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Statistics is like a game: to find the best relationship between variables, the researcher tests

different ways to improve a model. Here, we present new statistical results for a modelling

approach to the climatic influence on the Black Grouse population dynamics in Belgium. The

method, initially successfully developed for the Belgian population and then applied to several

European Black Grouse populations, has been modified to refine more precisely the real time

of the birds’ breeding period during which climatic conditions are crucial. Statistical and bio-

logical values of the results with periods defined for 7 days rather than for 3 or 4 weeks are

interpreted and discussed for three sub-populations of the Hautes-Fagnes plateau in Belgium.
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INTRODUCTION

Modelling is at the centre of both exper-

imental and theoretical ecology: it is

usually understood to involve predic-

tion of future events. It is a job for statisti-

cians: they use statistics and modelling

to reproduce observed events, and they

apply probabilistic methods to under-

stand observations or events. Most

biologists do not claim to be statisti-

cians. Of course, biologists use statistics

to test their hypotheses, but many often

use the same simple statistical estimates

and methods: parametric tests, normal

distribution, R2, Pearson 2, Student t,

Principal Component Analysis, ANOVA,

MANOVA, linear regression, and so on

(Schwarz 1963, Dagnelie 1975). Bio-

statisticians try to apply elaborate statis-

tics to biological events and introduce

new methods in biology (Crawley 1993,

Burnham & Anderson 1998, Leirs et al.

1997, Lindsey 1999b). Unfortunately,

even with sophisticated model building,

outmoded statistical procedures with

poor properties are still often used, such

as assuming that log(N
t+1

) has a conditio-

nal normal distribution, where N
t

are

fairly small counts over time (e.g., Lima

et al. 2002). Such models are extremely

difficult to interpret biologically. In our

autoregressive models, we shall not

transform the data but rather use the

more appropriate assumption that such

counts have a conditional Poisson distri-

bution, with a log link, and use checks

for overdispersion (Lindsey 1999b,

Chapter 8). Our goal here is not to intro-

duce novel methods of analysis, but

rather to show the value of applying
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models that are recent and already

widely used to a new biological field.

Our work on Black Grouse popula-

tion dynamics is a case study for such

a new approach by bio-statisticians. We

use modelling as an exploratory

method to test the expected influence

of local climate on Black Grouse popu-

lation dynamics. The climate is effective-

ly a major factor in ecology (Stenseth et

al. 2002). It acts directly on the condi-

tion and behaviour of the birds at all

stages of life. It also influences food

production and growth, vegetation, as

well as small arthropods in the case of

the Black Grouse. The availability of

food acts again indirectly on the behav-

iour of the birds and on the chicks’

growth (overview in Loneux & Ruwet

1997). Results of that modelling have

shown the importance of climate to

explain the dynamics observed in

Belgian Hautes-Fagnes (details in

Loneux et al. 1997, 2000). The results of

modelling various European popula-

tions with their own meteorological

data have confirmed the role of climate

and the relevance of the method

(Loneux 2001). They have pointed out

the relation between Black Grouse and

weather during the wintertime for the

non-mountainous populations: winter

should be cold rather than mild. They

stressed the impact of weather during

brooding and hatching times: it should

be warm and dry rather than cold and

wet. Dynamics were well reproduced by

modelling, using judicious explanatory

variables translating these relations,

including when updating the model till

2003 in Belgium (Loneux et al. 2003, this

volume). But certain explanatory vari-

ables were not independent and could

overlap. An improved modelling should

consider variables without time overlap.

We previously presented this ap-

proach at several international conferen-

ces, such as: ‘Arbeitstagung Birkh-

uhnschutz Heute’ Fladungen, Germany

April 1998 (Loneux et al. 2000); 8th

International Grouse Symposium

Rovaniemi, Finland 1999 (Loneux et al.

1999); Birkhuhn Tagung Zinnwald,

Germany April 2000; 1st International

Black Grouse Conference Liège, Belgi-

um 2000 (Loneux 2001); 23rd Inter-

national Ornithological Congress

Beijing, China 2002 (Loneux 2002a); 9th

International Grouse Symposium Bei-

jing, China 2002 (Loneux 2002b). But

the nature of questions asked have lead

us to focus this paper on the method

itself, and on the limits of a comparison

with what most of biologists used to

consider. We illustrate this focus with

results obtained by the first method for

three subpopulations in the Belgian

Hautes-Fagnes and with an improved

analysis for the whole Hautes-Fagnes

population.

