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Abstract: The polynomial growth curve model based on the multivariate normal distribution has
dominated the analysis of continuous longitudinal repeated measurements for the lagt 50 vears.
The main reasons include the ease of modelling dependence because of the availability of the
correlation matrix and the linearity of the regression coefficients. However, a variety of other
useful distributions also invelve a correlation matrix: the multivariate Student t, multivariate
power-exponential, and multivariate skew Laplace distributions, as well as Gaunssian copulas with
arbitrarily chosen marginal distributions. As well, with modern computing power and software,
nonlinear regression functions can be fitted as easily as linear ones.

By a number of examples, we show that these distributions, combined with nonlinear regression
functions, generally vield an improved fit, as compared to the standard polynomial growth curve
model, and can provide different conclusions.
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1 Introduction

Box (1950) introduced the polynomial growth curve model for longitudinal repeated measurements,
Elston and Grizzle (1962} extended it to random time coeflicients (now often unfairly called the
Laird and Ware model} in order to provide more flexible correlation matrices. Since then, the
analysis of such data has relied primarily upon polynomials in time and the multivariate normal

distribution. Reasons include

o wide familiarity with the normal distribution,

linearity of the parameters in polynomial functions,

belief in ‘robustness’ of the results,

availability of standard analysis of variance procedures if the regression function is linear and

the data are balanced,

relative ease of manipulation of the likelihood function,
o availability of the correlation matrix to model dependence among responses.

A number of these reasons have become less compelling with the availability of modern computers
and stasistical sofsware.

With the development of a variety of multivariate distributions involving correlation masrices,
the lags reason also disappears. As emphasized by Taylor and Law (1998}, the covariance struc-
ture can be extremely important in longitudinal modelling. Random coeflicient models based on
polynomials in time are an ad hoc construction, generally with no plausible interpretation (see for
example Elston, 1964; Lindsey, 1999, pp. 100-102; Davis, 2002, pp. 149-151).

The classical competitor of the normal distribution has been the multivariate Student ¢ distri-
bution, especially useful if the data are overdispersed with respect to the normal distribution, that
is, have outliers with respect to it. However, other multivariate distributions have also recently
become available: power-exponential (Gdémes et al., 1998) and skew Laplace (Kot ef ol., 2001)
distributions, as well as Gaussian copulas (Song, 2000) with arbitrarily chosen marginal distribu-
tions. Many of these are skewed and/or have heavier tails than the multivariate normal, which can
be useful in providing robustness against ‘outliers’.

These multivariate distributions are not members of the exponential family. Thus, expanding
the choice of distributions in this way implies the loss of the ease of estimation provided by sufficient
statistics so that a nonlinear opfimizer is required. But this has the compensating advantage that
nonlinear regression functions can be fitted as easily as linear ones.

I open software for modelling with the multivariate normal distribution is available, it can
very easily be modified to accommodate all of these distributions. Almost all of the required
components are already being computed and one has only to change the formula for the final

likelihood being calculated. Depending on the distribution used, one will also require the gamma



function (Student t and power-exponential), a modified Bessel function (skew Laplace}, and the
normal quantile function ag well ag cumulative distribution functions of any desired marginal
distributions (Gaussian copulag).

Models baged on all of these multivariate distributions are now available in two functions for the
R sofsware system (Thaka and Gentleman, 1996) and can be obtained from the firss aushor. Thig
is accompanied by a nonlinear function interpreser which allows any nonlinear regregsion function

eagily to be specified and fitted. An illustration is provided in the appendix bhelow.

2 Multivariate Distributions

We firgt briefly desgcribe she various multivariate distributions available. For further details, the

reader ig referred to the literature cited.

2.1 Normal distribution

First let us recall the form of the multivariate normal distribution for £ repeated meagurements,
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with covariance matrix 3. However, a number of other families of multivariate distributions also

have such a matrix. Like the multivariate normal distribution, many, but not all, of them are
elliptically-consoured. Thus, skewed distributions are also available. The normal digsribution is
often skewed by taking logarithmg of the response variable, yielding the log normal distribution;
this can alse be done with the other symmetric multivariate digtribusions pregensed below.

