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1 Introduction 

Box (1950) introduced the polynomial growth curve model for longitudinal repeated measurements. 

Elston and Grizzle (1962) extended it to random time coefficients (now often unfairly called the 

Laird and \Vare model) in ordpI to provide more fif.:'xible correlation matrices. Since then, the 

analysis of such data has relied primarily upon polynomials in time and the multivariate normal 

distribution. Rpa.sons include 

• wide familiarity with the normal distribution, 

• linf.:'mity of the parametpIs in polynomial functions, 

• belief in :robustness' of the results, 

• availability of standard analysis of vdI'iance procedures if the regression function is linear and 

the data are balanced, 

• relative ease of manipulation of the likelihood function, 

• availability of the correlation matrix to model dependence among responses. 

A number of these reasons have become less compelling with the availability of modpIn computers 

and statistical software. 

\Vith the development of a variety of multivariate distributions involving correlation matrices, 

the last reason also disappears. As emphasized by Taylor and Law (1998), the covariance struc­

ture can be extremely important in longitudinal modelling. Random coefficient models based on 

polynomials in time are an ad hoc construction, generally with no plausible intpIpretation (see for 

example Elston, 1964; Lindsey, 1999, pp. 100-102; Davis, 2002, pp. 149-151). 

The classical competitor of the normal distribution has been the multivariate Student t distri­

bution, especially uSPlul if the data are oVPIdispPIsed with respect to the normal distribution, that 

is, have outliers with respect to it. HowevPI, othpI multivariate distributions have also recently 

become available: power-exponential (Gomez et al., 1998) and skew Laplace (Kotz et al., 2001) 

distributions, as well as Gaussian copulas (Song, 2000) with arbitrarily chosen marginal distribu­

tions. Many of these are skewed and/or have heavier tails than the multivariate normal, which can 

be uSPlul in providing robustness against :outlipIs'. 

These multivMiate distributions are not members of the pxponential family. Thus, pxpanding 

the choice of distributions in this way implies the loss of the ease of estimation provided by sufficient 

statistics so that a nonlinear optimizer is required. But this has the compensating advantage that 

nonlinear regression functions can be fitted as easily as linPM ones. 

If open software for modelling with the multivariate normal distribution is available, it can 

very easily be modified to accommodate all of these distributions. Almost all of the required 

components are already being computed and one has only to change the formula for the final 

likelihood being calculated. Depending on the distribution used, one will also require the gamma 
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function (Student t and power-exponential), a modified Bessel function (skew Laplace), and the 

normal quantile function as well as cumulative distribution functions of any desired marginal 

distributions (Gaussian copulas). 

Models based on all of these multivariate distributions are now available in two functions for the 

H software system (Ihaka and Gentleman, 1996) and can be obtained from the first author. This 

is accompanied by a nonlinear function interpreter which allows any nonlinear regression function 

easily to be specified and fitted. An illustration is provided in the appendix below. 

2 Multivariate Distributions 

We first briefly describe the various multivariate distributions available. For further details, the 

reader is referred to the literature cited. 

2.1 Normal distribution 

First let us recall the form of the multivariate normal distribution for R repeated measurements, 

e-~(Y-I-')'rE- r (Y-I-') 

f(y; 1-', 'E) = (27f)'i JiET (1 ) 

with covariance matrix E. However, a number of other families of multivariate distributions also 

have such a matrix. Like the multivariate normal distribution, many, but not all, of them are 

elliptically-contoured. Thus, skewed distributions are also available. The normal distribution is 

often skewed by taking logarithms of the response variable, yielding the log normal distribution; 

this can also be done with the other symmetric multivariate distributions presented below. 

A correlation or covariance matrix can have any desirable structure. For simplicity here, we 

shall restrict attention to two of the basic possibilities: constant correlation among all observations 

on an individual (sometimes called compound symmetry) and the simplest way in which correlation 

decreases with distance in time (stationary autocorrelation). 