METHODS

The required conditions are to have

available a long time series of quantita-

tive demographic observations (spring

census of Black Grouse cocks, per-

formed by the same way each year and

being as complete as possible, Ruwet et

al. 1997) and appropriate continuously

recorded explanatory variables for the

same time points (daily meteorological

records at a local weather station close to

the study area in our case). The climatic

variables used must be well chosen 

for their known or supposed effects,

based on a large overview of the litera-

ture, on the condition and survival of

the birds at different stages of their life

cycle. We used rainfall and mean

minimum temperature related to crucial

time periods of the life cycle of the

species. The defined periods are the

winter (1 November to 31 March), the

beginning of spring (April), the brood-



45

SYLVIA 39 / 2003  SUPPLEMENT

ing, hatching and rearing times (estima-

ted from field observations and the litera-

ture), and the beginning of autumn. The

analysis is Poisson multiple regression in

the “R” software (a free S-Plus clone, Ihaka

& Gentleman 1996), with formula:

log (μ
t
) = β

0
+ β

1
x

1t
+ β

2
x

2t
+ ... + β

t
x

rt

for explanatory variables ’x
it
‘ with μ

t
the

mean number of cocks for year t

Models will be ranked using an infor-

mation-theoretic approach (Burnham &

Fig. 1. Location of the weather stations (stars) and of the three Black Grouse sub-populations in Belgian
Hautes-Fagnes: (1) Fagnes de la Baraque Michel (FBM), (2) Fagnes du Nord-Est (FNE), (3) Fagnes de
Sourbrodt-Elsenborn (FSE).

Fagnes de la Baraque Michel

Fagnes du Nord-Est

Fagnes de Sourbrodt-Elsenborn
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Anderson 1998) to determine the most

parsimonious model. The criterion used

will be the AIC with smaller values indi-

cating more preferable models.

Automatic step-wise procedures were

not used. Order for entering variables

into the model was determined by our

previous knowledge of the biological

system under study (Loneux et al. 1997).

The following explanatory variables

were retained in at least one of the final

models:

spring cocks number previous year

(no1), spring cocks number two years

before (no2), sum of rainfall during

September previous year (ppSept),

sum of rainfall during November previ-

ous year (ppNov), minimum tempera-

ture mean over 3 weeks beginning the

day ‘dd’ of month ‘m’ (t3wdd.m),

minimum temperature mean over 1

week beginning the day ‘dd’ of month

‘m’ (t1wdd.m), sum of rainfall during

3 weeks beginning the day ‘dd’ of

month ‘m’ (pp3wdd.m), sum of rain-

fall during 4 weeks beginning the day

‘dd’ of month ‘m’ (pp4wdd.m), sum of

rainfall during 1 week beginning the

day of month (pp1wdd.m), minimum

temperature mean during previous

winter period defined from 1

November previous year to 31 March

year ‘t’ (twinter), minimum tempera-

ture mean during previous last winter

period (twinter1), spring cocks

number previous year for ‘Fagnes de la

baraque Michel’ (noFBM1), spring

cocks number two years before for

‘Fagnes de la baraque Michel’

(noFBM2), spring cocks number

previous year, for ‘Fagnes du Nord Est’

(noFNE1), spring cocks number two

years before, for ‘Fagnes du Nord Est’

(noFNE2), spring cocks number previ-

ous year, for ‘Fagnes de Sourbrodt-

Elsenborn’ (noFSE1), spring cocks

number two years before, for ‘Fagnes

de Sourbrodt-Elsenborn’ (noFSE2).