A correlasion or covarlance matrix can have any degirable structure. For simplicity here, we
shall regtrict astention to two of the bagic possibilities: congtant correlation among all obgervagions
on an individual (sometimes called compound symmetry} and the simplest way in which correlation
decreages with distance in time (gsationary autocorrelation).

Congider the covariance matrix. With N individuals and R repeased meagurements on indi-

vidual 7, a variance componens for intra-individual correlation can be modelled ag
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where Ip is an R x R identity matrix and Jg a vector of ones of length B. Here, o is the
intra-individual variance and 9 is both the extra componens of variance across individuals and
the common covariance among responses on the same individual. In the context of linear normal

models, this corresponds to a random interceps. (For shoge familiar with the Laird and Ware



notation, we have Z = J z.) Random coeflicient models for polynomials in time can also be written
in this way, but have a more complex form; for examples, see Lindsey (1999a, pp. 93-102).

If gerial correlation is present, the covariance matrix might be structured in the following way:
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This is a first~order dependence structure for equally-spaced times, a stationary AR(1}; the ex-
tension %o unequally-spaced times is straightforward. Dependencies involving other functions of
time, perhaps nonstationary, (see, for example, Lindsey, 19994, pp. 124-127} can also be used,
as well as higher order dependencies, although these are not often necessary for the short series
usually available in repeated measurements. Variance components and serial correlation can be
combined in the same covariance matrix but recall that any suitable structure is possible. In the
examples below, the dispersion parameter is often not constant in time, inducing a different type
of nonstationazity.

In constructing models bagsed on the multivariate normal distributions, the covariance matrix
can be written simultaneously as one large matrix for all observations on all individuals: for
example, if observations are at the same time points for all individuals, Ty = Iy @ B. The
appropriate elements are zero so that observations on different individuals are independent. ‘This
is equivalent to taking a separate multivariate normal distribution for each individual, with a

suitable covariance structure, and multiplying them together.

2.2 Student t distribution

A well known alternative to the multivariate normal distribution is the multivariate Student t
distribution, defined by
B
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where « is the number of degrees of freedom. This is a member of the elliptically-contoured family
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of distributions. The mean is p for £ > 1 and the covariance matrix is

cov(Y) = &izE, K> 2

Note that zero correlation does not imply independence. Here, & — oo yields a multivariate normal
distribution, whereas x = 1 is a multivariate Cauchy distribution.

The procedure for constructing one large covariance matrix for all individuals, described above
for the multivariate normal distribution, no longer works here if k < co. When % is diagonal so
that the correlation among observations is zero, this distribution cannot be written as a product of

independent univariate distributions. The multivariate distribution retains a dependence structure



among the observations on an individual even though the correlation among them may be zero.
Of course, responsges on different individuals can be made independent by multiplying together the
multivariate distributions on individuals in the usual way. These remarks hold for the next two

multivariate distributions as well.

2.3 Power-exponential distribution

The multivariate power-exponential distribution given by
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is also a member of the elliptically-contoured family (Gémez et al., 1998; Lindsey, 1999b). It is a
special case of what has been called a Kotz-type distribution (Kotz and Nadarajah, 2001).

Again p is the mean and the covariance matrix is
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& determines kurtosis; when & # 1, the even cumulants are nonzero, in contrast to the multivariate

b

cov(Y) =

normal distribution.

When & = 1, this is a multivariate normal distribution, when « = 0.5, a form of multivariate
Laplace (double exponential} distribution discussed by Kotz et al. (2001, pp. 312-313}, and when
& — oo, a multivariate uniferm distribution. The marginal and conditional distributions are more

complex, elliptically-contoured distributions, not of the power-exponential type.