Consider the covariance matrix. With N individuals and R repeated measurements on indi­

vidual i, a variance component for intra-individual correlation can be modelled as 

where IR is an R x R identity matrix and J R a vector of ones of length R. Here, [J2 is the 

intra-individual variance and 0 is both the extra component of variance across individuals and 

the common covariance among responses on the same individual. In the context of linear normal 

models, this corresponds to a random intercept. (For those familiar with the Laird and Ware 
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notation, we have Z = JR.) Random coefficient models for polynomials in time can also be written 

in this way, but have a more complex form; for examples, see Lindsey (1999a, pp. 93-lO2). 

If serial correlation is present, the covariance matrix might be structured in the following way: 

P 

1 

This is a first-order dependence structure for equally-spaced times, a stationary AR(I); the ex­

tension to unequally-spaced times is straightforward. Dependencies involving other functions of 

time, perhaps nonstationary, (see, for example, Lindsey, 1999a, pp. 124-127) can also be used, 

as well as higher order dependencies, although these are not often necessary for the short series 

usually available in repeated measurements. Variance components and serial correlation can be 

combined in the same covariance matrix but recall that any suitable structure is possible. In the 

exam pIes below, the dispersion parameter is often not constant in time, inducing a different type 

of nonstationarity. 

In constructing models based on the multivariate normal distributions, the covariance matrix 

can be written simultaneously as one large matrix for all observations on all individuals: for 

example, if observations are at the same time points for all individuals, l::N = IN 18> l::. The 

appropriate elements are zero so that observations on different individuals are independent. This 

is equivalent to taking a separate multivariate normal distribution for each individual, with a 

suitable covariance structure, and multiplying them together. 

2.2 Student t distribution 

A well known alternative to the multivariate normal distribution is the multivariate Student t 

distribution, defined by 

where I< is the number of degrees of freedom. This is a member of the elliptically-contoured family 

of distributions. The mean is f.' for I< > 1 and the covariance matrix is 

cov(Y) 
I< 

--2l::, 
1<-

Note that zero correlation does not imply independence. Here, I< --; 00 yields a multivariate normal 

distribution, whereas I< = 1 is a multivariate Cauchy distribution. 

The procedure for constructing one large covariance matrix for all individuals, described above 

for the multivariate normal distribution, no longer works here if I< < 00. When l:: is diagonal so 

that the correlation among observations is zero, this distribution cannot be written as a product of 

independent univariate distributions. The multivariate distribution retains a dependence structure 
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among the observations on an individual even though the correlation among them may be zero. 

Of course, responses on different individuals can be made independent by multiplying together the 

multivariate distributions on individuals in the usual way. These remarks hold for the next two 

multivariate distributions as well. 

2.3 Power-exponential distribution 

The multivariate power-exponential distribution given by 

(2) 

is also a member of the elliptically-contoured family (G6mez et al., 1998; Lindsey, 1999b). It is a 

special case of what has been called a Kotz-type distribution (Kotz and Nadarajah, 2001). 

Again J.t is the mean and the covariance matrix is 

cov(Y) = 
2ol-r(R+2) 

2/'1; E 
Rr (2~) 

f\, determines kurtosis; when f\, f. 1, the even cumulants are nonzero, in contrast to the multivariate 

normal distribution. 

\Vhen f\, = 1, this is a multivariate normal distribution, when f\, = 0.5, a form of multivariate 

Laplace (double exponential) distribution discussed by Kotz et al. (2001, pp. 312-313), and when 

f\, --+ 00, a multivariate uniform distribution. The marginal and conditional distributions are more 

complex, elliptically-contoured distributions, not of the power-exponential type. 

2.4 Skew Laplace distribution 

The multivariate power-exponential distribution contains, as a special case, one possible definition 

of a multivariate Laplace distribution. Kotz et al. (2001, p. 250) give another possibility: 

(3) 

where K u (') is the modified Bessel function of the third kind and", is a vector of skew parameters, 

one for each observation. For", = 0, this is a symmetric multivariate Laplace distribution which 

is elliptically-contoured; otherwise, it is not a member of that family. 

Here, the mean is "" and the covariance matrix 

cov(Y) = 1: + "'''' T 

As with the previous two distributions, zero correlation does not imply independence. 