Rainfall or minimum T° formerly

calculated for three or four weeks with

overlap during the breeding period

(brooding, hatching and chicks’ first

weeks of life) have been this time calcu-

lated for 1 week, without overlap with

the next one. The first week begins on

10 May, the last one begins on 25 July. All

coefficients: estimate std. error z-value P-value

(intercept) 3.3119654 0.1962206 16.879

no1 0.0120754 0.0009814 12.305 <0.001

no2 –0.0022583 0.0009402 –2.402 <0.05

twinter –0.0794338 0.0242595 –3.274 <0.01

t1w17.5 –0.0278092 0.0112979 –2.461 <0.05

t1w21.6 0.0935770 0.0109331 8.559 <0.001

pp1w31.5 –0.0016653 0.0011565 –1.440 <0.20

pp1w07.6 –0.0046126 0.0014327 –3.220 <0.01

pp1w28.6 –0.0049216 0.0009273 –5.307 <0.001

pp1w05.7 0.0019563 0.0009431 2.074 <0.05

ppSept –0.0015556 0.0003948 –3.940 <0.001

ppNov –0.0025447 0.0005102 –4.988 <0.001

Table 1. Explanatory variables in the best model with 1-week periods, with P-values referring

to partial effects of each variable. The formulation used in R for the final model is: glm(formula

= no ~ no1 + no2 + twinter + t1w17.5 + t1w21.6 + pp1w 31.5 + pp1w 07.6 + pp1w 28.6 + pp1w

05.7 + ppSept + ppNov, family = poisson). For explanation of variable names see Methods. Null

deviance: 935.420 on 35 df, residual deviance: 42.096 on 24 df, AIC: 274.19.
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other variables and time periods are the

same ones previously used in the first

modelling (Loneux et al. 1997, 2000,

Loneux 2001).

The three sub-populations (Baraque

Michel, Nord-Est, Sourbrodt-Elsenborn)

occupy the different parts of the Hautes-

Fagnes nature reserve, are distant from

each other from 5 to 10 km (Fig. 1) and

form together a ‘metapopulation’ isolat-

ed from the other breeding populations

in Europe. The climatic data come from

weather stations close to the sub-popu-

lation 1, which is also the main one

(Ruwet et al. 1997).

RESULTS

The results of the improved modelling

(Table 1, Fig. 2) confirm the role of

weather to explain the fluctuations. The

spring number of birds increases when

the previous brooding and hatching

periods are warm and dry rather than

rainy, when the previous autumn is dry

rather than rainy and when the previous

and current winters are cold rather than

mild. We have investigated the climate

trends and shown that cold winter means

snowy rather than rainy, and that global

warming affects locally the explanatory

variables taken in the model, in a way

not good for the Black Grouse (Loneux

& Vandiepenbeeck 2002, 2003).

The modelling gives much better esti-

mated numbers when using crucial 

1-week periods without overlap for vari-

ables related to the breeding time. It

points to smaller crucial periods, which

are a mean for the breeding time over

the whole period of study: the first 2

weeks of June in Belgian Hautes-Fagnes.

In the previous analyses, all of the

final models fitted very well and there

was no indication of overdispersion

(Lindsey 1999a). Here, the global model

for all sub-populations combined shows

some indication of overdispersion (resid-

ual deviance almost twice the degrees

of freedom, Table 1). We shall come

back to this point in the Discussion

(Table 6).

Fig. 2. Models for spring numbers of Black Grouse cocks in the Belgian Hautes-Fagnes. Plot of

the numbers on the arenas (N observed) and their estimated values from the model (N fitted)

for 1966 to 1998 and updated to 2003. This model, using minimum mean temperature and rain-

fall covering 1-week periods in May, June, or July without overlap, is better than the model using

3–4-week periods variables (cf. Loneux et al. this volume). 
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DISCUSSION

The years with poor fit of the estimated

number could be those with exception-

al meteorological conditions during the

mean crucial time periods considered.

But neither the climate does explain all!

Some extreme climatic events, or some

other events not climatic at all, may have

more affected the population in those

years.

In the results obtained for each of the

three sub-populations (Table 2, 3, 4),

certain explanatory variables are not the

same, even when the meteorological

data are identical in the three cases. We

have not yet found a satisfactory biolog-

ical interpretation for such differences

two by two among the variables taken

into account. Another analysis with vari-

ables without overlap should be per-

formed as well to allow comparison

without any dodged issue.

AIC (Akaike Information Criterion),

Null Deviance, Residual Deviance are

criteria of evaluation of the quality of

the modelling. They are not familiar and

well understood, and not easily accept-

ed by most of biologists. These know

and prefer ‘R2’, which they believe

allows comparison of the quality of

results obtained by different methods.