2.4 Skew Laplace distribution

The multivariate power-exponential distribution contains, as a special case, one possible definition

of a multivariate Laplace distribution. Kotz et al. (2001, p. 250} give another possibility:
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where K (-} is the modified Bessel function of the third kind and & is a vector of skew parameters,
one for each observation. For & = 0, this is a symmetric multivariate Laplace distribution which
is elliptically-contoured; otherwise, it is not a member of that family.

Here, the mean is & and the covariance matrix
Y) = % T
cov(Y) = + kK

As with the previous two distributions, zero correlation does not imply independence.

A regression function can be introduced in at least two distinet ways. If'Y has an asymmetric
multivariate Laplace distribution and we want the mean to be determined by the regression func-
tion, we can set ® equal to that function. This, however, means that the amount of symmetry is

also changing with the regression function.



A second possibility, suggested by Kotz ef al. (2001, pp. 261-268}, is to introduce the regression
function ag a location shift; they propose this for linear regression with zero correlation (¥ = Ig).
Here, we extend it to nonlinear regression functions and model the correlation matrix. In thig
gituation, v in Equasion (3} is replaced by ¥ — g(#, X) where g(-} is some linear or nonlinear
regresgion function. Note that & is not a shifs parameter go that Y — g(A, X}, but not Y, will have
an agymmetric multivariate Laplace distribution (Kotz et of., 2001, p. 244}. When this distribution
ig applied o repeated meagurements, it seems most sensible to fix all elements of & to be idensical
go that the digtribution of all repeated responsges hag she same asymmetry and only one additional
parameter need be estimated. In the examples to follow, this second model consistently fitted

better go that it i3 the only one for which regults are pregented.

2.5 Copulas

One approach to the congtruction of multivariate distributions ig by the gpecification of the uni-
variate marginals. Thig is not sufficient to define completely the digtribution. Many supplementary
conditiong have been proposed, usually for specific marginals.

Suppose that the degired univariate marginal distributions are given by their cumulative dis-
tribution functions, F(y;). Then, a mulsivariase distribution with these marginals can be formed

ag
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where ¢(+) is a function from [0,1]® to [0,1]. Such a construction is called a copula. Alshough all
of the marging are shown to have the same form here, they can, in principle, be different.

The equation above can be inverted so give
ety yur) = PP )y P~ (un)]

where F=1 (-} is the corresponding quantile function and u; is a uniform [0, 1] variable.

One particularly useful copula is the Gaunssian (Song, 2000}. The general form of the corre-
sponding densisy can be obtained from the standardized multivariate normal density of Equation
(1). We transform the response using a vector of univariate normal quantile functions, $~'(u)
(without forgetting the Jacobian):
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where ¥ ig a (Spearman-sype) correlation magrix (not a covariance matrix ag in the previous

families}.
When we subgtitute in the chosen univariate marginal distributions for u, we obsain the mul-
tivariate density
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where F(y;8) is the vector of chosen univariate marginal cumulative distributions and fiy;: 8)
ig the corresponding individual univariate dengity. If the marging are chogsen to be normal, this
reduces to the standard multivariase normal distribusion of Equasion (1) and if they are Laplace, we
have a third type of multivariate Laplace distribution, not covered by Kotz et al. (2001). Then, ag
with the other distributions above, ¥ can be strucsured in any desired way to create dependencies

among the responses, here indirectly through F(y; 8).

3 Examples

We have applied the models deseribed above to a large number of data sets. We have chosen to
present here the analyses for several data sets that are available in the literature go that the reader
can compare our approach to the standard ones. For lack of space, we do not provide complete
details of the studies, nor of how the final model was obtained, but instead refer the reader to the
relevant literature.

We concentrate on finding appropriate nonlinear regression functions for these data. One good
check on such functions is also to fif a saturated mean or location model, but we shall not present
regults for this here. For simplicisy and clarity, we regtrict covariance modelling to the two basic
gtructures desgcribed above. However, we emphasize that eny appropriate form of matrix can be
used and that better covariance siructures may exist for these data.