A regression function can be introduced in at least two distinct ways. If Y has an asymmetric 

multivariate Laplace distribution and we want the mean to be determined by the regression func­

tion, we can set"" equal to that function. This, however, means that the amount of symmetry is 

also changing with the regression function. 
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A second possibility, suggested by Kotz et al. (200l, pp. 261-268), is to introduce the regression 

function as a location shift; they propose this for linear regression with zero correlation ('E = IR)' 

Here, we extend it to nonlinear regression functions and model the correlation matrix. In this 

situation, y in Equation (3) is replaced by y - g({3, X) where g(.) is some linear or nonlinear 

regression function. Note that'" is not a shift parameter so that Y - g({3, X), but not Y, will have 

an asymmetric multivariate Laplace distribution (Kotz et al., 2001, p. 244). When this distribution 

is applied to repeated measurements, it seems most sensible to fix all elements of", to be identical 

so that the distribution of all repeated responses has the same asymmetry and only one additional 

parameter need be estimated. In the examples to follow, this second model consistently fitted 

better so that it is the only one for which results are presented. 

2.5 Copulas 

One approach to the construction of multivariate distributions is by the specification of the uni­

variate marginals. This is not sufficient to define completely the distribution. Many supplementary 

conditions have been proposed, usually for specific marginals. 

Suppose that the desired univariate marginal distributions are given by their cumulative dis­

tribution functions, F(Yi)' Then, a multivariate distribution with these marginals can be formed 

as 

where c(·) is a function from [0, l]R to [0,1]. Such a construction is called a copula. Although all 

of the margins are shown to have the same form here, they can, in principle, be different. 

The equation above can be inverted to give 

where F- 1 
(.) is the corresponding quantile function and Ui is a uniform [0,1] variable. 

One particularly useful copula is the Gaussian (Song, 2000). The general form of the corre­

sponding density can be obtained from the standardized multivariate normal density of Equation 

(1). We transform the response using a vector of univariate normal quantile functions, <1'>-1 (u) 

(without forgetting the Jacobian): 

ORC(U; 'E) 
OUI ... OUR 

where E is a (Spearman-type) correlation matrix (not a covariance matrix as in the previous 

families). 

When we substitute in the chosen univariate marginal distributions for u, we obtain the mul­

tivariate density 
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where F(y; IJ) is the vector of chosen univariate marginal cumulative distributions and !(Yi; IJ) 

is the corresponding individual univariate density. If the margins are chosen to be normal, this 

reduces to the standard multivariate normal distribution of Equation (1) and if they are Laplace, we 

have a third type of multivariate Laplace distribution, not covered by Kotz et al. (200l). Then, as 

with the other distributions above, I: can be structured in any desired way to create dependencies 

among the responses, here indirectly through F(y; IJ). 

3 Examples 

We have applied the models described above to a large number of data sets. We have chosen to 

present here the analyses for several data sets that are available in the literature so that the reader 

can compare our approach to the standard ones. For lack of space, we do not provide complete 

details of the studies, nor of how the final model was obtained, but instead refer the reader to the 

relevant literature. 

We concentrate on finding appropriate nonlinear regression functions for these data. One good 

check on such functions is also to fit a saturated mean or location model, but we shall not present 

results for this here. For simplicity and clarity, we restrict covariance modelling to the two basic 

structures described above. However, we emphasize that any appropriate form of matrix can be 

used and that better covariance structures may exist for these data. 

In the analysis of cross-over data, modelling of the dependence structure is especially critical 

because treatments are compared within subjects so that ignoring or poorly modelling the de­

pendence will generally lead to the significance of treatment effects being underestimated. Thus, 

we shall look at several examples involving such trials. But first we consider a more classical 

longitudinal repeated measurements study. 

For inferences, we shall use the Ale: minus the log likelihood plus the number of estimated 

parameters. Thus, smaller values indicate more preferable models. This allows us to compare 

non-nested models. If the reader wishes to apply classical likelihood ratio tests, where applicable, 

all log likelihoods must be multiplied by two. 