‘R2’ does not measure the variability

explained by the model but they believe

that the higher it is, the better is the

model. It measures improvement over

the null model, not goodness of fit.

From our results, we can calculate R2

(Table 5). Results show a larger value of

R2 for the model with 1-week periods.

Note that the model with only previous

cock numbers (2 years before), and no

climatic variables, gives values which are

commonly accepted by biologists as

good result.

By comparison, a classical χ2 good-

ness of fit test applicable on Poisson

distribution (Table 6) gives the model

for 3–4-week periods worse than that

for 1-week periods. In 1999, the models

fitted acceptably well. Now, in 2003,

both models are rejected by the good-

ness of fit test (P < 0.05), indicating

possible overdispersion. Thus climatic

variables were sufficient to explain the

series of grouse numbers from 1966 to

1999; but are no longer sufficient for the

following 4 years.

In contrast to these approaches, the

coefficients estimate std. error z-value P-value

(intercept) 3.0289418 0.2870887 10.551

noFBM1 0.0144594 0.0028242 5.120 <0.001

noFBM2  –0.0054658 0.0029660 –1.843 <0.01

twinter –0.0604980 0.0252725 –2.394 <0.05

twinter1 –0.1150495 0.0288731 –3.985 <0.001

ppSept –0.0012659 0.0006752 –1.875 <0.1

pp4w25.5 0.0080353 0.0026230 3.063 <0.01

pp4w19.5 –0.0055746 0.0015941 –3.497 <0.01

t3w16.6 0.0658246 0.0164730 3.996 <0.001

pp3w01.6 –0.0080908 0.0017172 –4.711 <0.001

ppNov –0.0011207 0.0006488 –1.727 <0.02

Table 2. Explanatory variables in the best model for the main subpopulation 'Fagnes de la

Baraque Michel', number 1 (Fig. 1), with P-values referring to partial effects of each variable.

See Methods for the explanation of the variable names. Dispersion parameter for Poisson

family taken to be 1. Null deviance: 175.217 on 29 df, residual deviance: 17.125 on 19 df, AIC:

203.62.
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coefficients estimate std. error z-value P-value

(intercept)  1.326490 0.511814 2.592

noFNE1 0.039028 0.004947 7.889 <0.001

noFNE2 –0.005426 0.005334 –1.017 >0.2

twinter –0.072700 0.046918 –1.550 <0.2

twinter1 –0.103745 0.056928 –1.822 <0.1

ppSept –0.003191 0.001201 –2.656 <0.01

pp4w25.5 0.003666 0.002571 1.426 <0.2

t3w16.6 –0.226434 0.136113 –1.664 <0.2

pp3w01.6 –0.007772 0.002502 –3.107 <0.01

t3w10.6 –0.346019 0.109127 –3.171 <0.01

t3w13.6 0.658990 0.188452 3.497 <0.01

Table 3. Explanatory variables in the best model for the subpopulation 'Fagnes du Nord-Est',

number 2 (Fig. 1), with P-values referring to partial effects of each variable. See Methods for the

explanation of the variable names. Dispersion parameter for Poisson family taken to be 1. Null

deviance: 496.33 on 29 df, residual deviance: 25.84 on 19 df, AIC: 178.29. Deviance residuals:

min -2.072161, Q -0.47625, median -0.01101, 3Q 0.57237, max 1.86633.

coefficients estimate std. error z-value P-value

(intercept) –0.569446 0.795574 –0.716
noFFSE1 0.063121 0.013023 4.847 <0.001
noFFSE2 0.005475 0.012564 0.436 >0.2
twinter –0.331237 0.086491 –3.830 <0.01
twinter1 –0.206959 0.074877 –2.764 <0.02
ppsept –0.004317 0.001616 –2.671 <0.02
pp4w25.5 0.021450 0.008902 2.410 <0.05
pp4w19.5 0.013580 0.009006 1.508 <0.02
pp3w01.6 –0.018326 0.006066 –3.021 <0.01
t3w10.6 0.170278 0.062426 2.728 <0.02
pp4w16.5 –0.024466 0.008983 –2.724 <0.02

Table 4. Explanatory variables in the best model for the subpopulation 'Fagnes de Sourbrodt-
Elsenborn', number 3 (Fig. 1), with P-values referring to partial effects of each variable. See
Methods for the explanation of the variable names. Dispersion parameter for Poisson family
taken to be 1. Null deviance: 274.329 on 29 df, residual deviance: 31.041 on 19 df, AIC: 150.65.

years 1966–1999 1966–2003

model 3–4-week periods 96.1% 92.3%

model 1-week periods 97.1% 95.5%

model previous cocks number only 76.9% 76.0%

Table 5. R2-value of the models, given by (null deviance – residual deviance)/ null deviance,

for two different lengths of observations. 