In the analysis of cross-over data, modelling of the dependence strucfure is especially crisical
because treatments are compared within subjects so that ignoring or poorly modelling the de-
pendence will generally lead to the significance of treatment effects being underestimated. Thus,
we ghall look at several examples involving such trials. But first we consider a more classical
longitudinal repeated measurements ssudy.

For inferences, we shall use the AIC: minus the log likelihood plus the number of estimated
parameters. Thus, smaller values indicate more preferable models. This allows us to compare
non-nested models. If the reader wishes to apply clagsical likelihood ratio tests, where applicable,

all log likelihoods must be multiplied by two.

3.1 Coronary sinus potassium trial

Grizzle and Allen (1969) give measurements of coronary sinus potagsium (mil equivalents per lisre)
in 36 nondescript dogs. Observations were made at two-minute intervals after coronary occlusion
under four treatment condifions: A, control; B, bilateral thoracic sympathectomy and stellectomy
three weeks prior to occlusion; C, extrinsic cardiac denervation immediately prior to occlusion;
and D, extrinsic cardiac denervation three weeks prior to occlusion.

Analysis shows that the control differs from three freatments which are fairly similar. We

have found empirically that the following sum of exponentials curve in time, with a total of nine



regression parameters, fits well:
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where z; is an indicator variable for treatment j. Notice that, in this function, the mean or location
parameter of the response to treatment B is constant over time.

For these data, the dispersion parameter depends log linearly on time. An AR(1) is also
required, but no variance component, although this will be reconsidered below for the final model.
The fitted models are compared in the first column of Table 1. Without transforming the data,
we see that the Gaussian copula with gamma margins fits best, followed by the multivariate skew
Laplace distribution.

The fact that the best maodels are based on skewed distributions seems to indicate that a log
transformation might be preferable in the multivariate normal distribution, although this does not
geem to have been used in the literature for these data. We keep the same regression model but
apply an exponential link to g so that the log response will follow the logarithm of the complete
nonlinear relationship on the right hand side of Equation (4). Indeed, these models fit better for all
of the distributions, even the Gaussian copulas with gamma, Weibull, and inverse Gauss margins.
The {log} power-exponential now replaces the skew Laplace as the closest rival of the Gaussian
copula with (log) gamma margins, ag can also be geen in the first column of Table 1.

Each of these models has one more parameter than the multivariate log normal so that the
difference in log likelihood is almost 4, or the deviance about 7.8, with one degree of freedom,
clearly rejecting the latter by frequentist criteria ag well ag by the AIC. The log power-exponential
distribution has & = 0.48, indicating a distribution close to a multivariate log Laplace distribution
of Equation (2}, not that of Equation (3} nor a Gaussian copula with Laplace marging.

The autocorrelation is estimated to be about 0.9 for the two best models. A variance component
is not necessary for the copula but reduces the AIC to 113.5 for the log power-exponential. The
latter now has an autocorrelation estimated to be p = 0.81 and power parameter £ = 0.44. On
the other hand, the former can be simplified by keeping the dispersion parameter constant (AIC
113.9).

The final location function with the log power-exponential distribution is estimated to be
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for the dispersion parameter.



Standard analysis (Lindsey, 1999a, pp. 127-131} with the multivariate normal polynomial
growth curve and an AR(1} requires a third degree polynomial; the AIC ig 143.4. This is re-
duced to 138.4 if the log variance is allowed to depend on time and to 123.7 if a log transformation
ig also applied. Replacing the normal dissribution wish this polynomial by the log Student ¢ gives
120.5 and by the log power-exponential 120.0. Thus, non-normality, nonconstant dispersion, and

nonlinearity are all importans for these data.