3.1 Coronary sinus potassium trial 

Grizzle and Allen (1969) give measurements of coronary sinus potassium (mil equivalents per litre) 

in 36 nondffiCfipt dogs. Observations were made at two-minute intervals after coronary occlusion 

under four treatment conditions: A, control; B, bilateral thoracic sympathectomy and stellectomy 

three weeks prior to occlusion; C, extrinsic cardiac denervation immediately prior to occlusion; 

and D, extrinsic cardiac denervation three weeks prior to occlusion. 

Analysis shows that the control differs from three treatments which are fairly similar. We 

have found empirically that the following sum of exponentials curve in time, with a total of nine 
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regression parameters, fits well: 

I"t 

( 4) 

where Xj is an indicator variable for treatment j. Notice that, in this function, the mean or location 

parameter of the response to treatment B is constant over time. 

For these data, the dispersion parameter depends log linearly on time. An AR(l) is also 

required, but no variance component, although this will be reconsidered below for the final model. 

The fitted models are compared in the first column of Table 1. Without transforming the data, 

we see that the Gaussian copula with gamma margins fits best, followed by the multivariate skew 

Laplace distribution. 

The fact that the best models are based on skewed distributions seems to indicate that a log 

transformation might be preferable in the multivariate normal distribution, although this does not 

seem to have been used in the literature for these data. We keep the same regression model but 

apply an exponential link to I"t so that the log response will follow the logarithm of the complete 

nonlinear relationship on the right hand side of Equation (4). Indeed, these models fit better for all 

of the distributions, even the Gaussian copulas with gamma, Wei bull, and inverse Gauss margins. 

The (log) power-exponential now replaces the skew Laplace as the closest rival of the Gaussian 

copula with (log) gamma margins, as can also be seen in the first column of Table 1. 

Each of these models has one more parameter than the multivariate log normal so that the 

difference in log likelihood is almost 4, or the deviance about 7.8, with one degree of freedom, 

clearly rejecting the latter by frequentist criteria as well as by the AIC. The log power-exponential 

distribution has k = 0.48, indicating a distribution close to a multivariate log Laplace distribution 

of Equation (2), not that of Equation (3) nor a Gaussian copula with Laplace margins. 

The autocorrelation is estimated to be about 0.9 for the two best models. A variance component 

is not necessary for the copula but reduces the AIC to 113.5 for the log power-exponential. The 

latter now has an autocorrelation estimated to be p = 0.81 and power parameter k = 0.44. On 

the other hand, the former can be simplified by keeping the dispersion parameter constant (AIC 

113.9). 

The final location function with the log power-exponential distribution is estimated to be 

eJ.'t 4.16 - 0.655(XB + Xc + xv) + (1- XB)1.927(14.1- t)e-
eO.151 (14 .. 1 - 1) 

-1.78313.4-t xce- +xve-( ) ( 

eO.245(13A-t) eO.188P3A-I)) 
(5) 

with 

10g(T;) = -9.28 + 0.0546t 

for the dispersion parameter. 
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Standard analysis (Lindsey, 1999a, pp. 127- 131) with the multivariate normal polynomial 

growth curve and an AR(l) requires a third degree polynomial; the AIC is 143.4. This is re­

duced to 138.4 if the log variance is allowed to depend on time and to 123.7 if a log transformation 

is also applied. Replacing the normal distribution with this polynomial by the log Student t gives 

120.5 and by the log power-exponential 120.0. Thus, non-normality, nonconstant dispersion, and 

nonlinearity are all important for these data. 

3.2 Insulin cross-over trial 

Two mixtures of neutral protamine Hagedorn (NPH) insulin, the standard (A) and one containing 

5% less protamine (B) were tested on rabbits in a CToss-over design (Ciminera and Wolfe, 1953). 

Two groups of eleven female rab bits were injected with the insulin at weekly intervals in the orders 

ABAB (sequence 1) and BABA (sequence 2). For each treatment, blood sugar level was measured 

at injection and at four equally-spaced post-injection times over six hours. Lindsey (1999b) reana­

lyzed these data using the multivariate power-exponential distribution and a quadratic regression 

function. Here, we compare the distributions discussed above using nonlinear regression functions. 