AIC only provides a relative measure of

the value of a model as compared to

others. It penalises for complex models

by incorporating the number of param-

eters estimated. The best model 

among a series of formula tried on the

same data set should have the lowest

AIC.
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A comparison of the sum of squared

residuals calculated for 12-year periods

reveals that the model does not fit well

for the last dozen years (Table 7).

However, we have seen above that the

lack of fit is in fact primarily for the last

four years. (This is partially hidden by

the coarser grouping into 12-year

periods.)

The last 12-year period is when the

global climate warming affects the most

values of minimal temperature and sum

of rainfall during crucial periods of the

Black Grouse life cycle. Important

trends revealed are warming of winter

mean minimum temperature, taken as

negative in the model, increasing rain-

fall during autumn (November), taken

as negative in the model and increasing

rainfall during spring (March) and

during parts of the breeding season,

taken as negative in the model (Loneux

& Vandiepenbeek 2002, 2003). Thus,

global climate change, perceptible since

the end of the 1970s, seems to explain

part of the decline observed among the

isolated Black Grouse populations

living in West European protected areas.

time period sum of squared residuals

1968 to 1979 8.94

1980 to 1991 9.64

1992 to 2003 23.52

Table 6. Comparison of χ2 P-values of the residual deviance of Poisson modelling for two

lengths of observations and variables with two different periods of weeks. 

years 1966–1999 1966–2003

model residual df P-value residual df P-value

deviance deviance

3–4-week periods 28.5 18 0.055 72.5 23 4.9 x 10-7

1-week periods 21.5 19 0.310 42.1 24 0.013

Recently, few birds are involved in the

modelling. Thus the variability of their

behaviour could be greater, especially

regarding the climate evolution. It could

be a greater shift between the real yearly

breeding period in the recent years and

the mean breeding period estimated

over more than 30 years from field

observations in the 1970s and literature

on foreign populations (cf. Loneux et al.

1997). Another factor is that in recent

years, the small size of population

implies that any chance stochastic event

(predation, poaching, tourist disturb-

ance, habitat perturbation, etc.) could

disrupt the model and brings the grouse

close to local extinction.

CONCLUSIONS

(1) As an exploratory tool, modelling

allows identification of the value of the

main factors acting on the long-term

dynamics. Those are the explanatory

variables giving the best model. (2) As

a game, modelling allows testing any

explanatory variables, even unrelated to

the biology of the birds. (3) Sometimes,

even with meaningful variables, the

results are difficult to understand,

because of the lack of (obvious) biolog-

ical interpretation.

From the point of view of studying

Black Grouse, because of the climatic

nature of the explanatory variables, it is

not possible to predict more than one

year ahead. The results of our modelling

are not useful to predict the spring cock

census the following year. They allow

Table 7. Sum of squared residuals (propor-

tion of residual deviance) for the model with

1-week periods, adjusted numbers from 1968

to 2003. The higher the sum, the less accu-

rate the model. 
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identification and verification of the

accuracy of the variables used in the

model. This method is a good explora-

tory tool.

In the case of the Belgian Hautes-

Fagnes, the goodness of fit goes down

in recent years showing that other

explanatory variables than strictly climat-

ic ones have become more important, or

that the climatic ones have exceptional

value the years with poor estimates, or

both. This will be subject to further

investigation.

From our experience in modelling

these data, as they have accrued over

the past decades, we would like to make

the following suggestions to those who

wish to apply the method to other

populations/species:

(1) Demographic data should cover

minimum 20 years continuously (the

more the better), of course with the

same census effort and method.

(2) Demographic data should repre-

sent the whole population and not

a small part of it (not one arena only).

(3) The judicious climatic data should

come from a local weather station: this

is very important for rainfall and

minimum temperature.
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