3.2 Insulin cross-over trial

Two mixtures of neutral protamine Hagedorn (NPH) ingulin, the standard (A} and one containing
5% less prosamine (B) were tested on rabbits in a cross-over design (Ciminera and Wolfe, 1953}.
Two groups of eleven female rabbits were injected wish the ingulin at weekly intervals in the orders
ABAB (sequence 1} and BABA (sequence 2}. For each treatment, blood sugar level was meagured
at injection and at four equally-spaced post-injection times over gix hours. Lindsey (1999b) reana-
lvzed these data using the multivariate power-exponential distribution and a quadratic regression
funcsion. Here, we compare the distributions discussed above using nonlinear regregsion functions.

Two levels of variance components are possible: the rabbit and the period nested within rabbit;
a first-order autocorrelation may also be necessary over the gix hours. The explanatory variables
are the period, the treatment, and the group, as well ag a sum of exponential time effect. We have

found the following regression function to fit well:
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where 21, Is an indicator for period j, sy for group j, and 2g; for treatment j. Again, the log
variance depends linearly on time. Only the rabbit-level variance componens, and not the period-
level one, is required, not surprisingly because period 4 ig uged in the regregsion function and is by
far the most significant.

The regulting fits for the final model are compared for each digtribution in the third column of
Table 1. We see that the Student £ and power-exponential digtributions fit best. The parameters
are estimaged to be & = 22.0 for the Student t d.f. and & = (.50 for the power-exponensial. Both
indicate a distribution wish somewhat heavier tails than the multivariate normal. The Gaugsian
copulag with skewed marginal digtributions fit less well than the other distributions. These results
confirm that a symmetric digtribution is the best choice for these data, at least among thoge tried.

The two begt fisting models give almost identical parameter estimates for the nonlinear regres-

gion function:
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Of course, the variance component and the dependence of the digpersion parameter on time are
quite different, although the latter increases over time in both cagses. On the other hand, the

autocorrelation is the same: § = 0.44.



Eliminating the treatment effect by setting as = 0 raises the AIC to 1805.7 for the Student
t and to 1805.8 for the power-exponential. (Thus, the log likelihood increases by about 3, or the
deviance by about 6.2, with one degree of freedom.}

Standard analysis with the multivariate normal polynomial growth curve, a variance component
for rabbits but not for period, and an AR(1)} requires a second degree polynomial; the AIC iz 1852.8,
This is reduced to 1838.2 if the log variance is allowed to depend on time. Elimination of treatment
effect here reduces the AIC o 1837.2. Hence, the standard polynomial growth curve model (even
with nonconstant variance) not only fits much more poorly but is not sensitive enough to detect
the treatment effect. The power exponential model with a quadrasic polynomial has an AIC of
1833.3, decreasing to 1832.8 when the treasment effect is eliminated. Our nonlinear regression
function provides a substantial improvement on this and allows clear detection of the treatment

effect.

3.3 Pharmacokinetics cross-over trial

There iz a strong belief among statisticlans analyzing pharmacokinetic data with compartment
models that concentrations always follow a log normal distribution. However, we are aware of no
studies in which this has been demonstrated for any compound. In all cases in our experience, the
log normal distribution has never proven suitable. We now consider one such data set. In contrast
to the other examples, here a mechanistic nonlinear regression function is available.

Flosequinan was found, in early trials, to be useful in the management of patients with chronic
heart failure. However, a long term study demonstrated that there might be increased mortality
in patients taking the drug so that it was withdrawn from the market in the United Kingdom
in April, 1993. A Phase I study looked at pharmacokinetic dose proportionality using 50, 100,
and 150 mg doses in a cross-over design involving 18 healthy volunieers. Thus, 3 patients were
assigned to each of the six possible sequences. Blood samples were taken at 0, 0.5, 1, 1.5, 2, 3,
4,6, 8,10, 12, 24, 36, 48, 72, and 96 hours after dosing. Concentrations of flosequinan and of its
pharmacologically active metabolite, flosequinoxan, were measured. Time to peak concentration
for the drug is less than one hour.

A nonlinear regression function, the open first-order one-compartment model, given by
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is suitable for these data, where d is the dose and ¢ the time. The volume (V). absorption rate

{(k;), and elimination rate (k.} are parameters to be estimated. The dispersion parameter follows
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The expression in the parentheses is obtained as she limit of Equation (6) when k, = k. = k. Thus,

the regression function

there are three paramefers in this function, k, V', and §, all different from those in Equation (6).



