spring floods between the Minnesota River and Red River at Lake Traverse (Underhill, 1957).

REFERENCES

Exact Statistical Inferences about the Parameter for an Exponential Growth Curve following a Poisson Distribution

J. K. LINDSEY

Fisheries Research Board of Canada
Biological Station, Nanaimo, B.C.

A use of the relative likelihood function is described. An example is provided to show exact statistical inferences about the parameter for an exponential increase in cell concentration when the concentration is a Poisson random variable.

Received August 22, 1969

Suppose that the concentration of some organism increases exponentially from some known starting level P_0 at time $t = 0$, to a level P_t at time t. Then,
If a small sample measuring concentration is removed from a larger culture, it may be assumed to have the Poisson distribution. Then the mean value of P_t is

$$E(P_t) = P_0 e^{kt} = \mu$$

and the distribution of P_t is

$$f(P_t; k) = \frac{e^{-\mu} \mu^{P_t}}{P_t!} = \frac{e^{-P_0 e^{kt}} P_0^t e^{kt} t!}{P_t!}.$$

After a value of P_t has been observed, the likelihood function (see Sprott and Kalbfleisch, 1965; for more details see Barnard et al., 1962, and Sprott and Kalbfleisch, 1969) for k is proportional to

$$L(k) = \exp \{ktP_t - P_0 e^{kt}\}.$$

This function is maximized at the maximum likelihood estimate,

$$\hat{k} = \frac{\log P_t - \log P_0}{t}.$$

The precision of this estimate is given by the relative likelihood function

$$R(k) = \frac{\exp \{ktP_t - P_0 e^{kt}\}}{\exp \{ktP_t - P_0 e^{kt}\}}$$

which may be plotted for various values of k ($0 \leq R \leq 1$). Values of $R > 0.1$ might be considered to give a reasonable interval for k, comparable with a 95% probability interval for a normal theory linear model.

The use of the relative likelihood avoids the customary normal theory approximation; inferences using relative likelihoods are exact and in addition, in this example, require fewer calculations than the approximate methods. More complicated growth curves (e.g., von Bertalanffy curve) are amenable to the same analysis and are essentially as easy to deal with due to present day accessibility of high speed computers.

Suppose that the initial concentration of cells is measured as 20 cells per milliliter and that after 5 hr this has increased to 100 cells per milliliter. Then, $P_0 = 20$, $P_5 = 100$, $t = 5$

$$R(k) = \exp \{500k - 20e^{5k} - 60.944\}$$

$$\hat{k} = 0.32189$$

from equations 5 and 4. Values of the relative likelihood function are:

<table>
<thead>
<tr>
<th>k</th>
<th>0.1</th>
<th>0.2</th>
<th>0.28</th>
<th>0.3</th>
<th>0.32189</th>
<th>0.36</th>
<th>0.37</th>
<th>0.38</th>
<th>0.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>10^{-12}</td>
<td>10^{-7}</td>
<td>0.117</td>
<td>0.475</td>
<td>1.0</td>
<td>0.143</td>
<td>0.0432</td>
<td>0.0237</td>
<td>10^{-3}</td>
</tr>
</tbody>
</table>

Then a 10% relative likelihood interval (Fig. 1) is about (0.278, 0.362).
FIG. 1. Relative likelihood function for \(k \).

Acknowledgments — The author would like to express his appreciation to C. D. McAllister for bringing this problem to his attention.

REFERENCES

The Manefish, *Caristius groenlandicus* Jensen (Percomorphi: Caristiidae), in Atlantic Waters off Canada

W. B. Scott, A. C. Kohler, and R. E. Zurbrigg

Morphometric and meristic data for the first recorded captures of *Caristius groenlandicus* in Canadian Atlantic waters in 1966 (1) and 1968 (7) are described and compared with previously published records.

Received July 25, 1969

1Royal Ontario Museum and University of Toronto, Toronto, Ont.

2Fisheries Research Board of Canada, Biological Station, St. Andrews, N.B.

3Department of Zoology, University of Toronto, Toronto, Ont.

Printed in Canada (J1541)