaires, 
non Gaussiens devenaient nkcessaires. Pour les comptages, des 
mod6les binomiaux ou beta-binomiaux ont Ctk utilisks, ces 
derniers dans des cas de surdispersion. Dans des experiences 
trks contdkes, la surdispersion pour les unitks apparue dans 
les m6mes conditions peut rkvkler la survenue d’accidents du- 
rant l’ktude. Une des vkrifications possibles est de modkliser 
la dispersion par une d e u x i h e  surface de r6ponse. Cette 
prockdure est utiliske pour montrer que la surdispersion ob- 
servke dans des expkriences de couvaison d’eufs de poissons 
a une explication biologique car elle apparait seulement dans 
des conditions de couvaison suboptimales. 
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