Here, the distribution of the responses is clearly skewed, as is often the case with pharmacoki-
netic data, so that we require a log transformation if the distribution is not skewed. Lindsey and
Jones (2000} analyzed these data using the multivariate log Student t and log power-exponential
distributions.

The various distributions are compared in the fourth column of Table 1. Here, the log Student
t distribution is clearly superior whereas the multivariate normal and log normal distributions are
by far the worst fitting, along with the Gaussian copula with inverse (Gauss margins. Again, only
one level of variance component is necessary, that between subjects, but not that for periods within
gubjects. The AR(1) is also required, with § = 0.89 for the best model. The estimate is & = 2.5 for
the log Student t d.f. (& = —0.30 for the skew log Laplace), pointing to very shick tails. However,
the results change rather drastically when the metabolite is modelled jointly with flosequinan and

the available covariates are introduced; see Lindsey (2001, pp. 113-131).

3.4 Pharmacodynamics cross-over trial

To evaluate the dose of an Hy receptor antagonist required in the treatment of gastric pH, six
patients were given five different doses plus placebo in varying orders, following a cross-over design
{(Ekholm ef ol., 1989). The dose levels were 10, 20, 40 80, and 160 mg. Each new dose adminis-
tration was begun after a washous period of one week to ensure that the previous dose had been
completely eliminased. Gastric pH level was measured immediately before administering the drug,
and at 2, 4, 6, 8, 10, and 12 hows after. A clinically important response would be one raising
the gastric pH level over 3 for two consecutive recordings. No adverse effects were recorded at
the lower doses, but at 160 mg all patients except number 3 experienced intolerable diarrhoea or
abdominal cramps.

A possible nonlinear regression function that fits well is

kte—Ht
Hy = €XD (T)
where Vy is a distinct parameter value for each dose level, ¢ is the time, and k is both the absorption
and elimination rate. (This nonlinear regression function can be obtained in a similar way to the
dispersion function in Equation (7), by taking the limit when the absorption and elimination rates
are set to be identical in Equation (6) and then exponentiating is.} A standard analysis using this
regression funcsion is given by Lindsey (2001, pp. 142-146).

The models fitted here are compared in the fifth column of Table 1. Symmetric distribusions
with non-constant dispersion fit best. The dispersion parameter varies as a quadratic function
of time, independently of dose. For these data, variance components and auto-regression are not
required. The fit of the Gaussian copula with log logistic marging is slightly superior to that with
log normal margins. The log Student t, log power-exponential, and skew log Laplace distribusions

may fit less well because they impose dependence among the repeated responses on an individual

even when the correlation is zero.
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Only the two highest dose levels meet the requirement of raiging pH above 3. Because the
highest level vielded adverse effects, the dogse of 80 mg of the Hy recepsor antagonist would be

chosen.

4 Conclusions

Our general experience in analyzing a fair number of repeated measurements data sets is thag for
most continuous responses, a multivariate normal distribution is nos ideal. Only in the lagt example
ig it competitive with the alternatives presented here. More generally, the major exception thas we
have found, where the normal assumpsion is valid, is agssay data where only measurement error ig
present. Similarly, polynomials in time are always an ad hoc solution; Sandland and McGilchrist
{1979) provide a good discussion of reagonsg for nos uging them.