Two levels of variance components are possible: the rabbit and the period nested within rabbit; 

a first-order autocorrelation may also be necessary over the six hours. The explanatory variables 

are the period, the treatment, and the group, as well as a sum of exponential time effect. We have 

found the following regression function to fit well: 

where Xlj is an indicator for period j, X2j for group j, and X3j for treatment j. Again, the log 

variance depends linearly on time. Only the rabbit-level variance component, and not the period­

level one, is required, not surprisingly because period 4 is used in the regression function and is by 

far the most significant. 

The resulting fits for the final model are compared for each distribution in the third column of 

Table 1. We see that the Student t and power-exponential distributions fit best. The parameters 

are estimated to be k = 22.0 for the Student t d.f. and k = 0.50 for the power-exponential. Both 

indicate a distribution with somewhat heavier tails than the multivariate normal. The Gaussian 

copulas with skewed marginal distributions fit less well than the other distributions. These results 

confirm that a symmetric distribution is the best choice for these data, at least among those tried. 

The two best fitting models give almost identical parameter estimates for the nonlinear regres­

sion function: 

Of course, the variance component and the dependence of the dispersion parameter on time are 

quite different, although the latter increases over time in both cases. On the other hand, the 

autocorrelation is the same: fJ = 0.44. 
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Eliminating the treatment effect by setting "5 = 0 raisffi the AIC to 1805.7 for the Student 

t and to 1805.8 for the power-exponential. (Thus, the log likelihood increases by about 3, or the 

deviance by about 6.2, with one degree of freedom.) 

Standard analysis with the multivariate normal polynomial growth curve, a variance component 

for rabbits but not for period, and an AH(l) requires a second degree polynomial; the AIC is 1852.8. 

This is reduced to 1838.2 if the log vdIiance is allowed to depend on time. Elimination of treatment 

effed here reduces the AIC to 1837.2. Hence, the standard polynomial growth curve model (even 

with nonconstant vdIiance) not only fits much more poorly but is not sensitive enough to detect 

the treatment effed. The power exponential model with a quadratic polynomial has an AIC of 

1833.3, decreasing to 1832.8 when the treatment effect is eliminated. Our nonlinear regression 

function provides a substantial improvement on this and allows clear detection of the treatment 

effed. 

3.3 Pharmacokinetics cross-over trial 

ThpIe is a strong belipf among statisticians analyzing pharmacokinetic data with compartment 

models that concentrations always follow a log normal distribution. HowevPI, we are aware of no 

studies in which this has been demonstrated for any compound. In all cases in our pxppxience, the 

log normal distribution has never proven suitable. \Ve now considpI one such data set. In contrast 

to the other pxamples, hpIe a mechanistic nonlinear regression function is available. 

Flosequinan was found, in early trials, to be useful in the management of patients with chronic 

heart failure. However, a long term study demonstrated that there might be incre.aBed mortality 

in patients taking the drug so that it was withdrawn from the market in the United Kingdom 

in April, 1993. A Phase I study looked at pharmacokinetic dose proportionality using 50, 100, 

and 150 mg doses in a croSS-OVPI design involving 18 healthy voluntePIs. Thus, 3 patients WPIe 

assigned to each of the six possible sequences. Blood samples WPIe taken at 0, 0.5, 1, 1.5, 2, 3, 

4, 6, 8, 10, 12, 24, 36, 48,72, and 96 hours after dosing. Concentrations of flosequinan and of its 

pharmacologically active metabolite, flosequinoxan, were mp,asured. Time to pp,ak concentration 

for the drug is less than one hour. 