The distributions presented here provide congiderable flexibilisy. One importans role is to allow
checking goodness of fit of the normality assumptions. However, a number of open questions

remain. These include:

® A varlance component in the covariance matrix for a non-normal digsribution imitates a
random intercept. How can the covariance matrix be structured to imitate random nonlinear

parameters?

e Is it possible to fit these models dynamically ag an extension of the Kalman filtering and
smoothing algorithms for the multivariate normal digsribution (Jones, 1993) so that long

time series can easily be handled?

e How can we efficiently obtain the conditional regression equation, given previous responses
or regiduals, so that recursive fitted values can be calculated (and plotted)? In contrast to
models baged on joint multivariate distributions, those constructed as the product of condi-
tional distribusions vield such fitted values directly (for example, the algorithm mentioned

in the previous point}.

e How can we allow for censored data, for example the non-detectable values from the assays
used to meagure concentrations in pharmacokinetic data? The cost of multidimensgional

integration of arbitrary marging of a multivariate distribution appears to be prohibitive.
None appear to have eagy answers.
Acknowledgements All of the examples were analyzed using the R software with the functions
elliptic {for the multivariate normal, Student t, power-exponential, and skew Laplace distribu-

tiong) and gausscop (for the Gaussian copulag) in the first author’s public libraries, respectively

called growth and repeated, available at http: //www.luc.ac.be/~jlindsey/rcode.html
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5 Appendix

To illustrate the ease of fitting these models, the complete R code for fitting the final two models

in the first example for the data from the coronary sinug potassium trial is shown below.

# load the elliptic function for MVN, power-exponential, skew Laplace,
Student t

library(growth)

# load the gausscop function for Gaussian copulas

library(repeated)

# read in the data and prepare as a data object
cor <- matrix(scan(‘‘coronary.dat’’, skip=58), ncol=7, byrow=T)
reps <— rmna(responsge=restovec(cor, times=seq(1,13,by=2)),

ceov=tcctomat (as. factor{c(rep(1,9), rep(2,10), rep(3,8),
rep(4,93)),

name=’’treat’?, dataframe=F))

# add the log transform to the object, automatically calculating the
Jacobian

reps <— transform(reps, lcor=log(cor))

# define the nonlinear location function

mu <- Tal+aZk(treat2+treat3ttreatd)+
a3# (1-treat2)#*(ab-times)*exp(-exp(ad+*(ab-times)) )+
ab+* (a8—times)* (treat3*exp(-exp(aT+(a8-times)) )+

treatd*exp(—exp(ad*(a8-times)) )

#fit the two models

elliptic(cor, dist=’’power exponential’’, pell=0.4, model=mu,
preg=c(1.4,-0.17,0.4,14.3,0.15,-0.37,13.4,0.26,0.19),
varfn="times, pvar=c(-8.3,0.04), par=0.8, pre=0.1,

transform=**log’’®, envir=reps)

gausacop(lcor, dist=""gamma’’, mu=mu,
pmu=c(0.3,-0.07,0.24,14.9,0.12,-0.2,13.5,0.26,0.18},

shape="times, pshape=c(4.7,-0.026), par=0.9, envir=reps)

# lcor could have been used in the first model instead of

trans=’*log’’

12



Developing an appropriate nonlinear regression function and finding suitable initial parameter

estimates can be much more difficult!
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Table 1: AlCs of the models fitted to the four examples. Only values in the same column are

comparable.
Example 1 2 3 4
MVN 130.2 1805.4 24374 272.2
Log MVN 117.0 — 2112.7 2575
Student t 122.7 1803.6 = =
Log Student t 115.0 — 2013.6 259.2
Power-exponential 121.9  1803.6 — —
Log power-exponential 1145 — 2024.3  2BR.2
Skew Laplace 119.6 18142 21679  —
Skew log Laplace 117.7 - 2016.9  265.0
Gaussian copulas
Logistic 126.4 1806.6 s —
Log logistic 1185 — 2041.6 257.2
Cauchy 141.3 18344 — —
Log Cauchy 140.4 — 2025.1 2904
Laplace 126.8 1820.5 o e
Log Laplace 124.5 s 2039.2 258.3
Gamma 1187 1899.7 2056.1 261.1
Log gamma 114.1 — — —
Weibull 1473 1865.5 2031.9 277.3
Log Weibull 129.8 - — —
Inverse Gauss 1213 2017.1 2256.3 274.7

Log inverse Gauss 119.6 s P 5o
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