A nonlinear regression function, the open first-ordpI one-compartment model, given by 

(6) 

is suitable for these data, where d is the dose and t the time. The volume (V), absorption rate 

(ka ), and elimination rate (k,) are parameters to be estimated. The dispersion parameter follows 

the regression function 

2 _ kdte-
( 

kt) 5 
at - V' 

The expression in the parenthffies is obtained as the limit of Equation (6) when ka = k, = k. Thus, 

there are three parameters in this function, k, V', and 5, all different from those in Equation (6). 
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HpIe, the distribution of the responses is clparly skewed, as is often the case with pharmacoki­

netic data, so that we require a log transformation if the distribution is not skewed. Lindsey and 

.Jones (2000) analyzed these data using the multivariate log Student t and log power-exponential 

distributions. 

The vdIious distributions are compared in the fourth column of Table 1. Here, the log Student 

t distribution is clearly superior whpIeas the multivariate normal and log normal distributions are 

by far the worst fitting, along with the Gaussian copula with inverse Gauss mMgins. Again, only 

one level of variance component is necessary, that between subjects, but not that for periods within 

subjects. The AH(l) is also required, with p = 0.89 for the best model. The estimate is Pc = 2.5 for 

the log Student t dJ. (Pc = -0.30 for the skew log Laplace), pointing to very thick tails. However, 

the results change rather drastically when the metabolite is modelled jointly with flosequinan and 

the available covariates are introduced; see Lindsey (2001, pp. 113-131). 

3.4 Pharmacodynamics cross-over trial 

To evaluate the dose of an H2 receptor antagonist required in the treatment of gastric pH, six 

patients were given five diffpIent doses plus placebo in varying ordpIs, following a cross-over design 

(Ekholm et al., 1989). The dose levels were 10, 20, 40 80, and 160 mg. Each new dose adminis­

tration was begun aftPI a washout pPIiod of one week to ensure that the previous dose had been 

completely eliminated. Gastric pH level was measured immediately before administering the drug, 

and at 2, 4, 6, 8, 10, and 12 hours after. A clinically important response would be one raising 

the gastric pH level OVPI 3 for two consecutive recordings. No advPIse effects WPIe recorded at 

the 10wPI doses, but at 160 mg all patients pxcept number 3 pxperienced intolpIable diarrhoea or 

abdominal cramps. 

A possible nonlinear regression function that fits well is 

(
kt -ht) 

I"t = exp ~d 

whpIe Vd is a distinct parameter value for each dose level, t is the time, and k is both the absorption 

and elimination rate. (This nonlinear regression function can be obtained in a similar way to the 

dispPIsion function in Equation ("7), by taking the limit when the absorption and elimination rates 

are set to be identical in Equation (6) and then exponentiating it.) A standard analysis using this 

regression function is given by Lindsey (2001, pp. 142-146). 

The models fitted here are compared in the fifth column of Table 1. Symmetric distributions 

with non-constant dispPIsion fit best. The dispersion parameter varies as a quadratic function 

of time, independently of dose. For these data, variance components and auto-regression are not 

required. The fit of the Gaussian copula with log logistic margins is slightly superior to that with 

log normal margins. The log Student t, log power-exponential, and skew log Laplace distributions 

may fit less well because they impose dependence among the repeated responses on an individual 

even when the correlation is zero. 
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Only the two highest dose levels meet the requirement of raising pH above 3. Because the 

highest level yielded adverse effects, the dose of 80 mg of the H2 receptor antagonist would be 

chosen. 

4 Conclusions 

OUf general experience in analyzing a fair number of repeated measurements data sets is that for 

most continuous responses, a multivariate normal distribution is not ideal. Only in the last example 

is it competitive with the alternatives presented here. More generally, the major exception that we 

have found, where the normal assumption is valid, is assay data where only measurement error is 

present. Similarly, polynomials in time are always an ad hoc solution; Sandland and McGilchrist 

(1979) provide a good discussion of reasons for not using them. 

The distributions presented here provide considerable flexibility. One important role is to allow 

checking goodness of fit of the normality assumptions. However, a number of open questions 

remain. These include: 

• A variance component in the covariance matrix for a non-normal distribution imitates a 

random intercept. How can the covariance matrix be structured to imitate random nonlinear 

parameters? 

• Is it possible to fit these models dynamically as an extension of the Kalman filtering and 

smoothing algorithms for the multivariate normal distribution (Jones, 1993) so that long 

time series can easily be handled? 

• How can we efficiently obtain the conditional regression equation, given previous responses 

or residuals, so that recursive fitted values can be calculated (and plotted)? In contrast to 

models based on joint multivariate distributions, those constructed as the product of condi­

tional distributions yield such fitted values directly (for example, the algorithm mentioned 

in the previous point). 

• How can we allow for censored data, for example the non-detectable values from the assays 

used to measure concentrations in pharmacokinetic data? The cost of multidimensional 

integration of arbitrary margins of a multivariate distribution appears to be prohibitive. 

None appear to have easy answers. 

Acknowledgements All of the examples were analyzed using the R software with the functions 

elliptic (for the multivariate normal, Student t, power-exponential, and skew Laplace distribu­

tions) and gausscop (for the Gaussian copulas) in the first author's public libraries, respectively 

called growth and repeated, available at http://''''w .luc. ac. bel ~j lindsey Ircode .html 
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5 Appendix 

To illustrate the p""e of fitting these models, the complete H code for fitting the final two models 

in the first example for the data from the coronary sinus potassium trial is shown below. 

# load the elliptic function for MVN, power-exponential, skew Laplace, 

Student t 

library(growth) 

# load the gausscop function for Gaussian copulas 

library(repeated) 

# read in the data and prepare as a data object 

cor <- matrix(scan("coronary.dat)), skip=5), ncol=7, byrow=T) 

reps <- rmna(response=restovec(cor, times=seq(1,13,by=2)), 

ccov=tcctomat(as.factor(c(rep(1,9), rep(2,10), rep(3,S), 

rep(4,9))), 

name="treat)), dataframe=F)) 

# add the log transform to the object, automatically calculating the 

Jacobian 

reps <- transform(reps, lcor=log(cor)) 

# define the nonlinear location function 

mu <- -al+a2*(treat2+treat3+treat4)+ 

a3* (1-treat2) * (a5-times) *exp(-exp(a4*(a5-times)))+ 

a6* (as-times) * (treat3*exp (-exp (a7* (as-times)))+ 

treat4*exp(-exp(a9*(aS-times)))) 

#fit the two models 

elliptic(cor, dist=) 'power exponential)), pell=O.4, model=mu, 

preg=c(1.4,-O.17,O.4,14.3,O.15,-O.37,13.4,O.26,O.19), 

varfn=-times, pvar=e(-8.3,O.04), par=O.8, pre=O.l, 

transform="log", envir=reps) 

gausseop (leor, dist=" gamma' , , mu=mu, 

pmu=c(O.3,-O.07,O.24,14.9,O.12,-O.2,13.5,O.26,O.lS), 

shape=-times, pshape=c(4.7,-O.026), par=O.9, envir=reps) 

# leor could have been used in the first model instead of 

trans=' 'log" 
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Developing an appropriate nonlin£:'aI regression function and finding suitable initial paramet£:'I 

estimates can be much more difficult! 
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Table 1: AICs of the models fitted to the four examples. Only values in the same column are 

comparable. 

Example 1 2 3 4 

MVN 130.2 1805.4 2437.4 272.2 

LogMVN 117.0 2112.7 257.5 

Student t 122.7 1803.6 

Log Student t 115.0 2013.6 259.2 

PowPI-exponential 121.9 1803.6 

Log powPI-pxponential 114.5 2024.3 258.2 

Skew Laplace 119.6 1814.2 2167.9 

Skew log Laplace 117.7 2016.9 265.0 

Gaussian copulas 

Logistic 126.4 1806.6 

Log logistic 118.5 2041.6 257.2 

Cauchy 141.3 1834.4 

Log Cauchy 140.4 2025.1 290.4 

Laplace 126.8 1820.5 

Log Laplace 124.5 2039.2 258.3 

Gamma 118.7 1899.7 2056.1 261.1 

Log gamma 114.1 

Weibull 147.3 1865.5 2031.9 277.3 

Log Weibull 129.8 

InvPIse Gauss 121.3 2017.1 2256.3 274.7 

Log invPIse Gauss 119.6 
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